. . . ; ﬁh '
. caBIG™ E;::;i‘;g:;fgﬁ?i an initiative of tHEENENTEIReEQILTREE

HI

LexGRrip VocaBULARY SERVICES FOR caABIG™
ProGRAMMER REFERENCE

LexBIG (Developer’s Technical Guide)

Version 1.0.2

LexBIG Software User Agreement
October 30, 2006

Usage of Content

THIS PRODUCTS MAKES AVAILABLE SOFTWARE, DOCUMENTATION, INFORMATION AND/OR
OTHER MATERIALS (COLLECTIVELY "CONTENT"). USE OF THE CONTENT IS GOVERNED BY THE
TERMS AND CONDITIONS OF THIS AGREEMENT AND/OR THE TERMS AND CONDITIONS OF
LICENSE AGREEMENTS OR NOTICES INDICATED OR REFERENCED BELOW. BY USING THE
CONTENT, YOU AGREE THAT YOUR USE OF THE CONTENT IS GOVERNED BY THIS AGREEMENT
AND/OR THE TERMS AND CONDITIONS OF ANY APPLICABLE LICENSE AGREEMENTS OR
NOTICES INDICATED OR REFERENCED BELOW. IF YOU DO NOT AGREE TO THE TERMS AND
CONDITIONS OF THIS AGREEMENT AND THE TERMS AND CONDITIONS OF ANY APPLICABLE
LICENSE AGREEMENTS OR NOTICES INDICATED OR REFERENCED BELOW, THEN YOU MAY
NOT USE THE CONTENT.

Applicable Licenses

Unless otherwise noted, content is provided to you under terms and conditions of the following

agreement:
Copyright: (c) 2004-2006 Mayo Foundation for Medical Education and
Research (MFMER). All rights reserved. MAYO, MAYO CLINIC, and the

triple-shield Mayo logo are trademarks and service marks of MFMER.

Except as contained in the copyright notice above, the trade names,
trademarks, service marks, or product names of the copyright holder shall
not be used in advertising, promotion or otherwise in connection with
this Software without prior written authorization of the copyright holder.
Licensed under the Eclipse Public License, Version 1.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.eclipse.org/legal/epl-v10.html

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

Note: Content includes redistribution of additional 3™ party software modules, placed in the /runtime/extlib
folder of the product root directory. Each module is accompanied by a license file that identifies specific
terms of use and redistribution that may differ from the terms listed above. Modules include, but are not
limited to, those listed in the appendix of this document.

IT IS YOUR OBLIGATION TO READ AND ACCEPT ALL SUCH TERMS AND CONDITIONS PRIOR TO
USE OF THE CONTENT.

Contacts and Support

Training contact

Thomas Johnson

johnson.thomas@mayo.edu

Division of Biomedical Informatics

Developer

Mayo Clinic

200 1 ST SW

Rochester, MN 55905

informatics@mayo.edu

Facilities Pertinent to software teams
Resource URL Description

Bug Tracking https://gforge.nci.nih.gov/projects/lexevs/ NCICB GForge site
Feature Requests Vocabulary Knowledge Center caBIG Vocabulary Knowledge
Discussion Forums Center
Project WIKI
Mailing Lists
Architecture and https://gforge.nci.nih.gov/scm/? LexEVS SVN repository
Requirements specifications | group_id=491

https://gforge.nci.nih.gov/scm/?group_id=491
https://gforge.nci.nih.gov/scm/?group_id=491
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Main_Page
https://gforge.nci.nih.gov/projects/lexevs/
mailto:informatics@mayo.edu
mailto:johnson.thomas@mayo.edu

Table of Contents

LexBIG Software USEr AGICEIMENL..........cceeieriieieiteeieiteetesteeteeteeteeseesseeseesseessesseessesseessessesssssesssssessssesens 2
USGZE Of CONMIENL........oueoiiiiiiiiieiee ettt ettt ettt ettt st e 2
APPIICADIE LICONSES..........oeeeeee ettt ettt ettt e e et e e e 2

OVETVIEW ...ttt ettt ettt ettt b bbbt sttt et es e eh e bt eb e e bt e bt s bt e 4t b et e st et em b et es e ebbeb e ebeebeebe e bt e sbeesbteenbeenbeen 7

OTZANIZALION. ...ttt ettt ettt ettt ettt et et ea e eut e bt ebe e bt e bt s bt sa e b et e st et et et emtestestemeebeemte et eenbneeaseentee 7

GEHINE STATTEA ..eovviiieieiieie ettt ettt ettt et e et e b e st e be e st e sbeesbesbeessasseesseeseesseeseesseeseassesssessesssesseasseensseeens 7

DocuMENt TEXt CONVENTIONS. .. .cuvevereiererereteetesteetesteeesesseeseeseesesssessesseessesssessesssessesssessesssessesssensssessseeens 8

Chapter 1 Overview of the SoftWare.......ccceeceeeceeeeeeeieeerseeneeeessennsaeesenesaneseeneseessenseseessesessesssssseensessassesessenee 9

AT 0TS £ T3 1 LTS 9

A SIMPIE EXAMPLE......eniiiieieeiee ettt ettt sttt et e st e bt ene et e en e e st et e eneeteennee e 13
Establish the Development ERVIFONIMENL.................c..cc.ccerieeuerieieeeeiieeieeseeiseieeeseseessessesssesseeaesseees 13
Write and COMPILE PrOGFAMS...............cccccvoiaiiiirieiiieeieee ettt 13
DEPIOY AR RUNL ...ttt ettt et et e et e bt et e et e e s taeeabeestaeansaeeeeentbaaee s 14

SYSTEM REQUITCINENLS.euvitieeieiieeieetieteetteteeetesteetesteestesteesbesseessesseesseaseesseeseesseassesseessesssesseesssessssessnsees 14

Software and Hardware DependenCies.ocuerieiiririeiierie ettt ettt st saee s 15

Security and Security Mana@EMENL.........cccceiiiriiiieiinieieeiiente ettt ettt ettt ettt e te b te b e sseebeeaeenbeeaeeesmeeeas 15

Chapter 2 Systems and ArchiteCture.....cceeieiseiseneisenssansssesssanssssssenssssssssassssasssasssssssssssssssssnssssssssasssssssssssne 16
TTE BASICS.....c.veoeeeeeeieeie ettt ettt ettt et e st et sb e et e s e e ts e s e e st e ebe e st e eaeesaeeaeenbeeteenbentaeene 16

SOFEWATE OVEIVIEW....eevieuveiieieeiieieeteteetesteetesseestesseesesseesesssesseassenseessenseasseaseensesseensesssensesssessessseesnseens 17

LEXGIIA MOGCL.....eeieiieiieeee ettt ettt et s b et s bt et s bt et e s bt ete e sateeebteesannes 19
OVEFVICW...cie ittt ettt et e et et e et e et e e s bt et e e eb e et e e et e e st e esbeenseeesbeenseessbeanseennseenbaesnteeennneeas 19
(@ e/l 7 R OSSR P PP 20
REIATIONS. ...ttt et ettt et e e e et e e ab e et e e s b e e steeabeessbeenbeestbeesbaenssaaeeennsseeas 20

|75 427 (6 LY, (oo < TSP 20
OVEOIVICW.......cee oottt e ettt e ettt e ettt e e tb e e e e atbe e eatseeeatb e e e sbaeeeabaeeentbeeensseeeasbeeanssseennssaaeaeens 20
CONCEPE RESOIULION. ...ttt ettt e s sseeneeseensee s 20

LEXBIG SEIVICES....cuvieuietieeieiietesiieitesetestesteetessteseasseseesseseassesssessesssensesseesesssessesssessenssenseessenseensenseensenses 21
OVEFVICW...c.i ettt ettt ettt e et et e e e et e e s b e et e e ab e e st e e ab e e beeesbeeaseeesbeaaseessbearsaenabeensaensseennsseens 21

CAGRID HOSHNG.......vitieeiitieiiieteete ettt ettt ettt et e et e st e etaesbeesseseessesseeseesseessesseessesssessasssesseesssasenssessnseas 22
OVEFVIEW......eiiiieeeeeie ettt ettt et et e ettt e et e et e o2 b e e te e e sb e e tseeab e e te e e ab e e bt e e sbeeabeeesbeestaenabeesbaeenseessnsneas 22
SPOCIICATION. ...ttt et e et et a e e e e et ne e et ese e et ent e e enteeeenteeeeees 22

Service Management SUDSYSIEIM.........ccuieierieierierieiierieseesteste e ete bt etesseessesseessesseessesseesesssensessseesseens 23
OVEIVICW......ceee ettt et e e ettt e ettt e et e e tb e e e e atbe e e s tbeeetse e e sbeeeeabaeeentseeeatbeeeasbeeannsseesnssaaeaeens 23

Metadata and DiSCOVETY SUDSYSTEIML.......ceeiuiiieriiiieitieiesteete ettt ettt et saesaesseesbesteessesseesseessenseeseeseensnes 24

OVEFVICW. ... ettt e ettt e et e e e ettt e e e e et e e e e e e e e e e araan 24

QUETY SUDSYSTOIML. ... eeviieiiiieiietietete et et eteett et e et esbesstesseessesseessessaesseeseenseassesseasseseaseesseassesseessessesnsseennses 25

OWVEIVEBW. ...t ettt ettt ettt e e et e ekt ea e e et e m et e et e et 1Rt e et e e et et e n et et e ns 25
Chapter 3 Information Models 27
1S (€ Ta LY (o 1<) OSSPSR 27
COAINGSCROINES ...ttt ettt et e bt et seease e seebe s s e sbeenaesbeesbesseense s 27
COMCEPLS. ...ttt ettt ettt ettt et 30
REOIATIONS. ..ottt et ettt ettt et e 32

WA 277177 < APPSR 34
LexBIG MOde]l EXTENSIONS.eeuieiietieiieeieiteieste ettt ete st et et et eseesteeseesaeeneesaeeneesseenteeseeneeesnneeeennes 36

L ST SUPRT 36
INEEFFACEEICTNENLS ..ottt ettt ettt e bt et e ebe et e eaeeae s e e enneeenes 39
INCIHISEOTY ..ottt ettt ettt h et e ekt e e ekt e m e et e e a et ea e e et eae e et emeeese e e emnteeenbeeennneeenes 41
Chapter 4 LexBIG APIs 42
O VEIVIBW ...ttt ettt ettt ettt et h et b et e b et eh e et e eaeesbeemeesb e et e e bt em b e e bt em bt eb e et e es e e bt emteebeenteenbbeeenbeeesnbeeennns 42
COTE SEIVICES. ...veuetittatertestetete e e s et eat et eaeebe et eb e sbe st ek e be s eatenteneesees e es e eueeh e ebeebe et e et e s be et enbent et enteneeneeanteans 43
N (O 2) 113 o) OSSP 45
QUETY EXIOISIONS. ...ttt ettt ettt ettt e et nee e eneee s 46
LOGA EXTONSIONS. ..ottt ettt ettt et e et e et e e ae e et e eteeeaseete e easeeaeeeans 47
EXPOTE EXTONSTONS. ...ttt ettt ettt sttt et ettt ettt e e e 49
INAEX EXTERSTONS. ..ottt ettt ettt s e et ettt eb e ettt sa et e et e nneeeeee 50
GENEFIC EXTOMSIONS. ...ttt 51
TUBIIEE@S. .- ettt ettt h et b ettt b e e e bt en e e b et ea e e bt e h e e bt e et e sbe e st e e bt e m s e ebeenteeheesnbeeenteeebeeennee 52
JEOVQLOFS ..ottt ettt et et ekttt et e e ab e et e et e ta e et e e st e e baeentbaeeeeannneeas 52
AdAItIONA] ULIIIEY CLASSES.........ooue ettt ettt ettt n 52
Examples & Recommendations fOr USE.........co.eiiiiieiirieiirieie sttt 53
CONCEPE RESOTUIION. ...ttt ettt ettt 53
Service Metadata Retri@Val.................ccoociouiiiiiiiii ettt 54
COMDBINALOTIAL QUEFIES...........oocvveeveiieiieeiieiieete ettt ettt ettt eb e te e eseeseesseeseensesreenseeesnseeas 55
AAAIIONAL RESOUFCES.........c..oceoieeeee ettt eae et sbe bbb e st enseennnee s 57
Exercising the API — The LeXBIG GUIL.....cc.cooiiiiiiiiii e 58
LAUNCHING THE GUILL........oooieieeeeee ettt ettt ettt e et e st e e et e e nbeesateenbaaeeeennseeas 58
OVEIVIBW. ...ttt ettt et ettt ettt e e ekt e e ekt e et eh e et e et e et e et et e e e ekt n e teena et e e e e eneee s 59
Creating NEW QUETTES.cc.uieeieeeee ettt ettt e ekttt ettt et st e et me e et enee et e enaeeeenneens 59
CUSTOMIZING QUEOFTOS.......c..ceeeieieiiitie ettt ettt ettt et et 60
WOrKing With COAE SELs...........ccccoimiririiiiiiiiiiieieiet ettt ettt 60
Working wWith COAe GFADAS.............c.ccovecueeieieeii ettt ettt s et sre e enneeesnsee s 63
VIEWING QUETY RESUILScc.ooeoeieieieeiieee ettt ettt ettt et se et e et eesaeeensaeennsee s 64

