
Center for Bioinformatics

 CACORE EVS API

 Technical Guide

June 18, 2008This is a U.S. Government work.

This is a U.S. Government work. i

CONTENTS
About This Guide ...1

Purpose ... 1
Release Schedule .. 1
Audience ... 2
Additional caCORE Documentation .. 2
Organization of This Guide ... 2
Text Conventions Used ... 3
Credits and Resources .. 4

Chapter 1
About the Enterprise Vocabulary Services and LexBIG 7

Introduction .. 7
Key EVS Terminologies .. 8

NCI Thesaurus ... 8
NCI Metathesaurus ... 8

About the UMLS Metathesaurus .. 9
Preservation of Terminology ... 9
Disambiguation of Terminology ... 9
Defined Relationships ... 10
Categorization of Concepts .. 10

About Knowledge Representation .. 10
First‐Order Predicate Logic .. 11
Description Logic ... 12
Description Logic in the NCI Thesaurus ... 14

Concept Edit History in the NCI Thesaurus ... 15
Working with the NCI Thesaurus ... 16

Downloading the NCI Thesaurus ... 16
OWL Encoding of the NCI Thesaurus ... 18
Ontylog Name Conversion .. 19

Ontylog Mappings .. 21
Mapping of Gene Ontology to Ontylog ... 21

caCORE EVS API Technical Guide

ii This is a U.S. Government work.

Mapping of MedDRA to Ontylog ... 22
Vocabulary Hierarchy Structure .. 22
Concept Codes and Names ... 23
Roles ... 23
Properties ... 23

Mapping of MGED Ontology to Ontylog .. 24
Vocabulary Hierarchy Structure .. 24
Concept IDs, Codes, and Names .. 24
Roles ... 24
Properties ... 24

About LexBIG .. 25

Chapter 2
About caCORE ...27

Architecture Overview ... 27
Components of caCORE ... 28

Enterprise Vocabulary Services (EVS) .. 28
Cancer Data Standards Repository (caDSR) ... 28
Cancer Bioinformatics Infrastructure Objects (caBIO) 28
Common Security Model (CSM) ... 29
Common Logging Module (CLM) .. 29

About the caCORE 4.0 Release Paradigm .. 29

Chapter 3
About the caCORE EVS Architecture ...31

caCORE EVS System Architecture .. 31
Client Technologies ... 33
caCORE EVS Software Packages ... 34

Domain Packages ... 34
System Packages ... 35

Chapter 4
Interacting with caCORE EVS ..37

caCORE EVS Components ... 38
EVS 3.2 Object Model .. 39
EVS 3.2 Domain Object Catalog .. 40
EVS Data Sources .. 41

NCI Thesaurus ... 41
NCI Metathesaurus ... 41

Installing and Configuring the EVS 3.2 Java API ... 41
Software Requirements .. 42

Table of Contents

This is a U.S. Government work. iii

Downloading the Java API Client Package ... 42
Installing the Package ... 43
Verifying the Installation .. 45

Search Paradigm .. 47
About EVSQuery and EVSQueryImpl ... 48

EVSQuery Methods and Parameters .. 48
Using EVSQuery .. 50
Accessing Secured Vocabularies .. 50
Creating an EVS Search Request ... 51

Examples of Use .. 51
Web Services API ... 55

Configuration ... 55
Operations .. 56
Considerations ... 57
Examples of Use .. 58
Limitations .. 61

XML‐HTTP API ... 62
Service Location and Syntax .. 62
Examples of Use .. 63
Working with Result Sets ... 64
Retrieving Related Results Using XLinks ... 64
Controlling the Number of Items Returned ... 64
Paging Results ... 64
Limitations ... 64

About the XMLUtility Class .. 65
Overview .. 65
Example of Use .. 65

Distributed LexBIG API .. 67
Overview .. 67
Architecture .. 67
LexBIG Annotations .. 68
Aspect Oriented Programming Proxies ... 68
LexBIG API Documentation .. 69
LexBIG Installation and Configuration .. 69
Example of Use .. 69

Distributed LexBIG Adapter Example of Use ... 71

Appendix A
Resources Used to Create This Guide ...79

Books and Articles ... 79
caBIG Material ... 79

caCORE EVS API Technical Guide

iv This is a U.S. Government work.

caCORE Material ... 79
Software Products ... 80

Appendix B
Additional Examples ..81

Find Tree for Concept and Association .. 81
Search Metathesaurus for a Specific Concept/Search Term 84

Glossary ..87

Index ..91

1

ABOUT THIS GUIDE
This section introduces you to the caCORE EVS API Technical Guide.

