

LEXGRID VOCABULARY SERVICES FOR CABIG™
PROGRAMMER REFERENCE

LexBIG (Developer’s Technical Guide)

Version 1.0.2

LexBIG Software User Agreement
October 30, 2006

Usage of Content

THIS PRODUCTS MAKES AVAILABLE SOFTWARE, DOCUMENTATION, INFORMATION AND/OR

OTHER MATERIALS (COLLECTIVELY "CONTENT"). USE OF THE CONTENT IS GOVERNED BY THE

TERMS AND CONDITIONS OF THIS AGREEMENT AND/OR THE TERMS AND CONDITIONS OF

LICENSE AGREEMENTS OR NOTICES INDICATED OR REFERENCED BELOW. BY USING THE

CONTENT, YOU AGREE THAT YOUR USE OF THE CONTENT IS GOVERNED BY THIS AGREEMENT

AND/OR THE TERMS AND CONDITIONS OF ANY APPLICABLE LICENSE AGREEMENTS OR

NOTICES INDICATED OR REFERENCED BELOW. IF YOU DO NOT AGREE TO THE TERMS AND

CONDITIONS OF THIS AGREEMENT AND THE TERMS AND CONDITIONS OF ANY APPLICABLE

LICENSE AGREEMENTS OR NOTICES INDICATED OR REFERENCED BELOW, THEN YOU MAY

NOT USE THE CONTENT.

Applicable Licenses

Unless otherwise noted, content is provided to you under terms and conditions of the following

agreement:
Copyright: (c) 2004-2006 Mayo Foundation for Medical Education and

Research (MFMER). All rights reserved. MAYO, MAYO CLINIC, and the

triple-shield Mayo logo are trademarks and service marks of MFMER.

Except as contained in the copyright notice above, the trade names,

trademarks, service marks, or product names of the copyright holder shall

not be used in advertising, promotion or otherwise in connection with

this Software without prior written authorization of the copyright holder.

Licensed under the Eclipse Public License, Version 1.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.eclipse.org/legal/epl-v10.html

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

Note: Content includes redistribution of additional 3rd party software modules, placed in the /runtime/extlib

folder of the product root directory. Each module is accompanied by a license file that identifies specific

terms of use and redistribution that may differ from the terms listed above. Modules include, but are not

limited to, those listed in the appendix of this document.

IT IS YOUR OBLIGATION TO READ AND ACCEPT ALL SUCH TERMS AND CONDITIONS PRIOR TO

USE OF THE CONTENT.

Contacts and Support

Training contact Thomas Johnson
johnson.thomas@mayo.edu

Developer Division of Biomedical Informatics
Mayo Clinic
200 1st ST SW
Rochester, MN 55905

informatics@mayo.edu

Facilities Pertinent to software teams

Resource URL Description

Bug Tracking https://gforge.nci.nih.gov/projects/lexevs/ NCICB GForge site

Feature Requests

Discussion Forums

Project WIKI

Mailing Lists

Vocabulary Knowledge Center caBIG Vocabulary Knowledge
Center

Architecture and
Requirements specifications

https://gforge.nci.nih.gov/scm/?
group_id=491

LexEVS SVN repository

https://gforge.nci.nih.gov/scm/?group_id=491
https://gforge.nci.nih.gov/scm/?group_id=491
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Main_Page
https://gforge.nci.nih.gov/projects/lexevs/
mailto:informatics@mayo.edu
mailto:johnson.thomas@mayo.edu

Table of Contents
LexBIG Software User Agreement...2

Usage of Content..2

Applicable Licenses..2

Overview...7

Organization..7

Getting Started ..7

Document Text Conventions...8

Chapter 1 Overview of the Software ... 9

What’s Inside...9

A Simple Example...13

Establish the Development Environment..13

Write and Compile Programs...13

Deploy and Run..14

System Requirements..14

Software and Hardware Dependencies..15

Security and Security Management...15

Chapter 2 Systems and Architecture ... 16

The Basics...16

Software Overview..17

LexGrid Model..19

Overview...19

Concepts...20

Relations...20

LexBIG Model...20

Overview...20

Concept Resolution...20

LexBIG Services..21

Overview...21

caGRID Hosting..22

Overview...22

Specification...22

Service Management Subsystem...23

Overview...23

Metadata and Discovery Subsystem..24

Overview...24

Query Subsystem...25

Overview...25

Chapter 3 Information Models ... 27

LexGrid Model..27

CodingSchemes...27

Concepts...30

Relations...32

Naming...34

LexBIG Model Extensions..36

Core ...36

InterfaceElements ..39

NCIHistory ..41

Chapter 4 LexBIG APIs .. 42

Overview...42

Core Services...43

Service Extensions...45

Query Extensions..46

Load Extensions..47

Export Extensions...49

Index Extensions...50

Generic Extensions...51

Utilities..52

Iterators ...52

Additional Utility Classes...52

Examples & Recommendations for Use..53

Concept Resolution...53

Service Metadata Retrieval..54

Combinatorial Queries...55

Additional Resources..57

Exercising the API – The LexBIG GUI..58

Launching the GUI...58

Overview...59

Creating New Queries..59

Customizing Queries..60

Working with Code Sets..60

Working with Code Graphs..63

Viewing Query Results ..64

1. References..66

2. Included Materials...67

Components..67

3. Additional Terms and Conditions..69

Introduction to the Manual
Overview

This manual provides an introduction to the architecture, software components, and
application programming interfaces (APIs) of the LexGrid Vocabulary Services for caBIG™
project, (hereafter referred to as the ‘LexBIG’ project).

Organization

Chapter Chapter Contents

Chapter 1 – Overview of the Software Provides an overview of the deployed software
packages and describes a typical
development/deployment scenario.

Chapter 2 – Systems and
Architecture

Describes the functional pieces of the LexBIG
runtime and how they interact with each other and
calling programs.

Chapter 3 – Information Models Describes formal models related to LexBIG content,
including XML schema and UML representations.

Chapter 4 – LexBIG APIs Describes the application programming interfaces
provided by the LexBIG runtime.

Appendix A – References References to formal publications and additional
online resources.

Appendix B – Included Materials Provides detailed information of additional software
components packaged with the LexBIG distribution
and their usage.

Getting Started
Recommendations for approaching this guide:

• Review the introduction to learn about the manual structure
• Review Chapter 1 for a brief overview of the software
• Review the source code distributed as examples and automated tests, and correlate to the

LexBIG APIs as described in this guide.
• Based on these techniques, try to write example programs of your own.

Document Text Conventions
The following table shows various typefaces to differentiate between regular text and menu
commands, keyboard keys, and text that you type. This illustrates how conventions are
represented in this guide.

Convention Description Example

Bold & Capitalized
Command

Capitalized command >
Capitalized command

Indicates a Menu command

Indicates Sequential Menu
commands

Admin > Refresh

TEXT IN SMALL CAPS Keyboard key that you press Press ENTER

TEXT IN SMALL CAPS + TEXT IN
SMALL CAPS

Keyboard keys that you press
simultaneously

Press SHIFT + CTRL and then
release both.

Special typestyle Used for filenames, directory
names, commands, file listings,
source code examples and
anything that would appear in a
Java program, such as methods,
variables, and classes.

URL_definition ::=
url_string

Boldface type Options that you select in dialog
boxes or drop-down menus.
Buttons or icons that you click.

In the Open dialog box, select
the file and click the Open
button.

Italics Used to reference other
documents, sections, figures,
and tables.

caCORE Software
Development Kit 1.0
Programmer’s Guide

Italic boldface type Text that you type In the New Subset text box,
enter Proprietary Proteins.

Note: Highlights a concept of
particular interest

Note: This concept is used
throughout the installation
manual.

Warning! Highlights information of which
you should be particularly
aware.

Warning! Deleting an object
will permanently delete it
from the database.

{} Curly brackets are used for
replaceable items.

Replace {root
directory} with its proper
value such as c:\cabio

Table 1-1 Document Conventions

Chapter 1Overview of the Software

This section assumes that the LexBIG software has been installed, per instructions provided by
the LexBIG Administrator’s Guide.

What’s Inside
This section describes the location and organization of installed materials. Following
installation, many of the following hierarchy of files and directories will be available (some
features are optionally installable):

<As located in the LexBIG installation root directory>

Directory Description of content

/admin Installed by default. This directory provides a centralized point for
command line scripts that can be executed to perform administrative
functions such as the loading, activation/deactivation, and removal
of vocabulary resources.

Note: Programmers may be interested in the code used to execute
these functions. In that light, it is perhaps noteworthy to mention
that this directory does not contain any source or binary code, only
the scripts used to launch the admin functions.

Object code used to carry out these functions is included directly in
the LexBIG runtime components. Source code is included in the
/source directory in the lbAdmin-src.jar (described below).

/doc Optionally installed. This directory provides documentation related
to LexBIG services, configuration, and execution. This guide is
distributed in the /doc top-level directory.