1. References 66
2. Included Materials 67
COMPOIOIES ...ttt et ettt ettt e at e s et et e e et et e e st e ensteesbeenseesabeenbeesateenteeenttseaeeennneeas 67

3. Additional Terms and Conditions 69

Introduction to the Manual

Overview

This manual provides an introduction to the architecture, software components, and
application programming interfaces (APIs) of the LexGrid Vocabulary Services for caBIG™
project, (hereafter referred to as the ‘LexBIG’ project).

Organization
Chapter Chapter Contents
Chapter 1 - Overview of the Software | Provides an overview of the deployed software
packages and describes a typical

development/deployment scenario.

Chapter 2 - Systems and
Architecture

Describes the functional pieces of the LexBIG
runtime and how they interact with each other and
calling programs.

Chapter 3 - Information Models

Describes formal models related to LexBIG content,
including XML schema and UML representations.

Chapter 4 - LexBIG APIs

Describes the application programming interfaces
provided by the LexBIG runtime.

Appendix A - References

References to formal publications and additional
online resources.

Appendix B - Included Materials

Provides detailed information of additional software
components packaged with the LexBIG distribution
and their usage.

Getting Started

Recommendations for approaching this guide:

« Review the introduction to learn about the manual structure

« Review Chapter 1 for a brief overview of the software

« Review the source code distributed as examples and automated tests, and correlate to the
LexBIG APIs as described in this guide.

« Based on these techniques, try to write example programs of your own.

Document Text Conventions

The following table shows various typefaces to differentiate between regular text and menu
commands, keyboard keys, and text that you type. This illustrates how conventions are

represented in this guide.

Convention Description Example
Bold & Capitalized Indicates a Menu command Admin > Refresh
Command

Capitalized command >
Capitalized command

Indicates Sequential Menu
commands

TEXT IN SMALL CAPS

Keyboard key that you press

Press ENTER

TEXT IN SMALL CAPS + TEXT IN
SMALL CAPS

Keyboard keys that you press
simultaneously

Press suirt + cTrL and then
release both.

Special typestyle

Used for filenames, directory
names, commands, file listings,
source code examples and
anything that would appear in a
Java program, such as methods,
variables, and classes.

URL definition ::=
url string

Boldface type Options that you select in dialog | In the Open dialog box, select
boxes or drop-down menus. the file and click the Open
Buttons or icons that you click. | button.

Italics Used to reference other caCORE Software
documents, sections, figures, Development Kit 1.0
and tables. Programmer’s Guide

Italic boldface type Text that you type In the New Subset text box,

enter Proprietary Proteins.

Note: Highlights a concept of Note: This concept is used
particular interest throughout the installation

manual.

Warning! Highlights information of which | Warning! Deleting an object
you should be particularly will permanently delete it
aware. from the database.

{3 Curly brackets are used for Replace {root

replaceable items.

directory} with its proper
value such as c: \cabio

Table 1-1 Document Conventions

Chapter 10verview of the Software

This section assumes that the LexBIG software has been installed, per instructions provided by
the LexBIG Administrator’s Guide.

What’s Inside

This section describes the location and organization of installed materials. Following
installation, many of the following hierarchy of files and directories will be available (some
features are optionally installable):

<As located in the LexBIG installation root directory>

Directory

Description of content

/admin

Installed by default. This directory provides a centralized point for
command line scripts that can be executed to perform administrative
functions such as the loading, activation/deactivation, and removal
of vocabulary resources.

Note: Programmers may be interested in the code used to execute
these functions. In that light, it is perhaps noteworthy to mention
that this directory does not contain any source or binary code, only
the scripts used to launch the admin functions.

Object code used to carry out these functions is included directly in
the LexBIG runtime components. Source code is included in the
/source directory in the 1bAdmin-src. jar (described below).

/doc

Optionally installed. This directory provides documentation related
to LexBIG services, configuration, and execution. This guide is
distributed in the /doc top-level directory.

/doc/javadoc

Note: Of special interest to programmers. This directory provides
the generated javadoc for model classes and public interfaces
available to LexBIG programmers. Also included with each object
representation is a UML-based model diagram that shows the object,
its attributes and operations, and immediately linked objects. The
diagrams work to provide clickable navigation through the javadoc
materials.

/examples

Optionally installed. This directory provides a small number of
example programs.

Refer to the README . txt file in this directory for instructions used
to configure and run the example programs. The examples are
intended to provide a limited interactive demonstration of LexBIG
capabilities.

Source and object code for the example programs is provided under
the /examples/org subdirectory. Source materials are also
centrally archived under the /source directory in the file
lbExamples-src.jar.

/examples
/resources

Contains sample vocabulary content for reference by the example
programs; use the /examples/LoadSampleData command-line
script to load.

/gui

Optionally installed. This folder contains programs and supporting
files to launch the LexBIG Graphical User Interface (GUI). The
GUI provides convenient centralized access to administrative
functions as well as support to test and exercise most of the LexBIG
APIL.

The GUI is launched using a platform-specific script file in the /gui
directory. The name of the platform (e.g. Windows, OSX, etc) is
included in the file name.

Program source and related materials are centrally archived under
the /source directory in the file 1bGUI-src.jar.

/logs

Default location for log files, which can be modified by the
LOG _FILE LOCATION entry in the config.props file (see next
section).

/resources

Installed by default. This directory contains resources referenced
and written directly by the LexBIG runtime. It should, in general, be
considered off-limits to modify or remove the content of this
directory without specific guidance and reason to do so. Files
typically stored to this location include the vocabulary registry
(tracking certain metadata for installed content) and indexes used to
facilitate query over the installed content.

One file of particular interest in this directory is the
/resources/config/config.props file. This file controls
access to the database repository and other settings used to tune the
LexBIG runtime behavior. Contents of this file should be set
according to instructions provided by the LexBIG Administrator’s
Guide.

/runtime

Installed by default. This directory contains a Java archive (jar) file
containing the combined object code of the LexBIG runtime,
LexBIG administrative interfaces, and any additional code they are
dependent on. All required code for execution of LexBIG
administrative and runtime services is installed to this directory.

Note: Java programmers writing to the LexBIG runtime interfaces
should always include the following files in their java classpath
(listed in order of inclusion):

* /runtime/lbPatch.jar

In the course of the product lifecycle, it is possible that smaller
fixes will be introduced as a patch to the initially distributed
runtime. Including this file in the classpath ensures automatic
accessibility to the calling program without requiring
adjustment. All patches are cumulative (there is at most one
patch file introduced per release; all patch-level fixes are
cumulative).

* /runtime/lbRuntime.jar
This is the standard runtime file, including all LexBIG and
dependency code required for program execution except for SQL
drivers (see next).

/runtime
/sqgldrivers

The JDBC drivers used to connect to database repositories are not
included in the 1bRuntime.jar. Instead, the runtime scans this
directory for the drivers to include. This can be overridden by path
settings in the config.props file.

Note: while the LexBIG software package ships with JDBC drivers
to certain open source databases such as mySQL and PostgreSQL,
this folder provides a mechanism to introduce updated drivers or to
add drivers for additional supported database systems.

For example, the Oracle database is supported by the runtime
environment. However, the drivers are not redistributed with the
LexBIG software. To run against Oracle, an administrator would
add a jar with the appropriate JDBC driver to this directory and then
reference it in the config.props settings.

/runtime-
components

Optionally installed. Due to license considerations for additional
materials (as described by the license.pdf and license.txt
files in the install directory), the cumulative runtime provided in the
1bRuntime.jar is not redistributable.

This directory contains a finer grain breakdown of object code into
logical components and 3™ party inclusions. All components are
redistributable under their own license agreements, which are
provided along with each archive.

The top-level of the /runtime-components directory contains all
code produced for the LexBIG project in a single lexbig.jar file.

Note: These files are included as an alternative to the
1bRuntime.jar for code execution and redistribution. There is no
need to include any of these files in the Java classpath if you are
already including the 1bPatch.jar and 1bRuntime.jar
described above.

/runtime-
components/extlib

This subdirectory includes all 3™ party code redistributed with the

LexBIG runtime, along with respective license agreements.

/source Optionally installed. This directory provides central accessibility to
Java source for all code developed for the LexBIG project. This
includes the following:

Archive Description

1lbAdmin-src Source for LexBIG administrative interfaces.

lbExamples- Corresponds to programs provided in the

Src /examples directory (described above).

1bGUI-src Source for the Graphical User Interface.

1bImpl-src Source for implementation classes fulfilling
the LexBIG service interfaces and interacting
with models.

lbInterfaces—- | Source defining service-level interfaces for the

src LexBIG runtime.

1lbModel-src Source defining LexBIG-specific extensions to
the LexGrid information model.

1lbTest-src Corresponds to automated test programs
provided in the /test directory (described
below).

lgConverter— | Source containing services to convert data into

sSrc various formats.

lgIndexer-src | Source for the services used in indexing
databases.

lgModel-src Source defining the LexGrid Model.

lgModel.emf- | Source for the EMF representation of the

src LexGrid Model.

1gRDFConverte | Framework for reading different types of

r=src ontology resources.

1lgResourceRea | Source for handling RDF conversions.

der-src

lgUtility-src | Source for LexBIG utility programs.

/test Optionally installed. This directory provides an automated test

bucket that can be used by System Administrators to verify node
installation. Note that the /runtime/config/config.props file
must still be configured for database access prior to invoking the test
bucket.

Testcases are launched via the TestRunner command-line script.

Several reporting options are provided and are further described in
the LexBIG Administrator’s Guide.

Note: Programmers may be interested in referencing the source code
for the test programs. These are provided in the /source directory
(described above).

/uninstaller Contains an executable jar that can be invoked by an administrator

to uninstall files originally introduced by the LexBIG installation.

A Simple Example

This section describes the basic steps involved in writing and deploying a program that directly
invokes the LexBIG Java software components.

Establish the Development Environment

Installation should first be performed to the host server according to procedures described in the
LexBIG Administrator’s Guide. After installation, developers may wish to copy the components
required for program development to a local environment. Installed components of interest
include the following:

/runtime/lbRuntime.jar — This archive contains the combined code for all executable
code, as described earlier in this section. Adding this file to the Java classpath during
development will allow compilation of source code.

/runtime-components/lexbig.jar — While this jar does not include all code required
for runtime execution, it does provide a sufficient alternative to the /bRuntime.jar file for
purposes of program compilation.

/source/lb*.jar, lg*.jar — Contain the source code for the LexBIG interfaces. Many
development environments (e.g. Eclipse) will provide the ability to link these files to the
object code archives. This allows for improved reference materials during program
development.