Topics in this section:

Purpose on this page

Release Schedule on this page

Audience on page 2

Additional caCORE Documentation on page 2

Organization of This Guide on page 2

Text Conventions Used on page 3

Credits and Resources on page 4

Purpose
The caCORE EVS API Technical Guide describes the Enterprise Vocabulary Services
(EVS) component of the Cancer Common Ontologic Representation Environment
(caCORE). caCORE is an open-source, standards-based, semantics computing
environment and tool set created by the National Cancer Institute Center for
Bioinformatics (NCICB). EVS is a set of services and resources that address the NCI's
needs for a controlled vocabulary. It provides the semantic base upon which the data
semantics of caCORE depend.

This guide explains the following:

the purpose, architecture, and components of caCORE EVS

the APIs for accessing the caCORE EVS system, including Java, Web services,
and XML-HTTP

the API providing direct remote access to the native LexBIG Service Layer

an overview of UML.

Release Schedule
This guide is updated for each caCORE EVS release. It may be updated between
releases if errors or omissions are found. The current guide refers to the 4.1 version of
caCORE EVS, which was released in June 2008 by the NCICB.

caCORE EVS API Technical Guide

2

Audience
This guide is written for application developers who want to learn about the architecture
and use of the caCORE EVS APIs and who may want to access those APIs. caCORE
EVS is generated using the caCORE Software Development Kit (SDK). For more
information, see the caCORE SDK 4.0 Developer’s Guide.

This guide assumes that you are familiar with the Java programming language and/or
other programming languages, database concepts, and the Internet. If you intend to
use caCORE EVS resources in software applications, the guide assumes that you have
experience with building and using complex data systems. Neither caCORE EVS nor
this documentation is intended for end users such as individual health professionals or
members of the general public, unless they are also software developers.

Additional caCORE Documentation
The caCORE EVS 4.1 Release Notes include a description of the end user tool
enhancements and bug fixes included in this release.

The caCORE EVS 4.1 JavaDocs include the current caCORE EVS API
specification.

The caCORE SDK 4.1 Developer’s Guide includes detailed instructions on the
use of the SDK. It also explains how the SDK aids in creating a caCORE-like
software system.

Organization of This Guide
This brief overview explains what you will find in each section of this guide.

About This Guide (this section) provides an overview of this guide.

Chapter 1, About the Enterprise Vocabulary Services and LexBIG, provides an
overview of the Enterprise Vocabulary Services (EVS) project.

Chapter 2, About caCORE, provides an overview of the NCICB caCORE
infrastructure.

Chapter 3, About the caCORE EVS Architecture, describes the architecture of
the caCORE EVS.

Chapter 4, Interacting with caCORE EVS, describes the caCORE EVS API, the
service interface layer provided by the EVS API architecture. It gives examples
of how to use the EVS API. It also describes the distributed LexBIG API.

Appendix A, Resources Used to Create This Guide, provides a list of print and
online resources that were used to produce this guide or which were referenced
in this guide.

Appendix B, Additional Examples, provides two additional code examples.

https://gforge.nci.nih.gov/docman/view.php/148/8650/caCORE%20SDK%204.0%20Developer’s%20Guide_101007.pdf

About This Guide

3

Text Conventions Used
This section explains conventions used in this guide. The various typefaces represent
interface components, keyboard shortcuts, toolbar buttons, dialog box options, and text
that you type.

Convention Description Example

Bold Highlights names of option buttons, check
boxes, drop-down menus, menu
commands, command buttons, or icons.

Click Search.

