	[image: image6.jpg] NCICB
	

Release
1.0
NCI EVS BioPortal

Design Document for 1.0 Release

Version No: 1.0
Last Modified: July 31, 2007
Author
:
Johnita Beasley

Team
:
Enterprise Vocabulary Services (EVS)

National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

N C I B I O P O R T A L
[image: image6.jpg] Design Document

Document History

[image: image7.wmf]id Component Model

Search Web

Components

Submission Web

Components

Search Manager

Proxy

Search Manager

Submission

Manager Proxy

LexBIG API Jar

Submission

Manager

Web Tier

Business Tier

Data Tier

External Systems Tier

Browse Web

Components

Document Location

This document can be found on the GForge site at: https://gforge.nci.nih.gov/docman/index.php?group_id=90&selected_doc_group_id=1889&language_id=1
Revision History

	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	5/09/2007
	Johnita Beasley
	Initial Draft

	0.2
	5/16/2007
	Johnita Beasley
	Incorporated Feedback; Divided contents into two Scope Documents

	1.0
	7/6/2007
	Johnita Beasley
	Updated to conform to the new EVS Scope Document Template

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	Frank Hartel
	Product Manager
	0.2
	5/17/2007
	None.

	Charles Griffin
	EVS Project Manager
	1.0
	
	

	Kim Ong
	Software Developer
	1.0
	
	

	David Yee
	Software Developer
	1.0
	
	

Related Documents

More information can be found in the following related EVS documents:
	Document Name

	

	

	

Approval

	Name
	Team/Role
	Version

	Date Reviewed
	Signature

	Frank Hartel
	Product Manager
	1.0
	7/17/2007
	On File

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

TABLE OF CONTENTS

61 Introduction

61.1
Purpose of this Document

61.2
Document Overview

71.3
Related Documents

71.4
Methodologies, Tools and Techniques

71.5
Policies, Directives, Procedures

71.6
Key Stakeholders

81.7
Points of Contact

92
DESIGN OVERVIEW

92.1
Background Information

92.2
System Evolution Description

92.3
Technology Forecast

102.4
Risks

102.5
Issues

102.6
Assumptions

112.7
Dependencies

123
SYSTEM ARCHITECTURE

123.1
Architectural Goals and Constraints

123.2
Architectural Constraints

123.3
Architectural Tiers

133.4
Design Patterns Applied to Application Tiers

143.4.1
Client Tier

143.4.2
Web Tier

163.4.3
Business Tier

163.4.4
Data Tier

173.4.5
External Systems Tier

184
Software Design

194.1.1
Component Architecture

204.1.2
Domain Objects

204.1.3
Interfaces

215
Deployment View

215.1
Deployment Diagram

215.2
Deployment Products and Framework Versions

1 Introduction
NCICB bases its data semantics on controlled terminology supplied by the NCI Enterprise Vocabulary Services (EVS) Project. The NCI EVS is a set of services and resources that address NCI's needs for controlled vocabulary. The EVS Project is a collaborative effort of the Center for Bioinformatics and the NCI Office of Communications.

NCI Enterprise Vocabulary Services encompass terminology development, terminology licensing, software development and licensing and operations support activities. From its inception, EVS has strived to address the broad spectrum of terminology needs at NCI.

1.1 Purpose of this Document
This document provides an overview of the EVS NCI BioPortal system design. It is intended to describe and capture the design decisions and is written as a reference for both the NCI customer and the NCI contractors/developers involved with the evolution of system. This is a living document and will be updated to reflect the evolution of development.
1.2 Document Overview

The main sections of this document are listed and described below.

· Section 1 provides a purpose statement, a document overview, identifies the scope and provides a list of related documents. In addition, this section identifies (at a very high level), the methodologies, tool and techniques employed for the design activities, addresses any NCICB directives impacting the design decisions, and identifies the key stakeholders and points of contact.
· Section 2 is the design overview. It outlines any background information that is relevant to the proposed design, identifies the step-by-step procedure to migrate the existing system to a more efficient implementation. In addition, this section identifies the emerging technologies that are expected to available in a given timeframe and how they make effect the future development of the system/system architecture. Risks, issues, assumptions and dependencies are also addressed.
· Section 3 captures the system architecture design. The architectural goals and constraints are identified and an architecture diagram is provided. Additionally, we discuss the architectural layers and describe any design patterns applied within them.
· Section 4 addresses the software design. We discuss the software packages and the associated object models that capture specific functional areas. We will show samples of how these objects address the requirements/use cases captured in the Requirements Document. The objects are described at a high-level in this section. The detailed description of the classes and their associated attributes will be detailed in the Section 5 Data Design.
· Section 6 addresses the system deployment. We describe the build process, the resulting products and how those products will be deployed. This section also addresses the technology stack being deployed by the NCI BioPortal.
1.3 Related Documents
· NCI BioPortal Scope Document