Write and Compile Programs

Example source is provided below for a simple program that lists the available coding schemes
(containers for vocabulary concepts and relations) registered to a LexBIG server node:

Note: Sun Java Development Kit (JDK) level 5.0 or above is required for program development.
The code base has not been updated to accommodate Java 6.

Deploy and Run

Continuing the example above, the compiled ListCodeSystems.class file should be copied
to the LexBIG server system for invocation. Currently LexBIG services are invoked through
direct programmatic access, though future direction is to provide additional web or grid-level
service invocation in support of multi-tier scenarios. Additional description of system
components and deployment scenarios is provided in Chapter 2 - Systems and Architecture.

As with development, program execution requires the Sun Java JDK (or JRE) version 5.0 or
above. Assuming the Java command is accessible in the path and the ListCodeSystems class file
is installed to a directory of choice {pgm-dir} and the LexBIG is installed to {lexbig-dir}, the
program can be invoked through the following command line interface:

java —cp {lexbig-dir}/runtime/lbPatch.jar:{lexbig-dir}/runtime/lbRuntime.jar: {pgm-
dir} ListCodeSystems

Note that the above example uses syntax for a Linux installation; Windows users would use
alternate syntax for file separator (‘\’) and classpath separator (*;’).

As mentioned previously, it is considered good practice for developers to include the IbPatch
archive in their class path, as it is designed to introduce smaller fixes without requiring download
and redeployment of the complete (and much larger) runtime jar.

System Requirements

Refer to the LexBIG Administrator’s Guide for minimum recommended requirements for the
system hosting the LexBIG runtime. There are no unique requirements for development systems
other than those enforced by the development tools being used (see next section).

Software and Hardware Dependencies

Refer to the LexBIG Administrator’s Guide regarding software and hardware dependencies for
the system hosting the LexBIG runtime. Development systems are required to install the Sun
Java Development Kit (JDK) or Java Runtime Environment (JRE) version 5.0 or above. In
addition, an integrated development environment (IDE) such as Eclipse or NetBeans is
recommended for program development.

Security and Security Management

The LexBIG runtime relies on standard operating system and database infrastructure to provide
security of data and access to runtime services. Any additional requirements are noted in the
LexBIG Administrator’s Guide. There are no unique security requirements for development
systems.

Chapter 2Systems and Architecture

This chapter describes the functional pieces of the LexBIG runtime and how they interact with
each other and calling programs. Topics include a high level description of the LexGrid
information model, LexBIG model and service extensions, and current/future deployment
scenarios.

The Basics

What is LexGrid?

LexGrid is an initiative of the Mayo Clinic Division of Biomedical Informatics that focuses on
the representation, storage, and dissemination of vocabularies. This effort centers on, but is not
limited to, the domain of medical vocabularies and nomenclatures. Focal points of the LexGrid
project include the development and promotion of standards, tools, and content that:

* Provide flexibility to represent yesterday’s, today’s and tomorrow’s terminological resources
using a single information model.
* Provide the ability for these resources to be published online, cross-linked, and indexed.

* Provide standardized building blocks and tools that allow applications and users to take
advantage of the content where and when it is needed.

* Provide consistency and standardization required to support large-scale terminology adoption
and use.

Additional information for LexGrid is available at http://informatics.mavo.edu .

What is LexBIG?

LexBIG is a more specific project that applies LexGrid vision and technologies to requirements
of the caBIG™ community. The goal of the project is to build a vocabulary server accessed
through a well-structured application programming interface (API) capable of accessing and
distributing vocabularies as commodity resources. The server is to be built using standards-
based and commodity technologies. Primary objectives for the project include:

* Provide a robust and scalable open source implementation of EVS-compliant vocabulary
services. The API specification will be based on but not limited to fulfillment of the
caCORE EVS API. The specification will be further refined to accommodate changes and
requirements based on prioritized needs of the caBIG™ community.

* Provide a flexible implementation for vocabulary storage and persistence, allowing for
alternative mechanisms without impacting client applications or end users. Initial
development will focus on delivery of open source freely available solutions, though this
does not preclude the ability to introduce commercial solutions (e.g. Oracle).

* Provide standard tooling for load and distribution of vocabulary content. This includes but is
not limited to support of standardized representations such as UMLS Rich Release Format
(RRF), the OWL web ontology language, and Open Biomedical Ontologies (OBO) .

The goal for the initial year of development was to achieve the Bronze level of compatibility

http://informatics.mayo.edu/

with regard to the caBIG™ requirements. Silver-level compatibility is being pursued.

Software Overview

LexBIG software architecture and implementation is designed to facilitate flexibility and future
expansion. The following diagrams are intended to aid the understanding of LexBIG service
integration in context of the larger caBIG universe and specific deployment scenarios:

(Partial)
Online Replica

l®) Local Replica

O
@
=
o
@)

-0 ~-00T3—

This diagram depicts the LexBIG vision. Individual Cancer Centers will be able to use the

existing set of caCORE EVS services. If desired, local instances of vocabularies can be
installed.

LexBIG Runtime
Direct Programmatic Access

Java Program / Dedicated JVM

Java Program / Dedicated JVM

Java Program / Dedicated JVM

LexBIG Host

2 March 2006 Draft

This diagram depicts direct Java-
to-Java access to LexBIG
functions. This is the primary
deployment scenario for phase 1.

Note: It is not required that the
database be located on the same
system as the program runtime.

LexBIG Runtime
Consolidated Host — EVS Access

caBIO Server / Java Runtime

LexBIG Host

Y March Y- -1 Draft

&

This diagram depicts access
through caCORE Enterprise
Vocabulary Services (EVS) to a
LexBIG vocabulary engine.

The primary goal is to provide a
compatible experience for existing
EVS browsers and client
applications.

Note: this diagram shows the
possible inclusion of a mediation
layer between EVS and the
LexBIG runtime.

This would be done to facilitate
alternate communications with the
LexBIG server (e.g. through web
services as described below).

LexBIG Runtime
Consolidated Host — Web Service Access

App Server / Java Runtime The LexBIG API is designed with

% web and grid-level enablement in
Web or Grid =

mind. This diagram depicts
Service Browsers

deployments that wrap the current
Clients @

API to allow the runtime to be
accessed through web or grid
services.

LexBIG Host

2 March 2006 Draft

LexGrid Model

Overview

The LexGrid Model is Mayo’s proposal for standard storage of controlled vocabularies and
ontologies. The LexGrid Model defines how vocabularies should be formatted and represented
programmatically, and is intended to be flexible enough to accurately represent a wide variety of
vocabularies and other lexically-based resources. The model also defines several different server
storage mechanisms and a XML format. This model provides the core representation for all data
managed and retrieved through the LexBIG system, and is now rich enough to represent
vocabularies provided in numerous source formats such as OWL (NCI Thesaurus) and RRF
(NCI MetaThesaurus).

Once the vocabulary information is represented in a standardized format, it becomes possible to
build common repositories to store vocabulary content and common programming interfaces and
tools to access and manipulate that content. The LexBIG API developed for caBIG is one such
interface, and is described in additional detail in Chapter 4.

Following are some of the higher-level objects incorporated into the model definition:
Code Systems

Each service defined to the LexGrid model can encapsulate the definition of one or more
vocabularies. Each vocabulary is modeled as an individual code system, known as a
codingScheme. Each scheme tracks information used to uniquely identify the code system, along
with relevant metadata. The collection of all code systems defined to a service is encapsulated by
a single codingSchemes container.

Concepts

A code system may define zero or more coded concepts, encapsulated within a single container.
A concept represents a coded entity (identified in the model as a concept) within a particular
domain of discourse. Each concept is unique within the code system that defines it. To be valid,
a concept must be qualified by at least one designation, represented in the model as a property.
Each property is an attribute, facet, or some other characteristic that may represent or help define
the intended meaning of the encapsulating concept. A concept may be the source for and/or the
target of zero or more relationships. Relationships are described in more detail in a following
section.

Relations

Each code system may define one or more containers to encapsulate relationships between
concepts. Each named relationship (e.g. “hasSubtype” or ‘“hasPart) is represented as an
association within the LexGrid model. Each relations container must define one or more
association. The association definition may also further define the nature of the relationship in
terms of transitivity, symmetry, reflexivity, forward and inverse names, etc. Multiple instances of
each association can be defined, each of which provide a directed relationship between one
source and one or more target concepts.

Source and target concepts may be contained in the same code system as the association or
another if explicitly identified. By default, all source and target concepts are resolved from the
code system defining the association. The code system can be overridden by each specific
association, relation source (associationlnstance), or relation target (associationTarget).

LexBIG Model
Overview

The LexBIG vocabulary model extends the LexGrid model to provide unique constructs or
granularity required by caBIG that are not present in the core model. While many extensions
exist, this document will focus on some of direct relevance to the high-level architecture.

Concept Resolution

LexBIG allows the service runtime to provide managed resolution of code-based objects that are
referenced through LexBIG-specific lists and iterators (mechanism that allow streaming of list
content). These lists and iterators are typically returned when requesting sets or graphs of
vocabulary terms through the LexBIG API (described in chapter 4). Some model components
involved in the resolution process include:

ConceptReference — A globally unique reference to a concept code.

ResolvedConceptReference - A concept reference for which additional information has
been resolved, including description and relationship participation.

AssociatedConcept - A concept reference that contains full detail in participation as a source
or target of an association, including indications of navigability and qualification

Note: Formal representation of the LexGrid and LexBIG models are discussed in Chapter 3 —
Information Models.

LexBIG Services

This section describes architectural detail for services provided by the LexBIG system. These
services are geared toward the administration, management, and serving of vocabularies defined
to the LexGrid/LexBIG information model. A system overview is provided, followed by a
description of key subsystems and components. Each subsystem is described in terms of its
overall structure, formal model, and specification of key public interfaces.

Service Metadata

Query Service

T

Service Manager Extensions

Overview

The LexBIG Service is designed to run standalone or as part of a larger network of services. It is
comprised of four primary subsystems: Service Management, Service Metadata, Query
Operations, and Extensions. The Service Manager provides administration control for loading a
vocabulary and activating a service. The Service Metadata provides external clients with
information about the vocabulary content (e.g. NCI Thesaurus) and appropriate licensing
information. The Query Operations provide numerous functions for querying and traversing
vocabulary content. Finally, the extensions component provides a mechanism to extend the
specific service functions, such as Loaders, or re-wrap specific query operations into
convenience methods. Primary points of interaction for programming include the following
classes:

LexBIGService — This interface provides centralized access to all LexBIG services.

LexBIGServiceManager — The service manager provides a centralized access point for
administrative functions, including write and update access for a service's content. For example,
the service manager allows new coding schemes to be validated and loaded, existing coding
schemes to be retired and removed, and the status of various coding schemes to be updated and
changed.

caGRID Hosting

{ Service Discovery

/ caGRID Hosting Environment \

\

Overview

/

The LexBIG architecture provides the underpinnings LexBIG services to be made accessible
through the caGRID environment in the future, where LexBIG services might optionally be
deployed in a caGRID Globus container. caGrid provides a Globus service for service
registration and discovery. LexBIG services deployed to the grid would be registered in the
NCICB registry and be searchable through the NCICB index service.

Specification

Additional specifications related to the registration and discovery of LexBIG services in the
caGRID environment will be included later phases of work in concordance with caGRID 1.0.
This is will be coordinated with caBIG Architecture workspace designees.

Service Management Subsystem

Overview

This subsystem provides administrative access to functions related to management and
publication of LexBIG vocabularies. These functions are generally considered to be reserved for
LexBIG administrators, with detailed instructions on how to secure and carry out related tasks
described by the LexBIG Administrator’s Guide.

This subsystem is further broken down into the following components:

Indexers

Vocabularies may be indexed to provide enhanced performance or query capabilities. Types
of indexes incorporated into the LexBIG system include but are not limited to the following:

o Lexical Match — for example, “begins-with” and “contains”
o Phonetic — allows for the ability to query based on “sounds-like” entry of search criteria.
o Stemming — allows for the ability to find lexical variations of search terms.