URL Indicates a Web address. http://domain.com

text in SMALL CAPS Indicates a keyboard shortcut. Press ENTER.

text in SMALL CAPS +
text in SMALL CAPS

Indicates keys that are pressed
simultaneously.

Press SHIFT + CTRL.

Italics Highlights references to other documents,
sections, figures, and tables.

See Figure 4.5.

Italic boldface
monospaced type

Represents text that you type. In the New Subset
text box, enter
Proprietary
Proteins.

Note: Highlights information of particular
importance

Note: This concept
is used throughout
the document.

{ } Surrounds replaceable items. Replace {last name,
first name} with the
Principal
Investigator’s name.

caCORE EVS API Technical Guide

4

Credits and Resources
The following people contributed to the development of this guide.

caCORE EVS Development and Management Teams

Development Technical Guide Program Management

Johnita Beasley2 Johnita Beasley2 Bill Britton6

Steve Hunter7 Eddie VanArsdall4 Peter Covitz1

Norval Johnson6 Frank Hartel1 Frank Hartel1

Sriram Kalyanasundaram6 Shaziya Muhsin2 Charles Griffin7

Doug Kanoza6 Kim Ong3 Jason Lucas3

Alan Klink6 Konrad Rokicki2 Krishnakant Shanbhag1

Shaziya Muhsin2 Tracy Safran2 Denise Warzel1

Kim Ong3

John Park4

Konrad Rokicki2

Tracy Safran2

Ye Wu2

Robert Wynne4

Robert Wysong6

David Yee3

1 National Cancer Institute
Center for Bioinformatics
(NCICB)

2 Science Application
International Corporation
(SAIC)

3 Northrup Grumman

4 Lockheed Martin 5 ScenPro, Inc. 6 Terpsys
7 Ekagra Software Technologies

Contacts and Support

NCICB Application Support http://ncicbsupport.nci.nih.gov/sw/
Telephone: 301-451-4384
Toll free: 888-478-4423

http://ncicbsupport.nci.nih.gov/sw/

About This Guide

5

LISTSERV Facilities Pertinent to the caCORE EVS

LISTSERV URL Name

NCI EVS
Listserv

https://list.nih.gov/archives/ncievs-l.html NCI Vocabulary
Services Information

caCORE_SDK_
Developers

https://list.nih.gov/archives/cacore_sdk_dev-
l.html

caCORE SDK
Developers Discussion
Forum

caCORE_SDK_
Users

https://list.nih.gov/archives/cacore_sdk_users-
l.html

caCORE SDK Users
Discussion Forum

caCORE EVS API Technical Guide

6

7

CHAPTER

1
ABOUT THE

ENTERPRISE VOCABULARY SERVICES
AND LEXBIG

This chapter provides an overview of the Enterprise Vocabulary Services (EVS) project.

Topics in this chapter:

Introduction on this page

Key EVS Terminologies on page 8

About the UMLS Metathesaurus on page 9

About Knowledge Representation on page 10

Concept Edit History in the NCI Thesaurus on page 15

Working with the NCI Thesaurus on page 16

Ontylog Mappings on page 21

About LexBIG on page 25

Introduction
The NCI Enterprise Vocabulary Services (EVS) is a partnership between the NCI
Center for Bioinformatics and the NCI Office of Communications. Since 1997, EVS has
worked to harmonize and integrate the many diverse terminologies and coding
frameworks used by the NCI and its partners.

EVS serves a critical need by providing a well-designed ontology covering cancer
science. Such an ontology is required for data annotation, inferencing, and other
functions. Annotated data range from genomic sequences and case report forms to
cancer image data.

http:/oc.nci.nih.gov

caCORE EVS API Technical Guide

8

EVS is active in NIH-wide harmonization initiatives, federal standards development
efforts, and other standards development organizations. These activities help to
develop terminology resources and software tools to facilitate compatible coding,
retrieval, and aggregation of biomedical information.

Key EVS Terminologies
The establishment of controlled vocabularies is important to any application involving
electronic data sharing. The importance of controlled vocabularies is perhaps most
apparent in clinical trials data collection and data reporting. It is also important in
general data annotation of any kind.