/doc/javadoc Note: Of special interest to programmers. This directory provides
the generated javadoc for model classes and public interfaces
available to LexBIG programmers. Also included with each object
representation is a UML-based model diagram that shows the object,
its attributes and operations, and immediately linked objects. The
diagrams work to provide clickable navigation through the javadoc
materials.

/examples Optionally installed. This directory provides a small number of
example programs.

Refer to the README.txt file in this directory for instructions used
to configure and run the example programs. The examples are
intended to provide a limited interactive demonstration of LexBIG
capabilities.

Source and object code for the example programs is provided under
the /examples/org subdirectory. Source materials are also
centrally archived under the /source directory in the file
lbExamples-src.jar.

/examples
/resources

Contains sample vocabulary content for reference by the example
programs; use the /examples/LoadSampleData command-line
script to load.

/gui Optionally installed. This folder contains programs and supporting
files to launch the LexBIG Graphical User Interface (GUI). The
GUI provides convenient centralized access to administrative
functions as well as support to test and exercise most of the LexBIG
API.

The GUI is launched using a platform-specific script file in the /gui
directory. The name of the platform (e.g. Windows, OSX, etc) is
included in the file name.

Program source and related materials are centrally archived under
the /source directory in the file lbGUI-src.jar.

/logs Default location for log files, which can be modified by the
LOG_FILE_LOCATION entry in the config.props file (see next
section).

/resources Installed by default. This directory contains resources referenced
and written directly by the LexBIG runtime. It should, in general, be
considered off-limits to modify or remove the content of this
directory without specific guidance and reason to do so. Files
typically stored to this location include the vocabulary registry
(tracking certain metadata for installed content) and indexes used to
facilitate query over the installed content.

One file of particular interest in this directory is the
/resources/config/config.props file. This file controls
access to the database repository and other settings used to tune the
LexBIG runtime behavior. Contents of this file should be set
according to instructions provided by the LexBIG Administrator’s
Guide.

/runtime Installed by default. This directory contains a Java archive (.jar) file
containing the combined object code of the LexBIG runtime,
LexBIG administrative interfaces, and any additional code they are
dependent on. All required code for execution of LexBIG
administrative and runtime services is installed to this directory.

Note: Java programmers writing to the LexBIG runtime interfaces
should always include the following files in their java classpath
(listed in order of inclusion):

• /runtime/lbPatch.jar
In the course of the product lifecycle, it is possible that smaller
fixes will be introduced as a patch to the initially distributed
runtime. Including this file in the classpath ensures automatic
accessibility to the calling program without requiring
adjustment. All patches are cumulative (there is at most one
patch file introduced per release; all patch-level fixes are
cumulative).

• /runtime/lbRuntime.jar
This is the standard runtime file, including all LexBIG and
dependency code required for program execution except for SQL
drivers (see next).

/runtime
/sqldrivers

The JDBC drivers used to connect to database repositories are not
included in the lbRuntime.jar. Instead, the runtime scans this
directory for the drivers to include. This can be overridden by path
settings in the config.props file.

Note: while the LexBIG software package ships with JDBC drivers
to certain open source databases such as mySQL and PostgreSQL,
this folder provides a mechanism to introduce updated drivers or to
add drivers for additional supported database systems.

For example, the Oracle database is supported by the runtime
environment. However, the drivers are not redistributed with the
LexBIG software. To run against Oracle, an administrator would
add a jar with the appropriate JDBC driver to this directory and then
reference it in the config.props settings.

/runtime-
components

Optionally installed. Due to license considerations for additional
materials (as described by the license.pdf and license.txt
files in the install directory), the cumulative runtime provided in the
lbRuntime.jar is not redistributable.

This directory contains a finer grain breakdown of object code into
logical components and 3rd party inclusions. All components are
redistributable under their own license agreements, which are
provided along with each archive.

The top-level of the /runtime-components directory contains all
code produced for the LexBIG project in a single lexbig.jar file.

Note: These files are included as an alternative to the
lbRuntime.jar for code execution and redistribution. There is no
need to include any of these files in the Java classpath if you are
already including the lbPatch.jar and lbRuntime.jar
described above.

/runtime-
components/extlib

This subdirectory includes all 3rd party code redistributed with the

LexBIG runtime, along with respective license agreements.

/source Optionally installed. This directory provides central accessibility to
Java source for all code developed for the LexBIG project. This
includes the following:

Archive Description

lbAdmin-src Source for LexBIG administrative interfaces.

lbExamples-
src

Corresponds to programs provided in the
/examples directory (described above).

lbGUI-src Source for the Graphical User Interface.

lbImpl-src Source for implementation classes fulfilling
the LexBIG service interfaces and interacting
with models.

lbInterfaces-
src

Source defining service-level interfaces for the
LexBIG runtime.

lbModel-src Source defining LexBIG-specific extensions to
the LexGrid information model.

lbTest-src Corresponds to automated test programs
provided in the /test directory (described
below).

lgConverter-
src

Source containing services to convert data into
various formats.

lgIndexer-src Source for the services used in indexing
databases.

lgModel-src Source defining the LexGrid Model.

lgModel.emf-
src

Source for the EMF representation of the
LexGrid Model.

lgRDFConverte
r-src

Framework for reading different types of
ontology resources.

lgResourceRea
der-src

Source for handling RDF conversions.

lgUtility-src Source for LexBIG utility programs.

/test Optionally installed. This directory provides an automated test
bucket that can be used by System Administrators to verify node
installation. Note that the /runtime/config/config.props file
must still be configured for database access prior to invoking the test
bucket.

Testcases are launched via the TestRunner command-line script.

Several reporting options are provided and are further described in
the LexBIG Administrator’s Guide.

Note: Programmers may be interested in referencing the source code
for the test programs. These are provided in the /source directory
(described above).

/uninstaller Contains an executable jar that can be invoked by an administrator
to uninstall files originally introduced by the LexBIG installation.

A Simple Example
This section describes the basic steps involved in writing and deploying a program that directly
invokes the LexBIG Java software components.

Establish the Development Environment

Installation should first be performed to the host server according to procedures described in the
LexBIG Administrator’s Guide. After installation, developers may wish to copy the components
required for program development to a local environment. Installed components of interest
include the following:

• /runtime/lbRuntime.jar – This archive contains the combined code for all executable
code, as described earlier in this section. Adding this file to the Java classpath during
development will allow compilation of source code.

• /runtime-components/lexbig.jar – While this jar does not include all code required
for runtime execution, it does provide a sufficient alternative to the lbRuntime.jar file for
purposes of program compilation.

• /source/lb*.jar, lg*.jar – Contain the source code for the LexBIG interfaces. Many
development environments (e.g. Eclipse) will provide the ability to link these files to the
object code archives. This allows for improved reference materials during program
development.

Write and Compile Programs

Example source is provided below for a simple program that lists the available coding schemes
(containers for vocabulary concepts and relations) registered to a LexBIG server node:

Note: Sun Java Development Kit (JDK) level 5.0 or above is required for program development.
The code base has not been updated to accommodate Java 6.

Deploy and Run

Continuing the example above, the compiled ListCodeSystems.class file should be copied
to the LexBIG server system for invocation. Currently LexBIG services are invoked through
direct programmatic access, though future direction is to provide additional web or grid-level
service invocation in support of multi-tier scenarios. Additional description of system
components and deployment scenarios is provided in Chapter 2 - Systems and Architecture.

As with development, program execution requires the Sun Java JDK (or JRE) version 5.0 or
above. Assuming the Java command is accessible in the path and the ListCodeSystems class file
is installed to a directory of choice {pgm-dir} and the LexBIG is installed to {lexbig-dir}, the
program can be invoked through the following command line interface:

java –cp {lexbig-dir}/runtime/lbPatch.jar:{lexbig-dir}/runtime/lbRuntime.jar:{pgm-
dir} ListCodeSystems

Note that the above example uses syntax for a Linux installation; Windows users would use
alternate syntax for file separator (‘\’) and classpath separator (‘;’).

As mentioned previously, it is considered good practice for developers to include the lbPatch
archive in their class path, as it is designed to introduce smaller fixes without requiring download
and redeployment of the complete (and much larger) runtime jar.

System Requirements
Refer to the LexBIG Administrator’s Guide for minimum recommended requirements for the
system hosting the LexBIG runtime. There are no unique requirements for development systems
other than those enforced by the development tools being used (see next section).

import org.LexGrid.LexBIG.DataModel.Collections.CodingSchemeRenderingList;
import org.LexGrid.LexBIG.DataModel.InterfaceElements.CodingSchemeRendering;
import org.LexGrid.LexBIG.Impl.LexBIGServiceImpl;
import org.LexGrid.LexBIG.LexBIGService.LexBIGService;
import org.LexGrid.LexBIG.Utility.ObjectToString;

public class ListCodeSystems {
public static void main(String[] args) {

try {
LexBIGService lbs = new LexBIGServiceImpl();
CodingSchemeRenderingList schemes = lbs.getSupportedCodingSchemes();
for (CodingSchemeRendering csr

: schemes.getCodingSchemeRendering())
System.out.println(

ObjectToString.toString(csr.getCodingSchemeSummary()));
} catch (Exception e) {

e.printStackTrace();
}

}
}

Software and Hardware Dependencies
Refer to the LexBIG Administrator’s Guide regarding software and hardware dependencies for
the system hosting the LexBIG runtime. Development systems are required to install the Sun
Java Development Kit (JDK) or Java Runtime Environment (JRE) version 5.0 or above. In
addition, an integrated development environment (IDE) such as Eclipse or NetBeans is
recommended for program development.