Index creation is typically bundled into the load process. Architecturally speaking, however,
this capability is decoupled and extensible.

Loaders

Vocabularies may be imported to the system from a variety of accepted formats, including
but not limited to:

o LexGrid XML (LexBIG canonical format)

o NCI Thesaurus, provided in Web Ontology Language format (OWL)

o UMLS Rich Release format (RRF)

o Open Biomedical Ontologies format (OBO)

As with indexers, the load mechanism is designed to be extensible from an architectural
standpoint. Additional loaders can be supported by the introduction of pluggable modules.
Each module is implemented in the Java programming language according to a LexBIG-

provided interface, and registered to the loader runtime environment.

Metadata and Discovery Subsystem

Overview

This subsystem provides information about accessible vocabularies, related licensing/copyright
information, and registration/discovery of LexBIG services.

The ability to locate and resolve vocabulary metadata is fulfilled through the LexBIGService
class. Metadata defined by the LexGrid information model is resolved with each CodingScheme
instance. Available metadata on each resolved scheme includes, but is not necessarily limited to,
the following:

e License or copyright information
* Supported values (e.g. supported concept status, language, property names, etc)
* Mappings from names used locally to globally unique URNs

In addition, each LexBIGService provides a centralized metadata index that allows registration
and query of code system metadata without requiring resolution of individual CodingSchemes.
This metadata index is optionally populated, typically during the vocabulary load process. The
metadata index allows for the metadata of multiple code systems to be cross-indexed and
searched as part of the query subsystem.

Finally, the LexBIG architecture provides the underpinnings for LexBIG services to be made
accessible through the caGRID environment in the future, where vocabulary services might be
deployed and discovered within a caGRID Globus container. However, this portion of the API is
preliminary and awaits coordination with caBIG Architecture WS designees to determine exact
recommendations and nature of LexBIG services on the grid.

Query Subsystem

LexBig API

LexBig Data Model(Loaders, Indexers)

LexGRID Vocabulary Model and Repository

Overview

This subsystem provides the functionality required to fulfill caCORE/EVS and other vocabulary
requests. The Query Service is comprised of Lexical Operations, Graph Operations, Metadata,
and History Operations.

Lexical Set Operations

Lexical Set Operations provides methods to return a lists or iterators of coded entries. Supported
query criteria include the application of match/filter algorithms, sorting algorithms, and property
restrictions. Support is also provided to resolve the union, intersection or difference of two node
sets.

Graph Set Operations

Graph Operations support the subsetting of concepts according to relationship and distance,
identification of relation source and target concepts, and graph traversal. Additional operations
include enumeration and traversal of concepts by relation, walking of directed acyclic graphs
(DAGs), enumeration of source and target concepts for a relation, and enumeration of relations
for a concept.

Metadata Operations

Metadata Operations allows for the query and resolution of registered code system metadata
according to specified coding scheme references, property names, or values.

History Operations

History provides vocabulary-specific information about concept insertions, modifications, splits,
merges, and retirements when supplied by the content provider.

Chapter 3Information Models

A brief introduction to the information models referenced by the LexBIG runtime are provided in
Chapter 2. This chapter will extend on this introduction, providing a brief description of classes
included by the base LexGrid information model and LexBIG-specific extensions to that model.

Note: The information below is provided for introductory purposes. A full description of all
available model components is also available in the javadoc distributed with the LexBIG
installation package (see file breakdown in Chapter 1). Since the javadoc is automatically
generated and synchronized during the build process, it is recommended as the primary reference
for use by LexBIG developers.

LexGrid Model

The LexGrid model is mastered in XML Schema. The LexBIG project currently builds on the
2008 version of the LexGrid schema. A formal representation, showing portions of this structure
that are of primary interest to the LexBIG project, is presented below. A complete version of the
model is available at http://informatics.mayo.edu?page=lgm .

CodingSchemes

The CodingSchemes branch of the model defines high level containers for concepts and
relations. Each CodingScheme represents a unique code system or version in the LexBIG
service. Components of interest include:

codingSchemes

Directory of coding schemes contained in the service.

codingScheme

Describes and/or defines a code system, comprising a collection of concept codes and
relationships.

concepts

A set of coded entries in a coding scheme.

relations

A collection of relations across a set of concept codes drawn from one or more coding schemes.
versions

A list of past versions of the coding scheme.

Note: While listed for completeness, note that this portion of the model is not referenced at this
time by the LexBIG APIL In the first release, history information is handled as a series of
NCIChangeEvents (see LexBIG extensions below) by the LexBIG HistoryService.

cd codingSchemes /

codingSchemes

+ wxSDattributer do do [0..1] = codingSchemes

+codingScheme | 1.7

desaihzhle

codingScheme

wXShattribute s approxNumConcepts: tsinteger [0..1]
wXShattributes codingScheme: localMame

wX Shattributew defaultlanguage: defaultLanguage
wXShattribute s formallame: tsCaselgnorelA5Sting

wX Shattribute o isM ative: tsBoolean [0..1]

localMame: localMame [1..-1]

wXShattributew registeredMame: registeredName
wXShattribute s representsWersion: wersion

source: source [0..-1]

supportedAssociation: suppontedfssaciation [0..-1]
supportedfssociationQualifier: suppotedfssociationQualifier [3..-1]
suppotedCadingScheme: suppotedCodingScheme [0..-1]
supportedCaonceptStatus: supportedConceptStatus [0..-1]
supportedCaontext: supportedConte:xt [0..-1]
supportedbataType: supportedbataType [0..-1]
supportedFarmat: supportedFormat [1..-1]
supportedlanguage: supportedlanguage [1..-1]
supportedProperty: suppotedProperty [1..-1]
supportedPropertylink: supportedPropertylink [3..-1]
supportedRepresentationalForm: supporntedRepresentationalFarm [0..-1]
supportedSaurce: supportedSource [O..-1]

¢

P EEEE T

+re|atiu:-n5£3.."

desoribahle +1rersiu:unﬂﬂ..1

relations:relations .
wersions

+ wxSDhattributes do: de - -
+ wXSDattributes isHative: tsBoolean [3..1] + arSDattributes do: de [0..] = version
+ source: source [0..-1]

+ooncepts (0.1

conceptsconcepts

+ wxSDattributes do de [0..1] = Concepts

codingSchemes

Concepts

Each concept represents a unique entity within the code system, which can be further described
by properties and related to other concepts through relations.

concepts

class Diagrams

aXShcomplexTypan
coding Schemes:: CodingScheme

Entitylfemsion
wiSDcomplexTypen « XS0 attribute
coding Schemes:: - approxHumConcepts: Integer
CodingSchemeersion - codingScheme: String
- copyright: String [0]

- defauliLanguage: String

- formallame: String

- isMative: Boolean

- localMameList: String [0..1]
+endingSeheme |- registereddame: String

- representsVersion: String

+eodingSchemeWersion \U..‘1

+conceptsgl 0.7 -concepts L

wXSDcomplexTypan
concepts :Concept=

XS0 attribute s
- der String = "concepts”!

+ooncepts

-conceptList& 1.7

wXSheomplexTypes Entity
concepts::Propertylink
wXSDcomplexTypen
«XSDattributes -properbyLinkList concepts::Concept

- link: String 0.r
- szourcePropery: String -
- targetProperhy: String

isDefined: Boolean
islnferred: Boolean = false
« XS0 attributes
conceptStatus: String
ishctive: Boolean
isAnonymous: Boolean

+presentation List
wXSDcomplexTypen L~

concepts::Presertation 1.

wXSDhattribute s

- dagreadfFidelity: Sting
isPreferred: Boolean
matchlfMoContext: Boolean
reprezentationalForm: String

-definitionList 107

aXShcomplexTypen
concepts:Definition

«XEDattribute s
- izPreferred: Boolean

nceptPrope hyList
aXSDoompl...
concepts::
ConceptProperty

-instructionListy /0.7

wXSDheompl...
concepts:
Instruction

«XSDeomplexTypes commentList

commonTypes:Property

wXShoompl...
propertyld: String concepts::
C rit
wiSDattribute s Sl
- tormat: String
- language: String

propertyMame: String
uzageContext: String [0.7]

Components of interest include:

concept

Represents a unique code for a concept within a coding scheme or a coding scheme version,
along with an associated description and properties.

comment

A comment or annotation property for a concept.

definition

A definitional property for a concept.
instruction

A formal instruction for the use of a concept.

presentation

A designation for a concept. The presentation identifier must, at bare minimum, uniquely map to
a given text string within the context of the containing concept. In some terminologies, every
unique text string will have exactly one presentation identifier, which means that the same
presentation identifier may occur under more than one concept. In other terminologies, there may
be more than one identifier for a given text string, meaning that the presentation identifier
uniquely determines the concept. Service software must not assume *either* model. (See:
property for additional elements) .

property

A description, definition, annotation or other attribute that serves to further define or identify a
coded term. Property names must be included in the supportedProperty metadata for the coding
scheme.

propertyLink

A link between two properties for a concept.. Examples include acronymFor, abbreviationOf,
spellingVariantOf, etc. Link identifiers must be included in the supportedPropertyLink metadata
for the coding scheme.

Relations

Relations are used to define and qualify associations between concepts.

cd relations

codingSchemes::codingScheme

describable entityVersion

codingSchemes::codingSchemeVersion

+relati 0.* +relations

describable
relations

+ «XSDattribute» dc: dc
+ «XSDattribute» isNative: tsBoolean [0..1]
+ source: source [0..-1]

+associatio L

describable
association

«XSDattribute» association: localName

«XSDattribute» forwardName: tsCaselgnorelA5String
«XSDattribute» inverse: localName [0..1]

«XSDattribute» isAntiReflexive: tsBoolean [0..1]
«XSDattribute» isAntiSymmetric: tsBoolean [0..1]
«XSDattribute» isAntiTransitive: tsBoolean [0..1]
«XSDattribute» isFunctional: tsBoolean [0..1]
«XSDattribute» isNavigable: tsBoolean [0..1] = true
«XSDattribute» isReflexive: tsBoolean [0..1]
«XSDattribute» isReverseFunctional: tsBoolean [0..1]
«XSDattribute» isSymmetric: tsBoolean [0..1]
«XSDattribute» isTransitive: tsBoolean [0..1]
«XSDattribute» isTranslationAssociation: tsBoolean [0..1]
«XSDattribute» reverseName: tsCaselgnorelA5String [0..1
«XSDattribute» targetCodingScheme: localName [0..1]

PR T I T S S S S S

+sourceConcepi|p..*

associationlnstance

+ «XSDattribute» sourceCodingScheme: localName [0..1]
+ «XSDattribute» sourceConcept: conceptCode

versionable
associatableElement

vogeconcap g) V\@&mm

0.*
associationTarget associationData

+ «XSDattribute» targetCodingScheme: localName [0..1] + «XSDattribute» dataType: localName [0..1]

+ «XSDattribute» targetConcept: conceptCode + «XSDattribute» id: id

+associationQualificatio L

associationQualification

+ «XSDattribute» associationQualifier: localName
+ «XSDattribute» dataType: localName [0..1]

relations
Components of interest include:
association

A relation between concept codes or concept codes and data. Association names must be
included in the supportedAssociation metadata for the coding scheme.

associationInstance

An instance of a 'source' or left-hand side (LHS) of an association. An association instance
references one or more 'targets' or right-hand sides (RHS).

associationTarget

An instance of a target or RHS concept of an association.

associationData

An instance of a target or RHS data value of an association.

associationQualification

A modifier that further qualifies an association triple.