· NCI BioPortal Project/Task Plan

· NCI BioPortal Use Case Document

· NCI BioPortal Test Plan

· LexBIG Architecture Specification
· LexBIG Programmers Guide

1.4 Methodologies, Tools and Techniques

The NCI BioPortal design will be based on object oriented (OO) principles. Enterprise Architect (EA) will be the tool used to build several of the key design artifacts. The Rational Unified Process will be the base technique used for object modeling and other detailed design exercises.

1.5 Policies, Directives, Procedures

TBD.

1.6 Key Stakeholders
	Name
	Description
	Responsibilities

	Peter Covitz
	NCICB Application Infrastructure
	Oversees NCICB Application Infrastructure

	Avinash Shanbhag
	NCICB Application Infrastructure
	Oversees NCICB caCORE Software Engineering

	Frank Hartel
	EVS Product Manager
	Directs EVS Projects

	Johnita Beasley
	Project Manager
	Technical Direction and Implementation

1.7 Points of Contact

· Project Oversight/Management

Name: Charles Griffin
Title: NCICB/Ekagra Project Manager (Contractor)
Email: griffinch@mail.nih.gov
Phone: 301.496.5373

Srini Guruswami

· NCICB Application Support

Email: appsupport@mail.nih.gov
2 DESIGN OVERVIEW

The NCI BioPortal will be designed and engineered to offer a scaleable and robust infrastructure.
2.1 Background Information

“LexBIG provides externalization and support of LexGrid-based terminology software (services, persistence, tooling) developed for the Cancer Biomedical Informatics Grid (caBIG™) initiative.

The goal of the project is to build a vocabulary server accessed through a well-structured application programming interface (API) capable of accessing and distributing vocabularies as commodity resources. The server is to be built using standards-based and commodity technologies.” – Mayo Clinic College of Medicine.

The National Center for Biomedical Ontology (NCBO) has developed a web-based terminology browser known as BioPortal. BioPortal leverages LexBIG. Although many of the available features offered by BioPortal are inline with the needs of an NCI EVS Terminology Browser, there are several features that the BioPortal does not support. We intend to transition the NCBO BioPortal to a browser that offers the capabilities needed by an NCI EVS Terminology Browser, to remove or disable features that are not relevant to and NCI Terminology Browser and to employ a software architecture that is “open” and/or portable.
NOTE: The NCBO BioPortal was acquired with no accompanying documentation. Our goal in the migration/transition of the NCBO software baseline is to reuse as much of the existing code as is deemed feasible. As such, the specifics our design approach won’t be clear until we have worked through all components of the baseline source code and massaged it to offer the required functionality. AT that point we can look back and clearly identify the specific components of our design. Therefore, this document addresses the design at a high-level and will be updated with specific, lower-level design decisions as they are established.

2.2 System Evolution Description

· TDB
2.3 Technology Forecast

In order to ensure that NCICB applications are regularly migrated to new versions of the chosen technology stack, the SCM initiative has promoted a twice-annual technology stack migration plan.

Under the three stack rotation plan, in any given period, Stack A represents the deprecated technology, Stack B represents the officially supported stack, and Stack C represents the target stack, which is available and may be used by any group for deployment or experimentation.

The NCI BioPortal application will maintain, at a minimum, Stack B. At the time of the writing of this document, the currently supported technology stack includes the following:

· JDK 1.5

· JBoss 4.0.4
· Tomcat 5.0.28.

The NCI BioPortal application will leverage other Core Infrastructure Components and Applications wherever possible. At the time of the writing of this document, the following infrastructure components and applications will be employed:

· Distributed LexBIG API

2.4 Risks

	Risks
	Low
	Med
	High
	Contingency

	TBD.
	
	
	
	

2.5 Issues

	Ref
	Issue
	Action

	TDB.
	