Security and Security Management
The LexBIG runtime relies on standard operating system and database infrastructure to provide
security of data and access to runtime services. Any additional requirements are noted in the
LexBIG Administrator’s Guide. There are no unique security requirements for development
systems.

Chapter 2Systems and Architecture

This chapter describes the functional pieces of the LexBIG runtime and how they interact with
each other and calling programs. Topics include a high level description of the LexGrid
information model, LexBIG model and service extensions, and current/future deployment
scenarios.

The Basics

What is LexGrid?

LexGrid is an initiative of the Mayo Clinic Division of Biomedical Informatics that focuses on
the representation, storage, and dissemination of vocabularies. This effort centers on, but is not
limited to, the domain of medical vocabularies and nomenclatures. Focal points of the LexGrid
project include the development and promotion of standards, tools, and content that:

• Provide flexibility to represent yesterday’s, today’s and tomorrow’s terminological resources
using a single information model.

• Provide the ability for these resources to be published online, cross-linked, and indexed.

• Provide standardized building blocks and tools that allow applications and users to take
advantage of the content where and when it is needed.

• Provide consistency and standardization required to support large-scale terminology adoption
and use.

Additional information for LexGrid is available at http://informatics.mayo.edu .

What is LexBIG?

LexBIG is a more specific project that applies LexGrid vision and technologies to requirements
of the caBIG™ community. The goal of the project is to build a vocabulary server accessed
through a well-structured application programming interface (API) capable of accessing and
distributing vocabularies as commodity resources. The server is to be built using standards-
based and commodity technologies. Primary objectives for the project include:

• Provide a robust and scalable open source implementation of EVS-compliant vocabulary
services. The API specification will be based on but not limited to fulfillment of the
caCORE EVS API. The specification will be further refined to accommodate changes and
requirements based on prioritized needs of the caBIG™ community.

• Provide a flexible implementation for vocabulary storage and persistence, allowing for
alternative mechanisms without impacting client applications or end users. Initial
development will focus on delivery of open source freely available solutions, though this
does not preclude the ability to introduce commercial solutions (e.g. Oracle).

• Provide standard tooling for load and distribution of vocabulary content. This includes but is
not limited to support of standardized representations such as UMLS Rich Release Format
(RRF), the OWL web ontology language, and Open Biomedical Ontologies (OBO) .

The goal for the initial year of development was to achieve the Bronze level of compatibility

http://informatics.mayo.edu/

with regard to the caBIG™ requirements. Silver-level compatibility is being pursued.

Software Overview
LexBIG software architecture and implementation is designed to facilitate flexibility and future
expansion. The following diagrams are intended to aid the understanding of LexBIG service
integration in context of the larger caBIG universe and specific deployment scenarios:

caBIG
Grid

caBIG
Grid

caBIG
Node

caBIG
Node

Other
Vocabulary

NCI
Thesaurus

LexGrid
CTS

Server

(Partial)
Online Replica

Importer

Other
Vocabulary

NCI
Thesaurus

NCI Meta-
Thesaurus

LexGrid
CTS

Server

Local Replica

I
m
p
o
r
t
e
r

Other
Vocabulary

NCI Meta-
Thesaurus

LexGrid
CTS

Server

NCI

I
m
p
o
r
t

K
i
tNCI

Thesaurus

caBIG
Grid

caBIG
Grid

caBIG
Node
caBIG
Node

caBIG
Node
caBIG
Node

Other
Vocabulary

NCI
Thesaurus

LexGrid
CTS

Server

(Partial)
Online Replica

Importer

Other
Vocabulary

NCI
Thesaurus

LexGrid
CTS

Server

(Partial)
Online Replica

Importer

Other
Vocabulary

NCI
Thesaurus

NCI Meta-
Thesaurus

LexGrid
CTS

Server

Local Replica

I
m
p
o
r
t
e
r

Other
Vocabulary

NCI
Thesaurus

NCI Meta-
Thesaurus

LexGrid
CTS

Server

Local Replica

I
m
p
o
r
t
e
r

Other
Vocabulary

NCI Meta-
Thesaurus

LexGrid
CTS

Server

NCI

I
m
p
o
r
t

K
i
tNCI

Thesaurus

Other
Vocabulary

NCI Meta-
Thesaurus

LexGrid
CTS

Server

NCI

I
m
p
o
r
t

K
i
tNCI

Thesaurus

This diagram depicts the LexBIG vision. Individual Cancer Centers will be able to use the
existing set of caCORE EVS services. If desired, local instances of vocabularies can be
installed.

2 March 2006 Draft

LexBIG Runtime
Direct Programmatic Access

LexBIG Host

LexBIG
DataStore

Java Program / Dedicated JVM

LexBIG Java APIJava Program / Dedicated JVM

LexBIG Java APIJava Program / Dedicated JVM

LexBIG Java API

This diagram depicts direct Java-
to-Java access to LexBIG
functions. This is the primary
deployment scenario for phase 1.

Note: It is not required that the
database be located on the same
system as the program runtime.

2 March 2006 Draft

Editors

Browsers

Query
Tools

LexBIG Runtime
Consolidated Host – EVS Access

LexBIG Host

LexBIG
DataStore

caBIO Server / Java Runtime

EVS
ClientsLexBIG

Java API
EVS
Service

Mediator

This diagram depicts access
through caCORE Enterprise
Vocabulary Services (EVS) to a
LexBIG vocabulary engine.

The primary goal is to provide a
compatible experience for existing
EVS browsers and client
applications.

Note: this diagram shows the
possible inclusion of a mediation
layer between EVS and the
LexBIG runtime.

This would be done to facilitate
alternate communications with the
LexBIG server (e.g. through web
services as described below).

2 March 2006 Draft

Editors

Browsers

Query
Tools

LexBIG Host

LexBIG
DataStore

App Server / Java Runtime

Web or Grid
Service
Clients

LexBIG
Java API

Server

LexBIG Runtime
Consolidated Host – Web Service Access

The LexBIG API is designed with
web and grid-level enablement in
mind. This diagram depicts
deployments that wrap the current
API to allow the runtime to be
accessed through web or grid
services.

LexGrid Model

Overview

The LexGrid Model is Mayo’s proposal for standard storage of controlled vocabularies and
ontologies. The LexGrid Model defines how vocabularies should be formatted and represented
programmatically, and is intended to be flexible enough to accurately represent a wide variety of
vocabularies and other lexically-based resources. The model also defines several different server
storage mechanisms and a XML format. This model provides the core representation for all data
managed and retrieved through the LexBIG system, and is now rich enough to represent
vocabularies provided in numerous source formats such as OWL (NCI Thesaurus) and RRF
(NCI MetaThesaurus).

Once the vocabulary information is represented in a standardized format, it becomes possible to
build common repositories to store vocabulary content and common programming interfaces and
tools to access and manipulate that content. The LexBIG API developed for caBIG is one such
interface, and is described in additional detail in Chapter 4.

Following are some of the higher-level objects incorporated into the model definition:

Code Systems

Each service defined to the LexGrid model can encapsulate the definition of one or more
vocabularies. Each vocabulary is modeled as an individual code system, known as a
codingScheme. Each scheme tracks information used to uniquely identify the code system, along
with relevant metadata. The collection of all code systems defined to a service is encapsulated by
a single codingSchemes container.

Concepts

A code system may define zero or more coded concepts, encapsulated within a single container.
A concept represents a coded entity (identified in the model as a concept) within a particular
domain of discourse. Each concept is unique within the code system that defines it. To be valid,
a concept must be qualified by at least one designation, represented in the model as a property.
Each property is an attribute, facet, or some other characteristic that may represent or help define
the intended meaning of the encapsulating concept. A concept may be the source for and/or the
target of zero or more relationships. Relationships are described in more detail in a following
section.

Relations

Each code system may define one or more containers to encapsulate relationships between
concepts. Each named relationship (e.g. “hasSubtype” or “hasPart”) is represented as an
association within the LexGrid model. Each relations container must define one or more
association. The association definition may also further define the nature of the relationship in
terms of transitivity, symmetry, reflexivity, forward and inverse names, etc. Multiple instances of
each association can be defined, each of which provide a directed relationship between one
source and one or more target concepts.

Source and target concepts may be contained in the same code system as the association or
another if explicitly identified. By default, all source and target concepts are resolved from the
code system defining the association. The code system can be overridden by each specific
association, relation source (associationInstance), or relation target (associationTarget).

LexBIG Model
Overview

The LexBIG vocabulary model extends the LexGrid model to provide unique constructs or
granularity required by caBIG that are not present in the core model. While many extensions
exist, this document will focus on some of direct relevance to the high-level architecture.