Naming

These elements are primarily used to define metadata for a coding scheme, mapping locally used
names to global references.

class naming

locaiNiznme tz RN

URNM=zp wXS0simple...
URH

wX SDattribute
+ wurn: URM [0..1]

supportedAssociation supportedPropertylink
Eupported Propert:
supportedAssoci ation Qualifier
supportedlanguags
supported Coding Sche me
supported For mat
supportedConcept Status supported Context supported DstaType
supported Source
supported Representational Form supportedHierarchy
naming

Components of interest include:

supportedAssociation

Each entry identifies the URN and local name for an association.

supportedAssociationQualifier

Each entry identifies the URN and local name for an association qualifier.

supportedCodingScheme

Each entry identifies the URN and local name of an external coding scheme. The URN portion
maps to the registeredName of the referenced scheme The local name is local to the referencing

object.

supportedConceptStatus

Each entry identifies the URN and local name for a concept status value.

supportedContext

Each entry identifies the URN and local name for a usage context.
supportedDataType
Each entry identifies the URN and local name for a data type (usually based in XML).

supportedFormat

Each entry identifies the URN and local name for a presentation format (usually mime type).

supportedHierarchy

Each entry identifies the URN, id, association, root node, and whether or not the hierarchy is
forward navigable.

supportedLanguage
Each entry identifies the URN and local name of a spoken or written language.

supportedProperty

Each entry identifies the URN and local name of a property.
supportedPropertyLink

Each entry identifies the URN and local name for a lexical association between two concept
properties (e.g. ‘abbreviationFor’, ‘acronymFor’) .

supportedRepresentational Form

Each entry identifies the URN and local name of a representational form (e.g. noun, eponym) .
supportedSource

Each entry identifies the URN and local name of an external source reference.

URN

A universal resource name, representing the globally unique name of a resource such as a source,
coding scheme, concept code, etc.

URNMap

The declaration of a local name and the URN that it represents. The behavior of an omitted
URN is context specific.

LexBIG Model Extensions

The following extensions to the LexGrid model were introduced in support of caBIG
requirements. As with the LexGrid model, this document provides a summary of the most
significant elements for consideration by LexBIG programmers. The complete and current
version of the model is available online at http://informatics.mayo.edu?page=lexex .

Core

LexBIG core elements provide enhanced referencing and controlled resolution of LexGrid model
objects.

= core J
remumens o
Logl ewsl sting
- denug sring . :x:.-:-w:-eT_..:-e:
- mt sy Tl I g S b e RO riklam e
= wanrrt sring
= emor =rng
= fmtab srng N s ‘T‘ ‘i}\
¥ Sl e e a2 D B el i
x XS0 mp bex Ty pe e
LogEntry
HEDa T Iuie a5 Doomplex Types = XS0 @ mplex Ty pes b XSO0 mp bex Ty e
= mssocksted URL - sy Com o piiFeds ren e Nam A n 2l s Fosfere poel Ink
= e Time STimesamp
E T L T S XeDatriowe XS Damiriowe X SDaiTio e
[y — = oneemCode oomos mCode = mame: locslkame = et anyUR
= messsge: tsCase QrorelASSTiNg F
= proEsAiDc sring -mssocitiof feterenoe 0.1
= progamName sTing
XSDe e S
a5 Doompkex Types
LR Fim 5.0 e Coo mos i Fists nen o 225 Doom plex Typee
T Assonlatlon
=250 sim ple Ty pes XS0 Y bu e
o B = ood IngSche melRN: SURN HED=e mer
= ood ngSche MEVErsorT wrsion = sssociatedConcepis |pColt Assooktsd Con o piLks
WEDe mmar = smocatedData IDCollAssode e deal s
<+ ety Desription: antyDe sTition XD e
= referenedEnTy: codedEnTy = sssoclaTioniame: kool Name
= sowro=Cr: | bOolbAssocktion Lis = direcTionaslMame: wsCa sl grione AS STing
=+ fargerdt BoCol LAsso o atlon Lis
-
=-’<=;-'5-“‘|‘_="='[.'3'== 2 %5 Doomplex Types =X SDoom ple < Ty pee
S rviesURL Ane oo ladess onsept M iad afalPro pe iy
XSOl mer XSDa T pue
= spmodationualifiers DS IEL ool Mamel ks = ood ingSche melEN - s RN
XSDamrime = oodngSchemeverson werson
= IsNmvigable: boolesn =+ name oalMName
= valoe: sTing
«XSDmmplexT ypee = XSDonm plex Ty pe = = XS0 o bex Ty pE =
Abis ol el el Iy Sk s eV e r5lon Fels ren o Cooadl| g Bome e o o i Y Co ding S e e s lo 0 Tag
XS DanTinwne HED=le meri XKSDelmmer
=+ oodingSchemeURN: RN = odngsdiemeDesoiption: entisyDe i pwion = WEMSON: Werson
= ooding Scheme Version: yerson = formaliame: tsCase ignone lAS STINg
HEDatrIbue
= mdngsdiemaURN =AM
= localMame: kocaldame
= repressroddersions verson

Core

Components of interest include:

AbsoluteCodingSchemeVersionReference

An absolute reference to a coding scheme. This form of reference is service independent, as it
doesn't depend on local coding schemes names or virtual tags.

AssociatedConcept

A concept reference that is the source or target of an association.
Association

The representation of a particular association as it appears in a CodedNode.
CodingSchemeSummary

Abbreviated list of information about a coding scheme.
CodingSchemeURNorName

Either a local name or the URN of a coding scheme. These two are differentiated syntactically -
if the entity includes a colon (:) or a hash "#" it is assumed to be a URN. Otherwise it is assumed
to be a local name.

CodingSchemeVersionOrTag

A named coding scheme version or a virtual tag (e.g. latest, production, etc). Note that the tagged
form of identifier is only applicable in the context of a given service, as one service may identify
the scheme as "production" and another as "staging".

ConceptReference

A reference to a coding scheme and a concept code.

LogEntry
A single recorded log entry.

LogLevel
Indicates severity of the log entry.

MetadataProperty

Reference to a property name and value stored in the coding scheme metadata.
NameAndValue

A simple name/value pair.

ReferenceLink

Any reference to another document element. Used by the REST architecture to embed links.

ResolvedConceptReference

A resolvable concept reference.

ServiceURL

References a service in the Globus environment, this will be a global service handle (GSH).

InterfaceElements

Defines metadata related to model objects required by the runtime.

cd Inte rface Elem Ents/

aX S0complexT ypes
sHnRg M oduleDes cription
eXSD0simplaTypes XS Delement
Process State + deschiption: dring
X50atrbue
= .
+
+state
a¥ SCattibutes
a¥ SDextendons
a5 DcomplexT ypes X5 Doom plexT ypes
FrocessStatus . L
ExtensionDe seription TR
fSDattrthta Y BDalement SortContext
o + + graph: sring
5 + + =t shing
5 X SDattribute + =themtion: dring
5 + extensionFrov

aX SDextensons

aX5Dextension »

X5 Dexension s

a5 Doom plexT ypes e X5 DcomplexT ypes X SDcomplexT ypes o S0oomplexT ypes
Load Status Exportitatus SortDescription Sord ption
X 5C=lement X5C=lemant X5Cathribute
+ loadSour=: anyURI + destination: anyJRl +
X Shattibute +
+ numCaonoepts nt
+ numRslstionsL nt

a5 DcomplexT yes o 5000 mplexT yes
RenderingDetail SystemRelease Detail
XSDattribue X5Delkmant
+ desctivateDats: + enfithWersions enthesion
+ laglpdateT
+ wersionStatus Cod
X5C=lemant
+ wersionTags: CodingSchemeT aglList
+rendering Detail
5 Dcomple xT wes
Coding 5c he me Re ndering
X5Delement
+ -

InterfaceElements

Components of interest include:

CodingSchemeRendering

Information about a coding scheme as it appears in a particular service.

ExportStatus
Reports the state of LexBIG export operations.

ExtensionDescription

Describes an add-on module registered to the LexBIG environment.
LoadStatus
Reports the state of LexBIG load operations.

ModuleDescription

Describes a LexBIG integrated software module.

ProcessState

Enumerates possible status reported for LexBIG runtime operations.
ProcessStatus

Reports the state of LexBIG runtime operations.

RenderingDetail

The details of how a coding scheme is rendered in a given service.
SortContext

Describes a LexBIG sort module.

SortDescription

A description of a LexBIG extension module.
SortOption
Represents a pairing of sort algorithm and order.

SystemReleaseDetail

The combination of a system release and all of the entityVersions that accompanied that release.

NCIHistory

Maintains a record of modifications made to a code system.

cd NCIHistory

wenumerationa
changeType

+ oreate: string
+ retire: string
+ merge: string
+ split: string
+ madify: string

+editaction 1..1

wXSDathributes

wXS0complexTypex
NCIChangeEwent

¥5Dattricute

+ conceptocode: conceptCode

+ conceptMame conceptCode
+ editDate: tsTimestamp

+ referencecode conoeptCode
+ referencename: conceptCode

NClHistory

Components of interest include:

changeType

Atomic modification actions. Currently populated from a combination of Concordia, SNOMED-
CT list and NCI's action list.

NCIChangeEvent

A change event as documented in ftp://ftpl.nci.nih.gov/pub/cacore/EVS/ReadMe history.txt.
Note that date and time of the change event is recorded in the containing version. All change
events for the same/date and time a recorded in the same version.

Chapter 4LexBIG APIs

Chapter 3 describes the general format and organization of information handled by the LexBIG
runtime. This section describes the primary application programming interfaces used to take
action (e.g. retrieve or administer) against that content.

Note: The information below is provided for introductory purposes. A full description of all
available classes and methods is also available in the javadoc distributed with the LexBIG
installation package (see file breakdown in Chapter 1). Since the javadoc is automatically
generated and synchronized during the build process, it is recommended as the primary reference
for use by LexBIG developers.

Overview
Programming interfaces for the system fall into three primary categories:
Core Services

Includes the LexBIGService, LexBIGServiceManager, CodedNodeSet and CodedNodeGraph
classes, which provide the initial entry points for programmatic access to all system features and
data.

Service Extensions

The extension mechanism provides for pluggable system features. Current extension points
allow for the introduction of custom load and indexing mechanisms, unique query sort and filter
mechanisms, and generic functional extensions which can be advertised for availability to client
programs.

Utilities
Utility classes, such as those implementing iterator support, are provided by the system to
provide convenience and optimize the handling of resources accessed through the runtime.

Core Services

Provides central entry points for programmatic access to system features and data.

cd LexBIG Service

anterfzoes
LexBIGSarvice

geiCoding Scheme ConcepisSiing Coding SchemelersionOrTag, boolesn) - ChdedibdeSet
geiFilisnSnng) : Fifisr

gefilEfdensons) - Exensonlesmption! is

geiGensncEdenson(Siing) - GensncExEnson

geiGensrcEdensons]) ;| EdensonCesapionl ist

geiisonSendoeBing) - HeonSenioe

geil ast pdateTime() : Daie

geiilichdlgontims) - ModuleDe son ptioni ist

geivodeGraphSivng Coding Schemel/ersonCrTag, Sinng) - ChdedibdeGraph

geitensceEnageyChed) - LexBiG Serdceibnager sintersoes
geifenameliiadsta]) - B GEenimeMeiadas LaxEfGSenvicelBnage

geitortdigorthmZhng) - Sox

geitotdlgorthms ZonConis:d) - SonDesopionl ist

geiSypporedCoding Schemes)) - Chding Schame Rendenngl /st ——— .
e i S - o s geitxporenSinng - Exporier

resoiveCodingSchems(Sinng CodngScheme\ermionTag) - Coding Schame gett Fidensions| - ExiensionDescriptiontist

~ geiExensonfegisng) | EdensonRegisn

~ getiniexSinng) - hdex

~ adiwetbding Zcheme Versonfdbsoluis CodngSchemeVem onRefkenoe) - woid
~ geactiet=Coding Scheme \era on 8 beoluiz Coding Scheme VersonReference, Dais) - void

?

?

?

?

]

?

?