	

2.6 Assumptions

	Ref
	Assumption
	Impact

	2.6.1
	Current releases of all leveraged infrastructure components and/or applications are stable.
	HIGH

2.7 Dependencies
	Ref
	Dependency
	Action

	2.7.1
	Commitment to the employment of other NCICB infrastructure components and applications establishes an immediate dependency.
	Ensure all leveraged component and application releases are deemed stable.

3 SYSTEM ARCHITECTURE
3.1 Architectural Goals and Constraints

The following are goals and constraints of the NCI BioPortal system architecture.
· To ensure the platform addresses enterprise level of service requirements: Performance, Scalability, Reliability, Availability, Extendibility, Maintainability, Manageability, and Security.

· The NCI BioPortal N-Tier model of computing enables the overall performance and maintainability of the system to be substantially improved. This layered environment also simplifies code distribution, since most of the business logic has been moved from the client to the server. This addresses manageability.
· The NCI BioPortal code base will address the performance, reliability, extendibility and maintainability. J2EE design patterns and best practices will be utilized throughout the application.

· Define clear application layers delineating architectural role and functionality

· The NCI BioPortal N-Tier architecture provides clear separation of user-interface-control and data presentation from application-logic. The data or persistence layer is transient thereby allowing/ensuring that the domain objects have no knowledge of the underlying ORM implementation.
· Integrate well with the NCICB core Infrastructure Components and Applications

The NCI BioPortal application will integrate with/leverage the following:

· The Distributed LexBIG API.

· Utilize industry supported specifications and open source technologies whenever possible

· The NCI BioPortal web application framework is implemented using an open source Model View Controller (MVC) framework.
3.2 Architectural Constraints
TBD.
3.3 Architectural Tiers
The NCI BioPortal architecture is based on an n-tier/multi-tier J2EE computing environment that assigns responsibilities to separate application layers. This fosters a loosely coupled and tightly cohesive architecture in which objects in each layer are focused on specific architectural responsibilities yet, cleanly integrate with the other layers.

The diagram below illustrates the following horizontally across the diagram.

· Client Tier – runs on the client machine and is primarily associated with displaying the pages generated on the Web Tier.
· Web Tier – runs on the server/host machine. Handles generation of the applications presentation components and maintains vehicles for communication with the Business Tier.
· Business Tier – Business-objects that implement the business rules "live" here, and are available to the client-tier. The business tier runs on the server/host machine and could be executed from within a J2EE EJB Container. This tier protects the data from direct access by the clients.
· Data Tier – a transparent data management tier that receives requests for and with regard to system data.
· External Systems Tier –the access point to integration with an external system or core infrastructure component.
[image: image1.png]
Figure 3.1. NCI BioPortal Architecture Layers

3.4 Design Patterns Applied to Application Tiers
This section of the document describes the architecture and the implementation within each application layer. The major products, frameworks and patterns used in the implementation are described.

 Client Tier
The NCI BioPortal web client will consist of two parts: (1) dynamic web pages containing various types of markup language (HTML, XML, and so on), which are generated by web components running in the web tier, and (2) a web browser, which renders the pages received from the server. The rendered pages will comply with the browser and user interface standards put forward by the NCICB User Interface working group.
Web Tier
The NCI BioPortal application web tier consists of Java classes (Web Components) that dynamically process requests and construct responses (Servlets) and Java Server Pages (JSPs).
3.4.1.1 Web Application Framework Approach

The NCI BioPortal application uses the Model 2 JSP/Model View Controller (MVC) design pattern implemented in the Apache Java Server Faces (http://myfaces.apache.org/) web application frameworks. Model 2 is a term used to indicate that the web-adapted version of the classic MVC pattern is being implemented.

[image: image2.wmf]

 Figure 3.2. General MVC System Flow
The MVC pattern separates presentation-oriented responsibilities from application specific processing / controller responsibilities and business domain specific model. As a result, application maintainability is improved. In a MVC-based J2EE web application, JSPs are the “view” (web page presentation); a Java servlet is the “controller” and processes and delegates requests to Java components; and the “model” or business logic is implemented using business delegate Java objects.

In addition to the MVC implementation, the NCI BioPortal application implements the J2EE Composite View Pattern (http://developer.java.sun.com/developer/restricted/patterns/CompositeView.html) using the Tiles.

The Composite View pattern is used to combine modular, atomic portions of a web page view into a single, composite web page view. The component portions of the web page are maintained separately and combined to display the complete view to the user. Use of this pattern aids because a small set of common templates can be established that are utilized or extended for many web pages. At runtime, the template applies the atomic page components, such as headers or footers, to create the viewed page. With this approach, different and dynamic atomic view components can be combined into one complete page.