Concept Resolution

LexBIG allows the service runtime to provide managed resolution of code-based objects that are
referenced through LexBIG-specific lists and iterators (mechanism that allow streaming of list
content). These lists and iterators are typically returned when requesting sets or graphs of
vocabulary terms through the LexBIG API (described in chapter 4). Some model components
involved in the resolution process include:

ConceptReference – A globally unique reference to a concept code.

ResolvedConceptReference - A concept reference for which additional information has
been resolved, including description and relationship participation.

AssociatedConcept - A concept reference that contains full detail in participation as a source
or target of an association, including indications of navigability and qualification

Note: Formal representation of the LexGrid and LexBIG models are discussed in Chapter 3 –
Information Models.

LexBIG Services
This section describes architectural detail for services provided by the LexBIG system. These
services are geared toward the administration, management, and serving of vocabularies defined
to the LexGrid/LexBIG information model. A system overview is provided, followed by a
description of key subsystems and components. Each subsystem is described in terms of its
overall structure, formal model, and specification of key public interfaces.

Overview

The LexBIG Service is designed to run standalone or as part of a larger network of services. It is
comprised of four primary subsystems: Service Management, Service Metadata, Query
Operations, and Extensions. The Service Manager provides administration control for loading a
vocabulary and activating a service. The Service Metadata provides external clients with
information about the vocabulary content (e.g. NCI Thesaurus) and appropriate licensing
information. The Query Operations provide numerous functions for querying and traversing
vocabulary content. Finally, the extensions component provides a mechanism to extend the
specific service functions, such as Loaders, or re-wrap specific query operations into
convenience methods. Primary points of interaction for programming include the following
classes:

LexBIGService – This interface provides centralized access to all LexBIG services.

LexBIGServiceManager – The service manager provides a centralized access point for
administrative functions, including write and update access for a service's content. For example,
the service manager allows new coding schemes to be validated and loaded, existing coding
schemes to be retired and removed, and the status of various coding schemes to be updated and
changed.

LexBIG Service

Service Metadata

Query Service

 Service Manager Extensions

LexicalSet
Operations

Graph

Operations
History

Loaders

Coding Scheme Metadata

Plug-ins

Licensing

Indexers

caGRID Hosting

Overview

The LexBIG architecture provides the underpinnings LexBIG services to be made accessible
through the caGRID environment in the future, where LexBIG services might optionally be
deployed in a caGRID Globus container. caGrid provides a Globus service for service
registration and discovery. LexBIG services deployed to the grid would be registered in the
NCICB registry and be searchable through the NCICB index service.

Specification

Additional specifications related to the registration and discovery of LexBIG services in the
caGRID environment will be included later phases of work in concordance with caGRID 1.0.
This is will be coordinated with caBIG Architecture workspace designees.

LexBIG Service

Service Metadata

Query Service

Service Manager

caGRID Hosting Environment

Service Discovery

Extensions

Service Management Subsystem

Overview

This subsystem provides administrative access to functions related to management and
publication of LexBIG vocabularies. These functions are generally considered to be reserved for
LexBIG administrators, with detailed instructions on how to secure and carry out related tasks
described by the LexBIG Administrator’s Guide.

This subsystem is further broken down into the following components:

• Indexers

Vocabularies may be indexed to provide enhanced performance or query capabilities. Types
of indexes incorporated into the LexBIG system include but are not limited to the following:

o Lexical Match – for example, “begins-with” and “contains”
o Phonetic – allows for the ability to query based on “sounds-like” entry of search criteria.
o Stemming – allows for the ability to find lexical variations of search terms.

Index creation is typically bundled into the load process. Architecturally speaking, however,
this capability is decoupled and extensible.

• Loaders

Vocabularies may be imported to the system from a variety of accepted formats, including
but not limited to:

o LexGrid XML (LexBIG canonical format)
o NCI Thesaurus, provided in Web Ontology Language format (OWL)
o UMLS Rich Release format (RRF)
o Open Biomedical Ontologies format (OBO)

As with indexers, the load mechanism is designed to be extensible from an architectural
standpoint. Additional loaders can be supported by the introduction of pluggable modules.
Each module is implemented in the Java programming language according to a LexBIG-

Service Manager

Service Administration

LexGrid XML

Loaders

OWL

RRF

OBO

Other

Loader Administration

Extendable

Indexers

provided interface, and registered to the loader runtime environment.

Metadata and Discovery Subsystem

Overview

This subsystem provides information about accessible vocabularies, related licensing/copyright
information, and registration/discovery of LexBIG services.

The ability to locate and resolve vocabulary metadata is fulfilled through the LexBIGService
class. Metadata defined by the LexGrid information model is resolved with each CodingScheme
instance. Available metadata on each resolved scheme includes, but is not necessarily limited to,
the following:

• License or copyright information
• Supported values (e.g. supported concept status, language, property names, etc)
• Mappings from names used locally to globally unique URNs

In addition, each LexBIGService provides a centralized metadata index that allows registration
and query of code system metadata without requiring resolution of individual CodingSchemes.
This metadata index is optionally populated, typically during the vocabulary load process. The
metadata index allows for the metadata of multiple code systems to be cross-indexed and
searched as part of the query subsystem.

Finally, the LexBIG architecture provides the underpinnings for LexBIG services to be made
accessible through the caGRID environment in the future, where vocabulary services might be
deployed and discovered within a caGRID Globus container. However, this portion of the API is
preliminary and awaits coordination with caBIG Architecture WS designees to determine exact
recommendations and nature of LexBIG services on the grid.

Metadata Service

Coding Scheme Metadata

Licensing

Discovery and Index Service

Query Subsystem

Overview

This subsystem provides the functionality required to fulfill caCORE/EVS and other vocabulary
requests. The Query Service is comprised of Lexical Operations, Graph Operations, Metadata,
and History Operations.

Lexical Set Operations

Lexical Set Operations provides methods to return a lists or iterators of coded entries. Supported
query criteria include the application of match/filter algorithms, sorting algorithms, and property
restrictions. Support is also provided to resolve the union, intersection or difference of two node
sets.

Graph Set Operations

Graph Operations support the subsetting of concepts according to relationship and distance,
identification of relation source and target concepts, and graph traversal. Additional operations
include enumeration and traversal of concepts by relation, walking of directed acyclic graphs
(DAGs), enumeration of source and target concepts for a relation, and enumeration of relations
for a concept.

Metadata Operations

Metadata Operations allows for the query and resolution of registered code system metadata
according to specified coding scheme references, property names, or values.

History Operations

History provides vocabulary-specific information about concept insertions, modifications, splits,
merges, and retirements when supplied by the content provider.

LexBig Data Model(Loaders, Indexers)

LexGRID Vocabulary Model and Repository

LexBig API

Lexical Set Operations Graph Operations History

Chapter 3Information Models

A brief introduction to the information models referenced by the LexBIG runtime are provided in
Chapter 2. This chapter will extend on this introduction, providing a brief description of classes
included by the base LexGrid information model and LexBIG-specific extensions to that model.

Note: The information below is provided for introductory purposes. A full description of all
available model components is also available in the javadoc distributed with the LexBIG
installation package (see file breakdown in Chapter 1). Since the javadoc is automatically
generated and synchronized during the build process, it is recommended as the primary reference
for use by LexBIG developers.

LexGrid Model
The LexGrid model is mastered in XML Schema. The LexBIG project currently builds on the
2008 version of the LexGrid schema. A formal representation, showing portions of this structure
that are of primary interest to the LexBIG project, is presented below. A complete version of the
model is available at http://informatics.mayo.edu?page=lgm .

CodingSchemes

The CodingSchemes branch of the model defines high level containers for concepts and
relations. Each CodingScheme represents a unique code system or version in the LexBIG
service. Components of interest include:

codingSchemes

Directory of coding schemes contained in the service.

codingScheme

Describes and/or defines a code system, comprising a collection of concept codes and
relationships.

concepts

A set of coded entries in a coding scheme.

relations

A collection of relations across a set of concept codes drawn from one or more coding schemes.

versions

A list of past versions of the coding scheme.

Note: While listed for completeness, note that this portion of the model is not referenced at this
time by the LexBIG API. In the first release, history information is handled as a series of
NCIChangeEvents (see LexBIG extensions below) by the LexBIG HistoryService.

codingSchemes

Concepts

Each concept represents a unique entity within the code system, which can be further described
by properties and related to other concepts through relations.

concepts

Components of interest include:

concept

Represents a unique code for a concept within a coding scheme or a coding scheme version,
along with an associated description and properties.

comment

A comment or annotation property for a concept.

definition

A definitional property for a concept.

instruction

A formal instruction for the use of a concept.

presentation

A designation for a concept. The presentation identifier must, at bare minimum, uniquely map to
a given text string within the context of the containing concept. In some terminologies, every
unique text string will have exactly one presentation identifier, which means that the same
presentation identifier may occur under more than one concept. In other terminologies, there may
be more than one identifier for a given text string, meaning that the presentation identifier
uniquely determines the concept. Service software must not assume *either* model. (See:
property for additional elements) .

property

A description, definition, annotation or other attribute that serves to further define or identify a
coded term. Property names must be included in the supportedProperty metadata for the coding
scheme.

propertyLink

A link between two properties for a concept.. Examples include acronymFor, abbreviationOf,
spellingVariantOf, etc. Link identifiers must be included in the supportedPropertyLink metadata
for the coding scheme.