?

ainterEoes
e LaxEiG Saricali ~ geimexxaensons) - ExensonDesoriptiont st
— d‘.lu:leSen— — B_m — ~ geilosdensinng) - Loader
+ 0 sCoaf'Jg.de_wnea_.' .'ﬁ.bsqfu;_e@omng.bd:m‘l.@m onRerenelis ~ ged oaiExdensions) - ExensonDesmiptionl ist
+ mmhe]) Mesds=Fopegdis)) ~ getSysemfelstionsBuilder) : Sy=emiElstonsBuider
+ esnd ToChdingScheme (Absluiz Coding Schene VersonRefzence) woid [. emoveCoding Scheme\ersiondbsaluiz Coding ScheneVersonRefzenoe) - void
- Es_n_:x_Tnl—':r:peJr_Jeq.b.m_‘JgEf: e ~ emoweCoding Scheme Wersonbi ez bsive CodngSocheme VermonRefence) © woid
+ Eﬁ_n_:x_Tjﬁ:pen',l_:l?Ena._:.mgﬂ: < void - EmoveHimonSeniceSing - woid
+ msnct Tolslus Stang, Saing - void ~ seflfersion Tagidbsduie Coding Scheme VersionRefense, Shing) - void
anEfaes
CiodediodeSar
~ difference(Codediode Sef

intersectiCodedibde Sl - Codedibde Set

izCodei Zel{ConoepiRefrance) - Boolssn

EsoheSonCobionlis LocsiVemel i) - Resohed ConcepiReEence sismior

s Sortfptionlis Locsliamel st {ocsiiNemsl /=) - Resol ved Conoept Referencesiersior

resoive Tolis|SoiOpionlis, locslNemel ist int) - ResohvedConeepiRekmnoel ist

resohe Tolis|SofOpionli=, locsihemel i LocsiNamelis, inf) © ResohedConcepiferenmelis

s ToCodesConoepiRefrencel ist) - CodedibdsSet

resng ToldsichinglesgnatonsSinng, boolean, Sinng, Shing) © Codedibde 5t

resinc ToldsichingDesgnatonsSnng, SearcilesgnaionOpion, Sing Sing) - CodedMbdaSet
resing TolsichingPoperiesl ocsliNamel s, Sinng, Siing Sihng) - Chdedhbde 5t

s ToldsichingPropere sl omiNamel s, lomiNeme ist LocslNamelist, NemeAnd\aluslis, Sinng, Shing, Shing) - Chdedibd=Set
s ToPrgpenies{ocalhamel 1) - CodedibdeSet

e ToPrgperieglocsiMamel 15 LocalNamelim LocalNameli=, MamedndVdueli=) - Codedivbde Bet
wrion(Codedibde Sef) - Chdedhbde Set

ainteriEes
CodedhodeGraph

?

]

?

?

?

?

?

?

?

]

?

?

]

?

aeCoesReizadMNamedndlsive. Concepifefene. ConcepiReirence. boolssn) - Boolzan

interseciCodedibdeGeph) - CodedhbdeGreph

rsCodeihGreph|ConcepiReence) - Boolzan

IisiCode Relafonshi psConcepiRekrence, Concepifefmnce, boolean) - ChnoepiRekenel is
remiveds i ConcepiReference, bodlean, boolean, int int, LocaiMemelis, SornCptionli=s inf - ResohedConepiRefrencelis
resohveds i ConcepiRefrence. bodean, boolean, int ini, LocalNamel s, SonCptionlis Locsivemel s, inf - ResowedConcep Refemnmelis
e Tod ssooationshamedndlzvel s, MNemedndlEle! is) - ChdedhbdeGraph

resng ToCodesCodediode 321 - Codedibd=Graph

resing ToCode Sysieny Siang) - CodedibdeGraph

resng ToSowee Code s CbdedMbde S2t) - CodedhodeGmph

resing ToSowee Code Spsiem(Zinng) : CodedNodeGeph

resnc ToTargeiChde sCodedibde 1) - CodedibdeGraph

resng ToTargeiChde Spslem Sinng) - Codediods Graph

ioMbdel st ConcepiReference. boolean, boolean, int int) © Chdedhbde St

wnion|CodedibdeGrphy) - CodediboeGeph

LexBIGService

Components of interest include:
CodedNodeGraph

A virtual graph where the edges represent associations and the nodes represent concept codes. A
CodedNodeGraph describes a graph that can be combined with other graphs, queried or resolved
into an actual graph rendering.

CodedNodeSet
A coded node set represents a flat list of coded entries.
LexBIGService

This interface represents the core interface to a LexBIG service.

LexBIGServiceManager

The service manager provides a single write and update access point for all of a service's content.

The service manager allows new coding schemes to be validated and loaded, existing coding
schemes to be retired and removed and the status of various coding schemes to be updated and
changed.

LexBIGServiceMetadata

Interface to perform system-wide query over optionally loaded metadata for loaded code systems
and providers.

Service Extensions
Provides registration and lookup for pluggable system features.

cd Extensions -

winterfaces winterfaces
ExtensionRegistry Extendable
~ getExportxtenszionSinng) ; ExtenzionDescription ~ getDescription() : Sinng
~ gelExportxienszionsz() ; ExtenzionDescripiionl izt ~ geiName() ; Sirnng
~ getFilterExtenzion{Sinng) | ExtenzionDe=zcripiion ~ getProviden) : Siring
~ getFilterExtenzions() : ExtenzionDeszcnptionl izt ~ getVerszion() : Sirng

~ getGenencExtenszion{Sinng) : ExtensionDeszcription
~ getGenercExtenzionz() | ExtenzsionDescriptionl izt

~ getindexExtenzion|Sirnng) | ExtenzionDescripiion

~ getindexExtenzions() - ExtenzionDezcriptionl izt

~ getl oadExtenzion|Sinng) : ExtenzionDeszcripiion

~ getlosdExtenzions() | ExfenzionDezcripiionl izt

~ getSortxfenzion{Sinng) © SoriDezcription

~ getSortExtenszions() : SorfDezcrptionl izt

~ regizterExportxiension/ExtensionDescription) - void
~ regizterFilterExtenzion|{ExtenszionDescription) © void
~ regizterGenencExtenzion|ExtenzionDezcription) : void
~ regizterdndexExfenzion{ExtensionDescriplion) © void
~ regizterl cadExtenszion|ExtensionDescription) © void
~ regizterSortxdenszion]SornDezcrption) void

~ unregisterExponExtension|Sinng) © void

~ unregisterFilterExtenszion|Sinng) ; void

~ unregisterGenencExfension{Sinng) © void

~ unregisterdndexExtenszion(Sinng) ; void

~ unregisterl cadExtenzion|Sinng) ; void

~ unregisterSorExtension|Siring) ; void

Extensions

Components of interest include:

ExtensionRegistry

Allows registration and lookup of implementers for extensible pieces of the LexBIG architecture.
Extendable

Marks a class as an extension to the LexBIG application programming interface. This allows for
centralized registration, lookup, and access to defined functions.

Query Extensions

Query extensions provide the ability to further constrain or manage query results.

cd Guery .~
Extendsble Extendsbis
Comparator ainterfaces
winterfaces Filter
Sort ~ maich{RezoclvedConcepiReference) - boolean
Query

Components of interest include:

Filter

Allows for additional filtering of query results.
Sort

Allows for unique sorting of query results. This interface provides a comparator to evaluate
order of any two given items from the result set.

Load Extensions

Load extensions are responsible for the validation and import of content to the LexBIG
repository. Vocabularies may be imported from a variety of formats including LexGrid
canonical XML, NCI Thesaurus (OWL), and NCI MetaThesaurus (UMLS RRF).

o iacEr

: ximeriacen
e OWL_Loader
HNCI MetaThes auru sl oader -

wimeriaes
NCIHisfory Loader

wimeraes
LBILS loader

+ slidake Sarmalf URI inf] : void I
wlf e atae

0BOHisforyLaader

+ Joad!URI hoolzan, bookean g
MetaDafa Loader + validalURL inf - void

Load

Components of interest include:

Loader

The loader interface validates and/or loads content for a service.

LexGrid Loader

Validates and/or loads content provided in the LexGrid canonical XML format.
NCI MetaThesaurusLoader

Validates and/or loads the complete NCI MetaThesaurus. Content is supplied in RRF format.
Note: To load individual coding schemes, consider using the UMLS Loader as an alternative.

OBO _Loader
Validates and/or loads content provided in Open Biomedical Ontologies (OBO) text format.

OWL Loader

Validates and/or loads content provided in Web Ontology Language (OWL) XML format. Note
that for LexBIG phase 1 this loader is designed to specifically handle the NCI Thesaurus as
provided in OWL format.

Text Loader

A loader for delimited text type files. Text files come in one of two formats: indented
code/designation pair or indented code/designation/description triples.

UMLS Loader
Load one or more coding schemes from UMLS RRF format stored in a SQL database.
MetaData Loader

Validates and/or loads content provided in metadata xml format. The only requirement of the
xml file is that it be a valid xml file.

NClIHistoryLoader

A loader that takes the delimited NCI history file and applies it to a coding scheme.
OBOHistoryLoader

Load an OBO change history file.

Export Extensions

Export extensions are responsible for the export of content from the LexBIG repository to other
representative vocabulary formats.

cd Export

winterfaces
Exporter

+ cleadog) : void
+ geilog/Loglevel)

+ getRel

winterfaoes
Lex Grid_ Exporter
+ export{AbsolufeCodingScheme VersionReference, URI, boolean, boolean, boolean) © void
+ getSchemalR URy
+ getSchemaVersion() ; String

winterfacex
0OBO_ Exporter
+ expor{AbzoluteC odingSchem eVerzionReference, URI, boolean, boolean, boolean) © void

+ getQBEOVer=ion() : Sinng

winterfaces
OWL_Exporter

+ expor{AbsolufeCo dingScheme VersionReference, URI boolean, boolean, boolean) : void

Export

Components of interest include:

Exporter

Defines a class of object used to export content from the underlying LexGrid repository to
another repository or file format.

LexGrid_Exporter

Exports content to LexGrid canonical XML format.
OBO_Exporter

Exports content to OBO text format.

OWL Exporter

Exports content to OWL XML format.

Index Extensions

Index extensions are built to optimize the finding, sorting and matching of query results.

cd Index

Loader
winterfaces
IndexlLoader

+ cleamAbzoluteCodingSchemeVerzionReference, index, boolean) : void
load{AbzoluteCodingSchemeVersionReference, index, boolean, boolean) © void
+ rebuildfAbzoluteCodingScheme VersionRefarence, index, boolean) : void

4

Extendable
winterfaces
Index

+ getloaden) : indexlosder
locateMaichingDezignationes(CodedNodeSel, Sinng, boolean, Siring) : CodedNodeSet

n

+ [loecsfteMaichingProperies{CodedNodeSet, LocalNamelizt, Siring, Sinng) : CodedNodeSet

+

Index

Components of interest include:
Index

Identifies expected behavior and an associated loader to build and maintain a named index. Note
that a single loader may be used to maintain multiple named indexes.

IndexLoader

Manages registered index extensions. A single loader may be used to create and maintain
multiple indexes over one or more coding schemes.

It is the responsibility of the loader to properly interpret each index it services by name, version,
and provider.

Generic Extensions

Generic extensions provides a mechanism to register application-specific extensions for
reference and reuse.

cd Generic

Extendabie
winterfaces
GenercExtension

winterfaces
LexBiG ServiceConveniencellethods

~ codeToName|Sinng, Sinng, CodingSchemeVerzionOiTag) - Siring

~ cregfeCodeNodeSel{Sinng(], Sinng, CodingSchemeVersionOrTag) - CodedNodeSet

~ getChildrenOffSinng, String, Sinng, Sinng, CodingSchemeVerzionOrTag, boolean) : Azsociation

~ getEndNodesz(Sinng, CodingSchemeVerzionOrTag, Sring, Siring) ;| RezclvedConcepiReferencel izt
~ getParentz0f Sinng, Sirnng, Siring, Sinng, CodingSchemeVersionOrTag, boolean) : Azzociation

~ getRenderingDetzil{Sinng, CodingSchemeVersionCriag) : CodingSchemeRendening

~ geiTopNodesz(Sinng, CodingSchemeVersionOrTag, Siing, Sinng) © RezclvedConcepiReferencel izt
~ izCodeRetired|Sirning, Siring, CodingSchemeVerzionOrTag) - boolean

~ nameToCodeSinng, Sirnng, CodingSchemeVerzioniTag) © Sinng

Generic

Components of interest include:

GenericExtension

The generic extension class. Classes that implement this class are accessible via the
LexBIGService interface.