3.4.1.2 Additional Presentation Layer Design Pattern Usage

In addition to the MVC-based JSF framework used for View and Controller components of MVC, the NCI BioPortal application will employ several other design patterns in the Web Tier. In a JSF application, the controller calls Action classes to perform processing in response to a screen display, link or form submission to the controller. Some applications code the business logic directly in the Action class. However, because the portal/application is using a multi-tiered architecture, the Action class will only focus on the workflow of the application and will make business requests to classes associated within the business tier of the application.

3.4.1.2.1 Business Delegate Pattern

The business delegate pattern (http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html) is used to reduce coupling between the web tier and the business (also known as model or domain) tier. The business delegate hides the underlying implementation and details for accessing business services. In a J2EE application, the delegate is somewhat like a proxy object in that it provides an interface accessed by its clients but it normally delegates its implementation to other classes.

For the NCI BioPortal, the Web Tier executes in a J2EE web container and the business, model or domain tier is implemented using custom Java manager classes and Plain Old Java Objects (POJOs). The business delegate allows classes running in the web application to execute the business services in a simpler approach. The delegate handles communication details such as JNDI lookup. The delegate can also encapsulate business layer decisions such as when to cache or retrieve data locally instead of going to business classes. The presentation client does not need to be aware of these details.

3.4.1.2.2 Session Data Manager Pattern

A web application’s ‘javax.servlet.http.HTTPSession’ object can be used to set and get objects specific to a user session. The session is convenient to access since it is accessible in each request. As a result, it is very easy to add or remove items to the session. This ease of use results in a lack of control over how the session is being used by developers. In addition, adding attributes to the session requires retrieving the key for the object. Instead of adding objects directly to the session, a Session Data Manager object is introduced that contains the logic to get and set objects from the session.

This lightweight object provides the application team with additional visibility as to how the session is being utilized because session objects are saved and retrieved from a central point. In addition, adding the wrapper provides a central way to change how session data is stored. For example, an application may wish to persist highly critical session data to a database or cache large session objects in an external cache and only store the session key in the session itself. This functionality is possible behind a Session Data Manager object.

 Business Tier
The business logic layer executes the business logic of the application. The business layer is presentation independent because presentation-specific workflow is not built into these classes. As a result, it is possible to provide several separate presentations for the same application.

In the typical scenario, the business delegate will call a system/function manager acting in the Session Façade (described below) role. The façade will then delegate to the appropriate business classes that process the request and retrieve or store the data.

3.4.1.2.3 Session Façade Pattern

The session façade design pattern (http://java.sun.com/blueprints/corej2eepatterns/Patterns/SessionFacade.html) is used to encapsulate the complexity of interactions between business objects in a workflow. The façade or boundary class, hides these interactions and provides a simpler, course-grained access to clients. As a result, coupling between business and presentation layers is reduced, transaction control is centralized, and fewer interfaces are exposed to the client.

The implementation of the session façade pattern in the NCI BioPortal includes a java manager class and one or more business objects that execute the actual business processing. In this case, the façade is lightweight, performs security and other transaction services but delegates implementation of the method to a business object that interacts with other business objects.

3.4.1.2.4 Data Transfer Object (DTO) Pattern

The J2EE Data Transfer Objects design pattern (http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataTransferObject.html) is used to encapsulate business data. It is frequently used when passing data from one application layer to another in order to provide generic and consolidated access to data from layer to layer. DTOs are generally lightweight, serializable and contain private data with public assessors.
Data Tier
The data tier has the responsibility to provide a transient, transparent and lightweight mechanism for retrieving and submitting information from an external data store and returning that information in a generic way. In NCI BioPortal, access to the data tier and the terminology data is handled through the Distributed LexBIG API.
External Systems Tier
The external systems tier can also be referred to as the integration tier. It simply represents the access point for communicating with other infrastructure components or applications.