Relations

Relations are used to define and qualify associations between concepts.

cd relations

describable

codingSchemes::codingScheme
entityVersion

codingSchemes::codingSchemeVersion

describable

relations

+ «XSDattribute» dc: dc
+ «XSDattribute» isNative: tsBoolean [0..1]
+ source: source [0..-1]

describable

association

+ «XSDattribute» association: localName
+ «XSDattribute» forwardName: tsCaseIgnoreIA5String
+ «XSDattribute» inverse: localName [0..1]
+ «XSDattribute» isAntiReflexive: tsBoolean [0..1]
+ «XSDattribute» isAntiSymmetric: tsBoolean [0..1]
+ «XSDattribute» isAntiTransitive: tsBoolean [0..1]
+ «XSDattribute» isFunctional: tsBoolean [0..1]
+ «XSDattribute» isNavigable: tsBoolean [0..1] = true
+ «XSDattribute» isReflexive: tsBoolean [0..1]
+ «XSDattribute» isReverseFunctional: tsBoolean [0..1]
+ «XSDattribute» isSymmetric: tsBoolean [0..1]
+ «XSDattribute» isTransitive: tsBoolean [0..1]
+ «XSDattribute» isTranslationAssociation: tsBoolean [0..1]
+ «XSDattribute» reverseName: tsCaseIgnoreIA5String [0..1]
+ «XSDattribute» targetCodingScheme: localName [0..1]

associationInstance

+ «XSDattribute» sourceCodingScheme: localName [0..1]
+ «XSDattribute» sourceConcept: conceptCode

associationTarget

+ «XSDattribute» targetCodingScheme: localName [0..1]
+ «XSDattribute» targetConcept: conceptCode

associationData

+ «XSDattribute» dataType: localName [0..1]
+ «XSDattribute» id: id

versionable

associatableElement

associationQualification

+ «XSDattribute» associationQualifier: localName
+ «XSDattribute» dataType: localName [0..1]

0..*+relations0..*+relations

1..*+association

0..*+sourceConcept

0..*+targetConcept

0..*+associationQualification

0..*+targetDataValue

relations

Components of interest include:

association

A relation between concept codes or concept codes and data. Association names must be
included in the supportedAssociation metadata for the coding scheme.

associationInstance

An instance of a 'source' or left-hand side (LHS) of an association. An association instance
references one or more 'targets' or right-hand sides (RHS).

associationTarget

An instance of a target or RHS concept of an association.

associationData

An instance of a target or RHS data value of an association.

associationQualification

A modifier that further qualifies an association triple.

Naming

These elements are primarily used to define metadata for a coding scheme, mapping locally used
names to global references.

naming

Components of interest include:

supportedAssociation

Each entry identifies the URN and local name for an association.

supportedAssociationQualifier

Each entry identifies the URN and local name for an association qualifier.

supportedCodingScheme

Each entry identifies the URN and local name of an external coding scheme. The URN portion
maps to the registeredName of the referenced scheme The local name is local to the referencing
object.

supportedConceptStatus

Each entry identifies the URN and local name for a concept status value.

supportedContext

Each entry identifies the URN and local name for a usage context.

supportedDataType

Each entry identifies the URN and local name for a data type (usually based in XML).

supportedFormat

Each entry identifies the URN and local name for a presentation format (usually mime type).

supportedHierarchy

Each entry identifies the URN, id, association, root node, and whether or not the hierarchy is
forward navigable.

supportedLanguage

Each entry identifies the URN and local name of a spoken or written language.

supportedProperty

Each entry identifies the URN and local name of a property.

supportedPropertyLink

Each entry identifies the URN and local name for a lexical association between two concept
properties (e.g. ‘abbreviationFor’, ‘acronymFor’) .

supportedRepresentationalForm

Each entry identifies the URN and local name of a representational form (e.g. noun, eponym) .

supportedSource

Each entry identifies the URN and local name of an external source reference.

URN

A universal resource name, representing the globally unique name of a resource such as a source,
coding scheme, concept code, etc.

URNMap

The declaration of a local name and the URN that it represents. The behavior of an omitted
URN is context specific.

LexBIG Model Extensions
The following extensions to the LexGrid model were introduced in support of caBIG
requirements. As with the LexGrid model, this document provides a summary of the most
significant elements for consideration by LexBIG programmers. The complete and current
version of the model is available online at http://informatics.mayo.edu?page=lexex .

Core

LexBIG core elements provide enhanced referencing and controlled resolution of LexGrid model
objects.

Core

Components of interest include:

AbsoluteCodingSchemeVersionReference

An absolute reference to a coding scheme. This form of reference is service independent, as it
doesn't depend on local coding schemes names or virtual tags.

AssociatedConcept

A concept reference that is the source or target of an association.

Association

The representation of a particular association as it appears in a CodedNode.

CodingSchemeSummary

Abbreviated list of information about a coding scheme.

CodingSchemeURNorName

Either a local name or the URN of a coding scheme. These two are differentiated syntactically -
if the entity includes a colon (:) or a hash "#" it is assumed to be a URN. Otherwise it is assumed
to be a local name.

CodingSchemeVersionOrTag

A named coding scheme version or a virtual tag (e.g. latest, production, etc). Note that the tagged
form of identifier is only applicable in the context of a given service, as one service may identify
the scheme as "production" and another as "staging".

ConceptReference

A reference to a coding scheme and a concept code.

LogEntry

A single recorded log entry.

LogLevel

Indicates severity of the log entry.

MetadataProperty

Reference to a property name and value stored in the coding scheme metadata.

NameAndValue

A simple name/value pair.

ReferenceLink

Any reference to another document element. Used by the REST architecture to embed links.

ResolvedConceptReference

A resolvable concept reference.

ServiceURL

References a service in the Globus environment, this will be a global service handle (GSH).

InterfaceElements

Defines metadata related to model objects required by the runtime.

InterfaceElements

Components of interest include:

CodingSchemeRendering

Information about a coding scheme as it appears in a particular service.

ExportStatus

Reports the state of LexBIG export operations.

ExtensionDescription

Describes an add-on module registered to the LexBIG environment.

LoadStatus

Reports the state of LexBIG load operations.

ModuleDescription

Describes a LexBIG integrated software module.

ProcessState

Enumerates possible status reported for LexBIG runtime operations.

ProcessStatus

Reports the state of LexBIG runtime operations.

RenderingDetail

The details of how a coding scheme is rendered in a given service.

SortContext

Describes a LexBIG sort module.

SortDescription

A description of a LexBIG extension module.

SortOption

Represents a pairing of sort algorithm and order.

SystemReleaseDetail

The combination of a system release and all of the entityVersions that accompanied that release.

NCIHistory

Maintains a record of modifications made to a code system.

NCIHistory

Components of interest include:

changeType

Atomic modification actions. Currently populated from a combination of Concordia, SNOMED-
CT list and NCI's action list.

NCIChangeEvent

A change event as documented in ftp://ftp1.nci.nih.gov/pub/cacore/EVS/ReadMe_history.txt.
Note that date and time of the change event is recorded in the containing version. All change
events for the same/date and time a recorded in the same version.

Chapter 4LexBIG APIs

Chapter 3 describes the general format and organization of information handled by the LexBIG
runtime. This section describes the primary application programming interfaces used to take
action (e.g. retrieve or administer) against that content.

Note: The information below is provided for introductory purposes. A full description of all
available classes and methods is also available in the javadoc distributed with the LexBIG
installation package (see file breakdown in Chapter 1). Since the javadoc is automatically
generated and synchronized during the build process, it is recommended as the primary reference
for use by LexBIG developers.

Overview
Programming interfaces for the system fall into three primary categories:

Core Services

Includes the LexBIGService, LexBIGServiceManager, CodedNodeSet and CodedNodeGraph
classes, which provide the initial entry points for programmatic access to all system features and
data.

Service Extensions

The extension mechanism provides for pluggable system features. Current extension points
allow for the introduction of custom load and indexing mechanisms, unique query sort and filter
mechanisms, and generic functional extensions which can be advertised for availability to client
programs.

Utilities

Utility classes, such as those implementing iterator support, are provided by the system to
provide convenience and optimize the handling of resources accessed through the runtime.

Core Services

Provides central entry points for programmatic access to system features and data.

LexBIGService

Components of interest include:

CodedNodeGraph

A virtual graph where the edges represent associations and the nodes represent concept codes. A
CodedNodeGraph describes a graph that can be combined with other graphs, queried or resolved
into an actual graph rendering.

CodedNodeSet

A coded node set represents a flat list of coded entries.