LexBIGServiceConvenienceMethods

Convenience methods to be implemented as a generic extension of the LexBIG API.

Utilities
Defines helper classes externalized by the LexBIG API.
Iterators

Iterators are used to provide controlled resolution of query results.

cd lterators -

winterfanex
EntityListiterator
+ hasziNext]) : boolean

+ numberRemaining() - int

+ relesee() - void

?

winterfaoes

ResglvedConceptReferencesiterator

+ nexi] ;: RezolvedConceptReference

+ nextint) : RezolvedConcepiReferencel izt

Iterators

Components of interest include:

EntityListlterator

Generic interface for flexible resolution of LexBIG objects.

ResolvedConceptReferenceslterator

An iterator for retrieving resolved coding scheme references.

Additional Utility Classes

Note: It is highly recommended that all LexBIG programmers familiarize themselves with the
classes contained in the org.LexGrid.LexBIG.Utility package. Many useful features are
provided in an effort to increase approachability of the API and assist the programmer in
common tasks. This package currently contains the following classes:

Constructors — Helper class to ease creating common objects.

ConvenienceMethods — One-stop shopping for convenience methods that have been
implemented against the LexBIG API.

LBConstants — Provides constants for use in the LexBIG APIL.

ObjectToString — Provides centralized formatting of LexBIG Objects to String representations.

Examples & Recommendations for Use

Concept Resolution

Programmers access coded concepts by acquiring first a node set or graph. After specifying
optional restrictions, the nodes in this set or graph can be resolved as a list of
ConceptReference objects which in turn contain references to one or more Concept objects.
The following example provides a simple query of concept codes:

Service Metadata Retrieval

The LexBIG system maintains service metadata which can provide client programs with
information about code system content and assigned copyright/licensing information. Below is
an brief example showing how to access and print some of this metadata:

Combinatorial Queries

One of the most powerful features of the LexBIG architecture is the ability to define multiple
search and sort criteria without intermediate retrieval of data from the LexBIG service. Consider

the following code snippet:

This example shows a simple yet powerful query to search a code system based on a ‘sounds
like’ match algorithm (the list of all available match algorithms can be listed using the

‘ListExtensions —m’ admin script).

Declaring the target concept space

The coded node set (variable ‘cns’) is initially declared to query the NCI Thesaurus vocabulary.
At this point the concept space included by the set can be thought of as unrestricted, addressing
every defined coded entry (the ‘false’ value on the declaration indicates to also include inactive
concepts). However, it important to note that no search is performed by the LexBIG service at
this time.

Applying filter criteria

Similarly, no computation is performed (to realize query results) during invocation of the
restrictToMatchingDesignations () and restrictToMatchingProperties ()
methods. However, these calls effectively narrow the target space even further, indicating that
filters should be applied to the information returned by the LexBIG query service.

Using the Lucene Query Svntax and other text matching functions

The text criteria applied in methods such as restrictToMatchingDesignations() uses one of a
number of powerful text processing applications to provide the user with broad capability for text
based searches. Text matches can be simple applications of exactMatch, startsWith or contains
algorithms as well as powerful regular expressions and Lucene Query syntax (used in the
LuceneQuery function.) As shown above these options are passed into the
restrictToMatchingDesignations() Method as parameters.

Lucene Queries are well documented and can be very powerful. The uninitiated user may need
some background on their use however. The user should start here with the official Lucene
Query Parser documentation.

Keep in mind that some LexBIG queries such as "startsWith" and "contains" use wild card
searches under the covers, so that use of wild cards in this context can cause errors in searches
involving these search types.

Instead it is best to use the flexibility of the Lucene Query searches in the matchingDesignation
by using the Lucene Query searches in LexBIG where most searches will work much as
described in the query syntax documentation.

Special characters in the Lucene Query search can cause unexpected results. If you are not using
special characters as recommended for various Lucene search mechanisms then your searches
may not return expected results or may return an error. If the value you are searching upon
contains say, parenthesis, you will need to place the value in quotations. The escape characters
described in the Lucene Documentation do not work at this time.

Likewise you should not expect to see a Lucene Query narrow down search results as you
progressively enter a longer substring more closely matching your term of interest. Instead use
the contains method.

http://lucene.apache.org/java/docs/queryparsersyntax.html
http://lucene.apache.org/java/docs/queryparsersyntax.html

Applying sorting criteria

Multiple sort algorithms can be applied to control the order of items returned. In this case, we
indicate that results are to be sorted based on primary and secondary criteria. The
"matchToQuery" algorithm indicates to sort the result according to best match as determined by
the search engine. The "code" item indicates to perform a secondary sort based on concept code.

Note: the list of all available sort algorithms can be listed using the ‘ListExtensions —s’ admin
script.

Restricting the information returned for matching items

The LexBIG API also allows the programmer to restrict the values returned for each matching
concept. In this example, we chose to return only the UMLS CUI and assigned text
presentations.

Retrieving the result

A query is finally performed during the ‘resolve’ step, with results returned to the declared list.
It is at this point that the LexBIG service does the heavy lifting. By declaring the full extent of
the request up front (namespace, match criteria, sort criteria, and returned values), the service
then has the opportunity to optimize the query path. In addition, in this example we restrict the
number of items returned to a maximum of 6. This combined approach has the benefit of
reducing server-side processing while minimizing the volume and frequency of traffic between
the client program and the LexBIG service.

Note: While this section provides one example of combining criteria, this same pattern can be
applied to many of the CodedNodeSet and CodedNodeGraph operations. It is strongly
recommended that programmers familiarize themselves with this programming model and its
application.

Additional Resources

The examples and automated test programs provided by the LexBIG installation (see file
breakdown in Chapter 1) are available as additional reference materials.

Exercising the APl — The LexBIG GUI

The LexBIG Graphical User Interface, or GUI, is an optional component of the LexBIG install
which will be in the /gui folder of the base LexBIG installation (see file breakdown in Chapter
1). The GUI is meant to provide a simple tool to test LexBIG API methods and quickly view
the results; almost all public methods defined by the LexBIG API are supported. This guide
provides a brief overview of how the GUI can aid programmers in writing code to the LexBIG
API.

Note: The LexBIG GUI supports both administrative and test functions. Please refer to the
LexBIG Administrator’s Guide for instructions on using the GUI as an administration tool.
Launching the GUI

Depending on the operating systems that you selected at installation time, you should have one
or more of the following programs in the /gui folder:

Linux 64-1bGUI.sh Linux-1bGUI.sh
0SX-1bGUI.command Windows—-1bGUI.bat

Launch the GUI by executing the appropriate script for your platform. You will be presented
with an application that looks like this:

'®LexBIG 1.0 alpha]

Commands Load Terminology. Export Terminology. Help

Available Code Systems

Code System Mame I Code System Version I LRI | Tag I Skatus I Lask Update Time zel Code Set |
Amino Acid Onkology ZO06/051E http: v, co-ode. .. ackive 10:46: 10 AM on 0
) i 2148:05 P11 on 10/ e e e ey |
cell UMASSIGHED urn:lsid:bioontology. .. ackive 2122 F3 PMon 10§

COSTAR, 1959-1995 59-95 urnioid: 2. 16.840.1. .. active +:32:03 PM on 09§ iaet Hiskary |
Dictyostelium discoideum anatomy UNASSIGHNED urn:lsid:bioontology. .. ackive 12:21:51 PM on 0¢

Drug Ontology Schema unknown http: /v, cval-on, . ackive #4:14:16 PM on 10§ Refresh |
Galen additions for Lexical Proc... unknown http: /fexample.org. .. active HlE49 PMon 10 —/—————————————
gene_ontology UMASSIGHED urn:lsid:bioontology. .. ackive 12:16:29 PM on 0f EREiaag |
GMP 2.0 urnioid:11.11.0.2 active 214802 PM an 10f = i _
MCI MetaThesaurus Z00510E urnioid: 2. 16.540.1... active Z:06:17 PM on 07f Echivate |
MCI SEER ICD Meoplasm Code ... 1999 urnioid:2,16.540.1... inactive 11:11:08 AM on O° L
MCI_Thesaurus 03.12a urmioid:2,16,840,1,,, PRODUCTION ackive 100356535 AM on 10 e
SMODENT 2000 SKNODENT ackive 10:15:21 &M on 0% R —

Remaowve |

Rermoye History

ﬂ | LI Bebuild Index

Selected CodedModesets and CodedModeGraphs Restrictions

riar |

add
Edit

Remaoyve

i

You must choose a single Code Set or Graph on the left,

Hsk to Target: Codes

Remove |

Overview

The upper section of the GUI shows all of the code systems currently loaded, along with
corresponding metadata. The lower section of the GUI is used to combine, restrict and resolve
Code Sets and Code Graphs.

The lower left section is where you can perform Boolean logic on Code Sets and Code Graphs.
The lower right section is where you can introduce restrictions on Code Sets and Code Graphs
and browse results.

Note: The menu options are used primarily for administrative functions, and are covered in detail
by the LexBIG Administrator’s Guide. In addition, all of the disabled buttons in the top half of
the application are used for administrative functions, and are also described in the LexBIG
Administrator’s Guide.

Creating New Queries
There are four buttons on the top half that are of interest for creating queries.

e Refresh — This button causes the LexBIG GUI to reread the available terminologies and
their respective metadata. This can be useful when using the GUI to view a LexBIG
environment that is being modified by another process.

* Get History — If a terminology with available history data is selected, this button opens a

history browser to view it via the NCI history API. This option is currently only
applicable when working with the NCI Thesaurus terminology.

Get Code Set —This button causes the selected terminology to be added to the lower left
section of the GUI as a code set — which is noted by a ‘CS’ prefix.

Get Code Graph —This button causes the selected terminology to be added to the lower
left section of the GUI as a code graph — which is noted by a ‘CG’ prefix.

Customizing Queries

After selecting a code system and clicking on Get Code Set or Get Code Graph, a row will be
added to the lower left section of the GUI for each click. There are seven buttons in the lower
left section that allow combinatorial logic between the code sets in the lower left.

Union — This button is enabled if two Code Sets or two Code Graphs are selected in the
lower left. Clicking the button creates a new virtual Code Set or Code Graph which
represents the Boolean union of the two selected items. All restrictions applied to the
individual items still apply.

Intersection — This button is enabled if two Code Sets or two Code Graphs are selected
in the lower left. Clicking the button creates a new virtual Code Set or Code Graph
which represents the Boolean intersection of the two selected items. All restrictions
applied to the individual items still apply.

Difference — This button is enabled if two Code Sets or two Code Graphs are selected in
the lower left. Clicking the button creates a new virtual Code Set which represents the
Boolean difference of the two selected Code Sets. All restrictions applied to the
individual items still apply.

Restrict to Codes — This button is enabled if a Code Set and a Code Graph are selected
in the lower left. Clicking the button creates a new virtual Code Graph which will be
restricted to concept codes occurring in the selected Code Set.

Restrict to Source Codes — This button is enabled if a Code Set and a Code Graph are
selected in the lower left. Clicking the button creates a new virtual Code Graph which
will have its source codes restricted to codes occurring in the selected Code Set.

Restrict to Target Codes — This button is enabled if a Code Set and a Code Graph are
selected in the lower left. Clicking the button creates a new virtual Code Graph which
will have its target codes restricted to codes occurring in the selected Code Set.

Remove — This button is enabled if any Code Set or Code Graph (or virtual Code Set or
Code Graph) is selected in the lower left. Clicking the button will remove the selected
item from the list.

The lower right section of the GUI is used to apply restrictions to Code Sets or Code Graphs, and
set the variables that need to be passed into the resolve method.