4 Software Design
Modeling is the process of software design prior to the generation of code. The model is therefore the core of the software design process. Using a model, those responsible for a software development project's success can assure themselves that business functionality is complete and correct, end-user needs are met, and program design supports requirements for scalability, robustness, security, extendibility, and other characteristics before implementation in code renders changes difficult and expensive to make.
Modeling can be performed using a number of different methodologies. In the NCI BioPortal application, the OMG's Unified Modeling Language™ (UML®) is used. UML helps you specify, visualize, and document models of software systems, including their structure and design, in a way that meets all of these requirements. We will be using the UML implementation found in the UML Case Tool, Enterprise Architect (EA).
NOTE: Normally after defining our high-level use cases and requirements, the next step in the Software Development Lifecycle (SDLC) would be to generate an Object Model or Class Diagram. Because we are starting with baseline software provided by NCBO, our approach is to get the tool functioning, reusing as much of codebase as possible and then work backwards to identify the domain model components and migrate them to the software architecture defined in this document.

Component Architecture

The NCI BioPortal component model is shown Figure 4.1.1.1. The UML component model illustrates the software components that will be used to build the system and the tiers (as discussed in Section 3) in which they reside.

[image: image3]
[image: image4.png]
4.1.1.1 Web Components
As represented in the component model, the Web Components reside in the Web Tier and they implement the following system User Interface (UI) features:
a. Browse – the ability of the system to present the user the various terminologies and associated metadata for review.
b. Search – the ability the offer the user the ability to search the system data by specifying a valid set of criteria across one or more UI forms.
c. Submission –the ability to offer the user the ability to submit new concepts/terms by entering data in the UI forms.
Each of these Web Components includes the layout and content JSPs, and the action and form classes. These components take care of the generation of the UI display the user interacts with based on the specific feature. User requests submitted via the UI are propagated through the system via the Manager Proxies bundled in this tier.
4.1.1.2 Business Components

The central business components are the Managers. Each Manager works with other assisting classes to process user requests received from Web Tier proxies.
4.1.1.3 Data Components

The data components are masked by the Distributed LexBIG API.
4.1.1.4 External Systems Components

The external system component(s) required by the NCI BioPortal application are as follows:
a. Distributed LexBIG API JAR file is required to allow access to the LexBIG Terminology Services.
Domain Objects
At the core of the NCI BioPortal application portal are the business or domain objects and the relationships they share. These domain/business objects will be implemented as Plain Old Java Objects (POJOs) and each with implement the java.io.Serializable interface to facilitate the transfer of objects through the tiered component architecture. The identified domain objects are captured in the following sections.
4.1.1.5 NCI BioPortal Domain Object Descriptions
Below, each NCI BioPortal application domain object is identified and described. For simplicity, we will note here that each object has a unique identifier reserved for the retrieval of unique data objects.
4.1.1.5.1 TBD
TBD.

Interfaces
The NCI BioPortal application will interface with several other NCICB software components or APIs to ensure a secure, responsive and feature-rich application. The software interfaces are described below.
TBD….

5 Deployment View

	[image: image5.emf]dd Deployment Modelbioportal WARbioportal JARThird Party JARs

Figure 5. NCI BioPortal Deployment View

5.1 Deployment Diagram

NCI BioPortal will deploy using Ant. A customizable Ant script will be created which will allow for the application to be built and deployed to the NCICB QA, STAGING and PRODUCTION Servers.
bioportal.jar – All general NCI BioPortal application logic non-specific to an business tier is contained in the app jar.

bioportal.war – Contains the NCI BioPortal web application-specific components and web server classes.

third party jars – All third-party jars used by the application.

5.2 Deployment Products and Framework Versions

NCI BioPortal implements the following APIs and versions. As new versions are released or are supported by NCICB, the products will be updated after a determination that the versions do not cause problems in the application.

	Name
	Version
	Provider
	Description

	Java SDK
	1.5.x
	Sun Microsystems
	JDK that the application runs. Deployed version dependent on NCICB standard at time of deployment. (java.sun.com/j2se/1.5/index.html)

	Ant
	1.6.2
	
	The Build Scripting Tool.

	JBoss
	4.0.4
	JBoss Group open source
	J2EE application server. (www.jboss.org)

	Tomcat
	5.1.28
	Apache open source
	J2EE web container that ships integrated with JBoss. (jakarta.apache.org/tomcat)

	JSF (MyFaces)
	1.1
	Apache open source
	Web application framework (myfaces.apache.org/)

	Commons
	various
	Apache open source
	Common utilities required by JSF and utilized by NCI BioPortal. Includes: beanutils, collections, digester, logging

	JDBC
	
	MySQL
	All Java driver for MySQL database

	
	
	
	

	Log4J
	1.2.7
	Apache open source
	Logging API. Also used by JBoss

_1123394698.doc
[image: image1.png]