LexBIGService

This interface represents the core interface to a LexBIG service.

LexBIGServiceManager

The service manager provides a single write and update access point for all of a service's content.

The service manager allows new coding schemes to be validated and loaded, existing coding
schemes to be retired and removed and the status of various coding schemes to be updated and
changed.

LexBIGServiceMetadata

Interface to perform system-wide query over optionally loaded metadata for loaded code systems
and providers.

Service Extensions
Provides registration and lookup for pluggable system features.

Extensions

Components of interest include:

ExtensionRegistry

Allows registration and lookup of implementers for extensible pieces of the LexBIG architecture.

Extendable

Marks a class as an extension to the LexBIG application programming interface. This allows for
centralized registration, lookup, and access to defined functions.

Query Extensions

Query extensions provide the ability to further constrain or manage query results.

Query

Components of interest include:

Filter

Allows for additional filtering of query results.

Sort

Allows for unique sorting of query results. This interface provides a comparator to evaluate
order of any two given items from the result set.

Load Extensions

Load extensions are responsible for the validation and import of content to the LexBIG
repository. Vocabularies may be imported from a variety of formats including LexGrid
canonical XML, NCI Thesaurus (OWL), and NCI MetaThesaurus (UMLS RRF).

Load

Components of interest include:

Loader

The loader interface validates and/or loads content for a service.

LexGrid_Loader

Validates and/or loads content provided in the LexGrid canonical XML format.

NCI_MetaThesaurusLoader

Validates and/or loads the complete NCI MetaThesaurus. Content is supplied in RRF format.
Note: To load individual coding schemes, consider using the UMLS_Loader as an alternative.

OBO_Loader

Validates and/or loads content provided in Open Biomedical Ontologies (OBO) text format.

OWL_Loader

Validates and/or loads content provided in Web Ontology Language (OWL) XML format. Note
that for LexBIG phase 1 this loader is designed to specifically handle the NCI Thesaurus as
provided in OWL format.

Text_Loader

A loader for delimited text type files. Text files come in one of two formats: indented
code/designation pair or indented code/designation/description triples.

UMLS_Loader

Load one or more coding schemes from UMLS RRF format stored in a SQL database.

MetaData_Loader

Validates and/or loads content provided in metadata xml format. The only requirement of the
xml file is that it be a valid xml file.

NCIHistoryLoader

A loader that takes the delimited NCI history file and applies it to a coding scheme.

OBOHistoryLoader

Load an OBO change history file.

Export Extensions

Export extensions are responsible for the export of content from the LexBIG repository to other
representative vocabulary formats.

Export

Components of interest include:

Exporter

Defines a class of object used to export content from the underlying LexGrid repository to
another repository or file format.

LexGrid_Exporter

Exports content to LexGrid canonical XML format.

OBO_Exporter

Exports content to OBO text format.

OWL_Exporter

Exports content to OWL XML format.

Index Extensions

Index extensions are built to optimize the finding, sorting and matching of query results.

Index

Components of interest include:

Index

Identifies expected behavior and an associated loader to build and maintain a named index. Note
that a single loader may be used to maintain multiple named indexes.

IndexLoader

Manages registered index extensions. A single loader may be used to create and maintain
multiple indexes over one or more coding schemes.

It is the responsibility of the loader to properly interpret each index it services by name, version,
and provider.

Generic Extensions

Generic extensions provides a mechanism to register application-specific extensions for
reference and reuse.

Generic

Components of interest include:

GenericExtension

The generic extension class. Classes that implement this class are accessible via the
LexBIGService interface.

LexBIGServiceConvenienceMethods

Convenience methods to be implemented as a generic extension of the LexBIG API.

Utilities
Defines helper classes externalized by the LexBIG API.

Iterators

Iterators are used to provide controlled resolution of query results.

Iterators

Components of interest include:

EntityListIterator

Generic interface for flexible resolution of LexBIG objects.

ResolvedConceptReferencesIterator

An iterator for retrieving resolved coding scheme references.

Additional Utility Classes

Note: It is highly recommended that all LexBIG programmers familiarize themselves with the
classes contained in the org.LexGrid.LexBIG.Utility package. Many useful features are
provided in an effort to increase approachability of the API and assist the programmer in
common tasks. This package currently contains the following classes:

Constructors – Helper class to ease creating common objects.

ConvenienceMethods – One-stop shopping for convenience methods that have been
implemented against the LexBIG API.

LBConstants – Provides constants for use in the LexBIG API.

ObjectToString – Provides centralized formatting of LexBIG Objects to String representations.

Examples & Recommendations for Use

Concept Resolution

Programmers access coded concepts by acquiring first a node set or graph. After specifying
optional restrictions, the nodes in this set or graph can be resolved as a list of
ConceptReference objects which in turn contain references to one or more Concept objects.
The following example provides a simple query of concept codes:

// Create a basic service object for data retrieval
LexBIGService lbSvc = new LexBIGServiceImpl();

// Create a concept reference list appropriate for this coding scheme and
// this concept code where the parameters are a String array consisting of
// a single value and the name of the coding scheme where this concept
// resides.
ConceptReferenceList crefs =

ConvenienceMethods.createConceptReferenceList(
new String[] {code}, SAMPLE_SCHEME);

// Initialize a coding scheme version object with a version number for
the // sample scheme.
CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag();
csvt.setVersion(VERSION);

// Initialize A CodedNodeSet Object with all concepts in our sample coding
// scheme (We named the scheme we wanted and by using the Boolean value,
// false, retrieved both active and inactive concepts). This method call
// ignores the version tag using the null parameter. The final
// restrictToCodes(crefs) method call restricts the return to the single
// code in the previously initialized list of one.
CodedNodeSet nodes = lbSvc.getCodingSchemeConcepts(SAMPLE_SCHEME,

csvt).restrictToCodes(crefs);
// Build a list of references from the current (and already restricted) set
// and restrict them further to the single property of NCI_NAME and
// restrict to a single answer (parameter 1)).
ResolvedConceptReferenceList matches = nodes.resolveToList(null,

ConvenienceMethods.createLocalNameList("FULL_SYN"), 1);

// Does our list of one contain the single reference were were looking for?
// If so, then initialize a ResolvedConceptReference with the result, and
// initialize a Concept object by calling the getReferencedEntry()
// method. The Concept object is the base information model object and
// contains, among other things, the CONCEPT_NAME value we were seeking. We
// retrieve it with a call to the first element on the properties list,
// getting the text and it’s accompanying content.

if (matches.getResolvedConceptReferenceCount() > 0) {
ResolvedConceptReference ref =

(ResolvedConceptReference)matches
.enumerateResolvedConceptReference().nextElement();

Concept entry = ref.getReferencedEntry();
System.out.println("Matching synonym: " +

entry.getPresentation(0).getText().getContent()) ;
} else {
System.out.println("No match found!");
}

Service Metadata Retrieval

The LexBIG system maintains service metadata which can provide client programs with
information about code system content and assigned copyright/licensing information. Below is
an brief example showing how to access and print some of this metadata:

// We can get a CodingSchemeRenderingList object directly from the
// LexBigService.
LexBIGService lbs = new LexBIGServiceImpl();
CodingSchemeRenderingList schemeList = lbs.getSupportedCodingSchemes();

for (CodingSchemeRendering csr : schemeList.getCodingSchemeRendering()) {
CodingSchemeSummary css = csr.getCodingSchemeSummary();

// Print separator, then details from the CodingSchemeSummary
System.out.println(“=======================================”);
System.out.println(ObjectToString.toString(css));

// Set up a coding scheme reference to resolve Copyright
String urn = css.getCodingSchemeURN();
String version = css.getRepresentsVersion();
CodingSchemeVersionOrTag csVorT =

Constructors.createCodingSchemeVersionOrTagFromVersion(version);
CodingScheme cs = lbs.resolveCodingScheme(urn, csVorT);
System.out.println("Copyright: " + cs.getCopyright().getContent());

// Get the final details from the RenderingDetail
RenderingDetail rd = csr.getRenderingDetail();
System.out.println(ObjectToString.toString(rd));
System.out.println();

}

Combinatorial Queries

One of the most powerful features of the LexBIG architecture is the ability to define multiple
search and sort criteria without intermediate retrieval of data from the LexBIG service. Consider
the following code snippet:

This example shows a simple yet powerful query to search a code system based on a ‘sounds
like’ match algorithm (the list of all available match algorithms can be listed using the

System.out.println("Example double restriction query with additional
application of sort criteria and restricted return values");
//Declare the service ...
LexBIGService lbs = new LexBIGServiceImpl();

//Start with an unconstrained set of all codes for the vocabulary ...
CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag();
csvt.setVersion(VERSION);
CodedNodeSet cns = lbs.getCodingSchemeConcepts(SAMPLE_SCHEME,csvt);

//Constrain to concepts with designations (assigned text presentations)
//that contain text that sounds like ‘heart ventricle’
cns.restrictToMatchingDesignations(

"hart ventrikle",
SearchDesignationOption.ALL,
MatchAlgorithms.DoubleMetaphoneLuceneQuery.toString(),
null);

//Further restrict the results to concepts with a semantic type of
//'Body Space or Junction'.
cns.restrictToMatchingProperties(

Constructors.createLocalNameList("Semantic_Type"),
"Anatomical Structure",
"exactMatch",
null);

//Indicate that the resulting list should be sorted,
//with best results first and then sorted by code if there is a tie.
SortOptionList sortCriteria =

Constructors.createSortOptionList(new String[]{"matchToQuery", "code"});

//Indicate to return only the assigned UMLS_CUI and
//textualPresentation properties.
LocalNameList restrictTo =

ConvenienceMethods.createLocalNameList(new String[]{"UMLS_CUI",
"textualPresentation"});

//Still nothing computed yet!
//Perform the query and resolve the sorted/filtered list,
//with a maximum of 6 items returned ...
ResolvedConceptReferenceList list = cns.resolveToList(sortCriteria,
restrictTo,

null, 6);
//Print the results ...
ResolvedConceptReference[] rcr = list.getResolvedConceptReference();
for(ResolvedConceptReference rc : rcr){

System.out.println("Resolved Concept: " + ObjectToString.toString(rc));}

‘ListExtensions –m’ admin script).