Working with Code Sets

If a Code Set is selected in the lower left, then the lower right section will look like this:

ML SEER L LY NeOpIasm Lode .., | 199 [N1guHul s HEPR = =1 [N R Inacoive LLiLLiug S0 on e

NCI_Thesaurus 03.12a urrioid:2,16.840.1... PRODUCTION active 10:36:35 AMon 10
SHNODENT 2000 SHNODENT ackive 10:15:21 AM on 0¢
]

4]

—]

Deachyvate |
Remove |
Remoye History |
Retuild Index |

Selected CodedModesets and CodedModeGraphs

Uriom |
Intersection |
Bifference |

Restrictto Codes |
Rist bo Source Codes |
Rt to Target Codes |

Remaove |

Restrictions
Coded Mode Set 0 - Automobiles 1.0

Edit: |
Remaoyve |

[only Include Active Codes

Set Sork Options

Resolve Code Set

In the lower right section, there are two halves — the top half and the bottom half. The top half is
used to apply restrictions. The bottom half provides query options and resolution.

* Add - This button introduces a new restriction to the Coded Node Set. Clicking it will
bring up the following dialog box for creating restrictions:

B Configure Restriction

[l e Wk =l F.estrick ko Matching Designations

Match Text |

Match algarithm ILLII:E.'I'lE.'QLIE.'I":.-'

L L

Match Language I
Preferred Only [

ik, Zancel

The top drop down list indicates the type of restriction to add. The rest of the dialog box
will change depending on the type of restriction selected. All required parameters for the
selected restriction type will be presented.

* Edit — This button is enabled when a restriction is selected. Clicking it allows revision of
an existing restriction.

* Remove —This button is enabled when a restriction is selected. Clicking it removes the
selected restriction.

* Only Include Active Codes — This check box indicates whether or not to include
inactive codes when resolving the selected code set.

e Set Sort Options — This button will bring up a dialog box to choose the desired sort
order of the results.

* Resolve Code Set — This button will bring up a result window where the Code Set will
be resolved and displayed.

Working with Code Graphs

If you select a Coded Node Graph in the lower left section of the LexBIG GUI, the lower right
section will look like this:

Ll

Rermoye Histary

| ﬂ Rebuild Tndex |

Restrictions

Selected CodedModeSets and CodedModeGraphs

0 {CS) - Automabiles 1.0

1 (&) - Aubomobiles 1.0

Urion |

Inkerseckion

Differemce

Coded Mode Graph 1 - Automobiles 1.0

| s]

Remoye |
Reltion Container R -

Focus Code |

R.estrict bo Codes

st to Source Codes

Rstto Targeb Codes

Focus Code System I j
Max Resolve Depth |—1 V¥ Resolve Forward [T Resolve Backward

Remave |

Set Sort Options | Resolve as Set | Resolve as Graph |

Again, there are two halves to the lower right section. The top half allows restrictions to be
applied to the selected Code Graph, and it works the same as it does for a Coded Node Set.
Please see the section above on applying restrictions to a Coded Node Set.

The lower half provides additional variables applicable when resolving a Coded Node Graph.
For further explanation of these options, refer to the LexBIG API documentation.

Relation Container (Optional) — Indicates the CodingScheme Relations container to
query. The drop down list is populated with allowable selections.

Focus Code (Optional) — Provides the code used as a starting point when resolving graph
relations. This value is required for some queries, depending on the nature of requested
associations.

Focus Code System (Optional) — Indicates the code system containing the Focus Code.
The drop down list is populated with allowable selections.

Max Resolve Depth — How many levels deep should the graph be resolved? -1 is the
default, which does not limit the depth.

Resolve Forward — Populate codes downstream from the focus node (based on
directionality defined by each association).

Resolve Backward — Populate codes upstream from the focus node (based on
directionality defined by each association).

Set Sort Options — This button will bring up a dialog box to choose the desired sort
order of the results.

Resolve As Set — Resolves and displays the graph results as a coded node set.

Resolve As Graph —Resolves and displays the graph results.

Viewing Query Results

Clicking on the Resolve buttons for either a Coded Node Set or a Coded Node Graph will bring
up the Result Browser window:

BB Result Browser =]

TOO0O1 - Truck

Ford - Ford Motor Company
005 - Domestic Auto Makers
73 - Qldsraobile

o001 - Car

A0001 - Automobile

GM - General Motors
Jaguar - Jaguar

Chevy - Chevralek

oding Scheme: Automobiles - urnioid:11.11.0.1
oncept Code: TOOO1L
ntity Description: Truck
tatus: oo
s Ackive: true
First ¥Yersion: true
Last ¥ersion: true
Presentation t1: Truck
Is Preferred: true
Language: en
Match If Mo Context: true

TOOO1
Truclk

A0001

i Automobile

The left side shows a list of all the concept codes returned. When a concept code is selected on
the left, the upper right will show a full description of the selected code. The lower right will
show a graph view of the neighboring concepts.

When a Coded Node Graph is resolved, the result viewing window will look like this (this is the
same Code System as above):

fBResult Browser [_ O]

A0001 - Autornobile :]
TOO01 - Truck,

o001 - Car

Brakes -

Tires -

Batteries -

005 - Domestic Auto Makers
Ford - Ford Mator Comparny ;I
Jaguar - Jaguar

M - izeneral Mokaors

73 - Qldsmobile

Chewy - Chevrolet

TOOO1
Truck:
COo01
fSutype Car
A0001 o Brakes
Automobile L
== Tires
rersSuthype ..
top-thing Batteries
L Ford
005 rmsanme FOKd Motar Company
Domestic Auto Malkers <. GM

General Motors

The left side still has a list of all of the concepts in the graph. The upper right will give a
description of the selected concept. The lower right shows the entire graph.

The lower right section is adjustable, and dynamic. It responds to mouse clicks, dragging, and
numerous key combinations. Beyond a depth of 3, the graph may “collapse” and not show all of
the nodes until you click on a node. Clicking on a node will cause it to expand out and display
its children. Here are a list of key combinations recognized by the graph viewer:

e Lerr Crick + Mouse MoveMENT — Drags the view.

* Ricut CLick + Mouse Movement Up or DowN — Zooms in or out.
* Ricut CLick (ON WHITE SPACE) — Zooms the view to fit.

e Crre + “+” — Expands the graph connection lines

e Crre + °-° — Contracts the graph connection lines

e Crre+ ‘1’ (0r 2° 0r ‘3’ or ‘4’) — Changes the orientation of the graph.

1. References

This appendix includes lists and hypertext links, where appropriate, to technical manuals,
articles, scientific publications and online resources related to the LexBIG project.

* LexBIG NCICB GForge Project - https://gforge.nci.nih.gov/projects/lexevs/

* LexBIG Project Administration Materials - https://gforge.nci.nih.gov/docman/?group_id=491

* LexGrid Home Page — http://informatics.mayo.edu/LexGrid/index.php?page=aboutlg
* Vocabulary Knowledge Center -- https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Main_Page

¢ Sun Java Tools (JDK, JRE, NetBeans) - http://java.sun.com/
* Eclipse Project (IDE) - http://www.eclipse.org/eclipse/

http://www.eclipse.org/eclipse/
http://java.sun.com/
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Main_Page
http://informatics.mayo.edu/LexGrid/index.php?page=aboutlg
https://gforge.nci.nih.gov/docman/?group_id=491
https://gforge.nci.nih.gov/projects/lexevs/

2. Included Materials

Components

The following Java archives are distributed with the LexBIG runtime environment and may be of
interest to programmers:

Module Function

1lbRuntime The LexBIG runtime code, including all necessary code and
dependencies required for direct Java-to-Java invocation of the
LexBIG API. This consolidates LexBIG code and 3 party
modules in order to simplify configuration for program execution.

Note: This archive is not available for redistribution simply
because individual contributions are not easily separated and the
combined content cannot be shared under a single license. It is
provided strictly as a convenience for simplified program
execution and in accordance with the user having agreed to all
terms and conditions during product installation.

Redistributable components (e.g. those listed below) and
associated license terms are also made available. The
redistributable components provide equivalent content and
function, but require more extensive configuration for program

execution.
lexbi
exbi9 This archive includes the LexBIG runtime code, excluding all
dependencies.
1bGUI

The LexBIG graphical user interface runtime code, excluding all
dependencies.

LexBIG APIs

activation Provided by Sun’s reference implementation of the JavaBeans
Activation Framework (JAF) standard extension. Used for e-mail
notification when runtime errors occur.

caGrid Grid infrastructure to support the caBIG™ community. Contains

tools for creating and deploying caBIG™-compliant grid services.

commons-cli

Provides a simple API for working with command line arguments,
options, option groups, mandatory options and so forth.

commons—-codec

Provides implementations of common encoders and decoders such
as Base64, Hex, Phonetic and URLs.

commons—
collections

Provides a suite of classes that extend or augment the Java
Collections Framework.

commons—-lang

Provides a very common set of utility classes that provide extra
functionality for classes in the java.lang package.

commons—-logging

Provides a bridge between different logging libraries.

commons—-pool

Provides a generic object pooling interface, a toolkit for creating
modular object pools and several general purpose pool
implementations.

gnu-regexp Provides a Java language implementation of standard NFA regular
expression features.

hsgldb SQL relational database engine written in Java.

icudj International components for Unicode processing.

jakarta-regexp

Java package for processing regular expressions.

Jdcalendar Java date chooser bean for graphically picking a date.
J1dom Java-based solution for accessing, manipulating, and outputting
XML data from Java code.
ena Java framework for building Semantic Web applications.
Junit Java regression test framework.
log4d] Runtime logging services.

lucene-core

Text search engine library written in Java.

lucene-regex

Provides support for regular expression-based queries.

http://lucene.apache.org/java/docs/lucene-sandbox/
http://lucene.apache.org/java/docs/
http://logging.apache.org/log4j/docs/index.html
http://junit.org/index.htm
http://www.w3.org/2001/SW/
http://jena.sourceforge.net/
http://www.jdom.org/
http://www.toedter.com/
http://jakarta.apache.org/regexp/
http://www-306.ibm.com/software/globalization/icu/index.jsp
http://hsqldb.org/
http://savannah.gnu.org/projects/gnu-regexp/
http://jakarta.apache.org/commons/pool/
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/lang/
http://jakarta.apache.org/commons/collections/
http://jakarta.apache.org/commons/collections/
http://jakarta.apache.org/commons/codec/
http://jakarta.apache.org/commons/cli/
https://cabig.nci.nih.gov/workspaces/Architecture/caGrid
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/javabeans/jaf/index.jsp

lucene-snowball

LexBIG APIs

Provides stemming support for indexed concepts.

(drivers, 2.0.6)

mail Provided by the Sun JavaMail API. Used for e-mail notification
when runtime errors occur.
mm.mysqgl JDBC drivers for MySQL database.

org.eclipse.*

Used internally by LexBIG load and export extensions to access
and manipulate Eclipse Modeling Framework (EMF) model
representations.

postgresgl
(drivers)

JDBC drivers for PostgreSQL database.

prefuse

Used for graph representations in the LexBIG GUI.

postgresgl
(drivers)

JDBC drivers for PostgreSQL database.

swt (*swt*.jar)

Provides the underlying widget toolkit used by the LexBIG GUI.

xXerces

XML parsing services.

3. Additional Terms and Conditions

Refer to the 1icense.pdf and license. txt files (installed to the LexBIG root directory) for
the license terms and conditions of included components.

http://xerces.apache.org/
http://www.eclipse.org/swt/
http://jdbc.postgresql.org/
http://jdbc.postgresql.org/
http://www.prefuse.org/
http://jdbc.postgresql.org/
http://jdbc.postgresql.org/
http://www.eclipse.org/emf/
http://www.eclipse.org/
http://mmmysql.sourceforge.net/old-index.html
http://mmmysql.sourceforge.net/old-index.html
http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/
http://lucene.apache.org/java/docs/lucene-sandbox/

	Chapter 1Overview of the Software
	Chapter 2Systems and Architecture
	Chapter 3Information Models
	Chapter 4LexBIG APIs