Declaring the target concept space

The coded node set (variable ‘cns’) is initially declared to query the NCI Thesaurus vocabulary.
At this point the concept space included by the set can be thought of as unrestricted, addressing
every defined coded entry (the ‘false’ value on the declaration indicates to also include inactive
concepts). However, it important to note that no search is performed by the LexBIG service at
this time.

Applying filter criteria

Similarly, no computation is performed (to realize query results) during invocation of the
restrictToMatchingDesignations() and restrictToMatchingProperties()
methods. However, these calls effectively narrow the target space even further, indicating that
filters should be applied to the information returned by the LexBIG query service.

Using the Lucene Query Syntax and other text matching functions

The text criteria applied in methods such as restrictToMatchingDesignations() uses one of a
number of powerful text processing applications to provide the user with broad capability for text
based searches. Text matches can be simple applications of exactMatch, startsWith or contains
algorithms as well as powerful regular expressions and Lucene Query syntax (used in the
LuceneQuery function.) As shown above these options are passed into the
restrictToMatchingDesignations() Method as parameters.

Lucene Queries are well documented and can be very powerful. The uninitiated user may need
some background on their use however. The user should start here with the official Lucene
Query Parser documentation.

Keep in mind that some LexBIG queries such as "startsWith" and "contains" use wild card
searches under the covers, so that use of wild cards in this context can cause errors in searches
involving these search types.

Instead it is best to use the flexibility of the Lucene Query searches in the matchingDesignation
by using the Lucene Query searches in LexBIG where most searches will work much as
described in the query syntax documentation.

Special characters in the Lucene Query search can cause unexpected results. If you are not using
special characters as recommended for various Lucene search mechanisms then your searches
may not return expected results or may return an error. If the value you are searching upon
contains say, parenthesis, you will need to place the value in quotations. The escape characters
described in the Lucene Documentation do not work at this time.

Likewise you should not expect to see a Lucene Query narrow down search results as you
progressively enter a longer substring more closely matching your term of interest. Instead use
the contains method.

http://lucene.apache.org/java/docs/queryparsersyntax.html
http://lucene.apache.org/java/docs/queryparsersyntax.html

Applying sorting criteria

Multiple sort algorithms can be applied to control the order of items returned. In this case, we
indicate that results are to be sorted based on primary and secondary criteria. The
"matchToQuery" algorithm indicates to sort the result according to best match as determined by
the search engine. The "code" item indicates to perform a secondary sort based on concept code.

Note: the list of all available sort algorithms can be listed using the ‘ListExtensions –s’ admin
script.

Restricting the information returned for matching items

The LexBIG API also allows the programmer to restrict the values returned for each matching
concept. In this example, we chose to return only the UMLS CUI and assigned text
presentations.

Retrieving the result

A query is finally performed during the ‘resolve’ step, with results returned to the declared list.
It is at this point that the LexBIG service does the heavy lifting. By declaring the full extent of
the request up front (namespace, match criteria, sort criteria, and returned values), the service
then has the opportunity to optimize the query path. In addition, in this example we restrict the
number of items returned to a maximum of 6. This combined approach has the benefit of
reducing server-side processing while minimizing the volume and frequency of traffic between
the client program and the LexBIG service.

Note: While this section provides one example of combining criteria, this same pattern can be
applied to many of the CodedNodeSet and CodedNodeGraph operations. It is strongly
recommended that programmers familiarize themselves with this programming model and its
application.

Additional Resources

The examples and automated test programs provided by the LexBIG installation (see file
breakdown in Chapter 1) are available as additional reference materials.

Exercising the API – The LexBIG GUI
The LexBIG Graphical User Interface, or GUI, is an optional component of the LexBIG install
which will be in the /gui folder of the base LexBIG installation (see file breakdown in Chapter
1). The GUI is meant to provide a simple tool to test LexBIG API methods and quickly view
the results; almost all public methods defined by the LexBIG API are supported. This guide
provides a brief overview of how the GUI can aid programmers in writing code to the LexBIG
API.

Note: The LexBIG GUI supports both administrative and test functions. Please refer to the
LexBIG Administrator’s Guide for instructions on using the GUI as an administration tool.

Launching the GUI

Depending on the operating systems that you selected at installation time, you should have one
or more of the following programs in the /gui folder:

Linux_64-lbGUI.sh Linux-lbGUI.sh

OSX-lbGUI.command Windows-lbGUI.bat

Launch the GUI by executing the appropriate script for your platform. You will be presented
with an application that looks like this:

Overview

The upper section of the GUI shows all of the code systems currently loaded, along with
corresponding metadata. The lower section of the GUI is used to combine, restrict and resolve
Code Sets and Code Graphs.

The lower left section is where you can perform Boolean logic on Code Sets and Code Graphs.
The lower right section is where you can introduce restrictions on Code Sets and Code Graphs
and browse results.

Note: The menu options are used primarily for administrative functions, and are covered in detail
by the LexBIG Administrator’s Guide. In addition, all of the disabled buttons in the top half of
the application are used for administrative functions, and are also described in the LexBIG
Administrator’s Guide.

Creating New Queries

There are four buttons on the top half that are of interest for creating queries.

• Refresh – This button causes the LexBIG GUI to reread the available terminologies and
their respective metadata. This can be useful when using the GUI to view a LexBIG
environment that is being modified by another process.

• Get History – If a terminology with available history data is selected, this button opens a

history browser to view it via the NCI history API. This option is currently only
applicable when working with the NCI Thesaurus terminology.

• Get Code Set –This button causes the selected terminology to be added to the lower left
section of the GUI as a code set – which is noted by a ‘CS’ prefix.

• Get Code Graph –This button causes the selected terminology to be added to the lower
left section of the GUI as a code graph – which is noted by a ‘CG’ prefix.

Customizing Queries

After selecting a code system and clicking on Get Code Set or Get Code Graph, a row will be
added to the lower left section of the GUI for each click. There are seven buttons in the lower
left section that allow combinatorial logic between the code sets in the lower left.

• Union – This button is enabled if two Code Sets or two Code Graphs are selected in the
lower left. Clicking the button creates a new virtual Code Set or Code Graph which
represents the Boolean union of the two selected items. All restrictions applied to the
individual items still apply.

• Intersection – This button is enabled if two Code Sets or two Code Graphs are selected
in the lower left. Clicking the button creates a new virtual Code Set or Code Graph
which represents the Boolean intersection of the two selected items. All restrictions
applied to the individual items still apply.

• Difference – This button is enabled if two Code Sets or two Code Graphs are selected in
the lower left. Clicking the button creates a new virtual Code Set which represents the
Boolean difference of the two selected Code Sets. All restrictions applied to the
individual items still apply.

• Restrict to Codes – This button is enabled if a Code Set and a Code Graph are selected
in the lower left. Clicking the button creates a new virtual Code Graph which will be
restricted to concept codes occurring in the selected Code Set.

• Restrict to Source Codes – This button is enabled if a Code Set and a Code Graph are
selected in the lower left. Clicking the button creates a new virtual Code Graph which
will have its source codes restricted to codes occurring in the selected Code Set.

• Restrict to Target Codes – This button is enabled if a Code Set and a Code Graph are
selected in the lower left. Clicking the button creates a new virtual Code Graph which
will have its target codes restricted to codes occurring in the selected Code Set.

• Remove – This button is enabled if any Code Set or Code Graph (or virtual Code Set or
Code Graph) is selected in the lower left. Clicking the button will remove the selected
item from the list.

The lower right section of the GUI is used to apply restrictions to Code Sets or Code Graphs, and
set the variables that need to be passed into the resolve method.

Working with Code Sets

If a Code Set is selected in the lower left, then the lower right section will look like this:

In the lower right section, there are two halves – the top half and the bottom half. The top half is
used to apply restrictions. The bottom half provides query options and resolution.

• Add – This button introduces a new restriction to the Coded Node Set. Clicking it will
bring up the following dialog box for creating restrictions:

The top drop down list indicates the type of restriction to add. The rest of the dialog box
will change depending on the type of restriction selected. All required parameters for the
selected restriction type will be presented.

• Edit – This button is enabled when a restriction is selected. Clicking it allows revision of
an existing restriction.

• Remove –This button is enabled when a restriction is selected. Clicking it removes the
selected restriction.

• Only Include Active Codes – This check box indicates whether or not to include
inactive codes when resolving the selected code set.

• Set Sort Options – This button will bring up a dialog box to choose the desired sort
order of the results.

• Resolve Code Set – This button will bring up a result window where the Code Set will
be resolved and displayed.

Working with Code Graphs

If you select a Coded Node Graph in the lower left section of the LexBIG GUI, the lower right
section will look like this:

Again, there are two halves to the lower right section. The top half allows restrictions to be
applied to the selected Code Graph, and it works the same as it does for a Coded Node Set.
Please see the section above on applying restrictions to a Coded Node Set.

The lower half provides additional variables applicable when resolving a Coded Node Graph.
For further explanation of these options, refer to the LexBIG API documentation.

• Relation Container (Optional) – Indicates the CodingScheme Relations container to
query. The drop down list is populated with allowable selections.

• Focus Code (Optional) – Provides the code used as a starting point when resolving graph
relations. This value is required for some queries, depending on the nature of requested
associations.

• Focus Code System (Optional) – Indicates the code system containing the Focus Code.
The drop down list is populated with allowable selections.

• Max Resolve Depth – How many levels deep should the graph be resolved? -1 is the
default, which does not limit the depth.

• Resolve Forward – Populate codes downstream from the focus node (based on
directionality defined by each association).

• Resolve Backward – Populate codes upstream from the focus node (based on
directionality defined by each association).

• Set Sort Options – This button will bring up a dialog box to choose the desired sort
order of the results.

• Resolve As Set – Resolves and displays the graph results as a coded node set.

• Resolve As Graph –Resolves and displays the graph results.

Viewing Query Results

Clicking on the Resolve buttons for either a Coded Node Set or a Coded Node Graph will bring
up the Result Browser window:

The left side shows a list of all the concept codes returned. When a concept code is selected on
the left, the upper right will show a full description of the selected code. The lower right will
show a graph view of the neighboring concepts.

When a Coded Node Graph is resolved, the result viewing window will look like this (this is the
same Code System as above):

The left side still has a list of all of the concepts in the graph. The upper right will give a
description of the selected concept. The lower right shows the entire graph.

The lower right section is adjustable, and dynamic. It responds to mouse clicks, dragging, and
numerous key combinations. Beyond a depth of 3, the graph may “collapse” and not show all of
the nodes until you click on a node. Clicking on a node will cause it to expand out and display
its children. Here are a list of key combinations recognized by the graph viewer:

• LEFT CLICK + MOUSE MOVEMENT – Drags the view.

• RIGHT CLICK + MOUSE MOVEMENT UP OR DOWN – Zooms in or out.

• RIGHT CLICK (ON WHITE SPACE) – Zooms the view to fit.

• CTRL + ‘+’ – Expands the graph connection lines

• CTRL + ‘-‘ – Contracts the graph connection lines

• CTRL + ‘1’ (OR ‘2’ OR ‘3’ OR ‘4’) – Changes the orientation of the graph.

1. References

This appendix includes lists and hypertext links, where appropriate, to technical manuals,
articles, scientific publications and online resources related to the LexBIG project.

• LexBIG NCICB GForge Project - https://gforge.nci.nih.gov/projects/lexevs/

• LexBIG Project Administration Materials - https://gforge.nci.nih.gov/docman/?group_id=491

• LexGrid Home Page – http://informatics.mayo.edu/LexGrid/index.php?page=aboutlg

• Vocabulary Knowledge Center -- https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Main_Page

• Sun Java Tools (JDK, JRE, NetBeans) - http://java.sun.com/

• Eclipse Project (IDE) - http://www.eclipse.org/eclipse/

http://www.eclipse.org/eclipse/
http://java.sun.com/
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Main_Page
http://informatics.mayo.edu/LexGrid/index.php?page=aboutlg
https://gforge.nci.nih.gov/docman/?group_id=491
https://gforge.nci.nih.gov/projects/lexevs/

2. Included Materials

Components

The following Java archives are distributed with the LexBIG runtime environment and may be of
interest to programmers:

Module Function

lbRuntime The LexBIG runtime code, including all necessary code and
dependencies required for direct Java-to-Java invocation of the
LexBIG API. This consolidates LexBIG code and 3rd party
modules in order to simplify configuration for program execution.

Note: This archive is not available for redistribution simply
because individual contributions are not easily separated and the
combined content cannot be shared under a single license. It is
provided strictly as a convenience for simplified program
execution and in accordance with the user having agreed to all
terms and conditions during product installation.

Redistributable components (e.g. those listed below) and
associated license terms are also made available. The
redistributable components provide equivalent content and
function, but require more extensive configuration for program
execution.

lexbig
This archive includes the LexBIG runtime code, excluding all
dependencies.

lbGUI
The LexBIG graphical user interface runtime code, excluding all
dependencies.

LexBIG APIs

activation Provided by Sun’s reference implementation of the JavaBeans
Activation Framework (JAF) standard extension. Used for e-mail
notification when runtime errors occur.

caGrid Grid infrastructure to support the caBIG™ community. Contains
tools for creating and deploying caBIG™-compliant grid services.

commons-cli Provides a simple API for working with command line arguments,
options, option groups, mandatory options and so forth.

commons-codec Provides implementations of common encoders and decoders such
as Base64, Hex, Phonetic and URLs.

commons-
collections

Provides a suite of classes that extend or augment the Java
Collections Framework.

commons-lang Provides a very common set of utility classes that provide extra
functionality for classes in the java.lang package.

commons-logging Provides a bridge between different logging libraries.

commons-pool Provides a generic object pooling interface, a toolkit for creating
modular object pools and several general purpose pool
implementations.

gnu-regexp Provides a Java language implementation of standard NFA regular
expression features.

hsqldb SQL relational database engine written in Java.

icu4j International components for Unicode processing.

jakarta-regexp Java package for processing regular expressions.

jcalendar Java date chooser bean for graphically picking a date.

jdom Java-based solution for accessing, manipulating, and outputting
XML data from Java code.

jena Java framework for building Semantic Web applications.

junit Java regression test framework.

log4j Runtime logging services.

lucene-core Text search engine library written in Java.

lucene-regex Provides support for regular expression-based queries.

http://lucene.apache.org/java/docs/lucene-sandbox/
http://lucene.apache.org/java/docs/
http://logging.apache.org/log4j/docs/index.html
http://junit.org/index.htm
http://www.w3.org/2001/SW/
http://jena.sourceforge.net/
http://www.jdom.org/
http://www.toedter.com/
http://jakarta.apache.org/regexp/
http://www-306.ibm.com/software/globalization/icu/index.jsp
http://hsqldb.org/
http://savannah.gnu.org/projects/gnu-regexp/
http://jakarta.apache.org/commons/pool/
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/lang/
http://jakarta.apache.org/commons/collections/
http://jakarta.apache.org/commons/collections/
http://jakarta.apache.org/commons/codec/
http://jakarta.apache.org/commons/cli/
https://cabig.nci.nih.gov/workspaces/Architecture/caGrid
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/javabeans/jaf/index.jsp

LexBIG APIs

lucene-snowball Provides stemming support for indexed concepts.

mail Provided by the Sun JavaMail API. Used for e-mail notification
when runtime errors occur.

mm.mysql
(drivers, 2.0.6)

JDBC drivers for MySQL database.

org.eclipse.* Used internally by LexBIG load and export extensions to access
and manipulate Eclipse Modeling Framework (EMF) model
representations.

postgresql
(drivers)

JDBC drivers for PostgreSQL database.

prefuse Used for graph representations in the LexBIG GUI.

postgresql
(drivers)

JDBC drivers for PostgreSQL database.

swt (*swt*.jar) Provides the underlying widget toolkit used by the LexBIG GUI.

xerces XML parsing services.

3. Additional Terms and Conditions

Refer to the license.pdf and license.txt files (installed to the LexBIG root directory) for
the license terms and conditions of included components.

http://xerces.apache.org/
http://www.eclipse.org/swt/
http://jdbc.postgresql.org/
http://jdbc.postgresql.org/
http://www.prefuse.org/
http://jdbc.postgresql.org/
http://jdbc.postgresql.org/
http://www.eclipse.org/emf/
http://www.eclipse.org/
http://mmmysql.sourceforge.net/old-index.html
http://mmmysql.sourceforge.net/old-index.html
http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/
http://lucene.apache.org/java/docs/lucene-sandbox/

	Chapter 1Overview of the Software
	Chapter 2Systems and Architecture
	Chapter 3Information Models
	Chapter 4LexBIG APIs