To respond to the need for consistency among various NCI projects and initiatives, the
NCI publishes the NCI Thesaurus and the NCI Metathesaurus. The caCORE EVS
interfaces, discussed later in this guide, provide access to both of these terminologies,
which are discussed in the next two sections.

NCI Thesaurus
EVS publishes the NCI Thesaurus (NCIT) as a core reference terminology and
biomedical ontology. Implemented as a Description Logic vocabulary, the NCIT is a
self-contained and logically consistent terminology, providing rich textual and
ontological descriptions of some 50,000 key biomedical concepts.

The NCIT was developed by EVS in response to a need for consistent shared
vocabularies among the various projects and initiatives at the NCI, as well as in the
entire cancer research community. Published monthly, the NCIT is used in a growing
number of NCI and other systems.

NCI Metathesaurus
The NCI Metathesaurus is a comprehensive biomedical terminology database that
contains 1,100,000 concepts mapped to 2,500,000 terms with 5,000,000 relationships.
Based on the Unified Medical Language System Metathesaurus (UMLS) developed by
the National Library of Medicine (NLM), the NCI Metathesaurus includes most UMLS
terms and supplements them with additional cancer-centric vocabulary. It excludes
certain proprietary vocabularies and includes others with restricted use.

Some of the NCI Metathesaurus vocabularies were developed locally by the NCI, and
others were licensed. Table 1.1 describes those vocabularies that were developed
locally. Note that a limited model of the NCI Thesaurus is accessible through the
Metathesaurus as the NCI Source. Additional external, proprietary vocabularies include
MedDRA, SNOMED, and ICD-O-3, among others.

Vocabulary Content Usage

NCI Source Limited model of the NCI
Thesaurus

Reference terminology for cancer
research applications

NCIPDQ Expanded and reorganized PDQ CancerLit indexing and clinical
trials accrual

NCISEER SEER terminology Incidence reporting

CTEP CTEP terminology Clinical trials administration

Table 1.1 NCI local source vocabularies included in the Metathesaurus

http://www.meddramsso.com/NewWeb2003/index.html
http://www.snowmed.org/main.html
http://training.seer.cancer.gov/module_icdo3/icdo3_home.html

Chapter 1: About the Enterprise Vocabulary Services and LexBIG

9

Unlike the NCI Thesaurus, the NCI Metathesaurus is not designed to provide
unequivocal or consistent definitions. Like the UMLS, its purpose is to provide
mappings of terms across vocabularies.

For more information about the UMLS Metathesaurus, see the next section.

About the UMLS Metathesaurus
The NCI Metathesaurus is based on the National Library of Medicine’s Unified Medical
Language System Metathesaurus (UMLS Metathesaurus). This section provides a brief
overview of the UMLS Metathesaurus features that are relevant to accessing the NCI
Metathesaurus. More detailed information about the UMLS Metathesaurus is available
on the UMLS Knowledge Sources Web site at http://www.nlm.nih.gov/research/umls/
umlsdoc.html.

Preservation of Terminology
The UMLS Metathesaurus is a unifying database of concepts that brings together terms
occurring in over 100 different controlled vocabularies used in biomedicine. When
editors add terms to the UMLS Metathesaurus, they preserve all of the original
meanings, attributes, and relationships defined in the source vocabularies, and they
retain explicit source information. They also add basic information about each concept
and introduce new associations that help to establish synonymy and other relationships
among concepts from different sources.

Disambiguation of Terminology
Given the large number of related vocabularies incorporated in the UMLS
Metathesaurus, instances occur in which the same concept may be known by many
different names. In other cases, the same names are intended to convey different
concepts. To avoid ambiguity, the UMLS uses an elaborate indexing system that
assigns a concept unique identifier (CUI) to each concept name. Similarly, each unique
concept name or string in the Metathesaurus is assigned a string unique identifier
(SUI).

In cases where one string is associated with multiple concepts, a numeric tag is
appended to that string to render it unique and to reflect its multiplicity. UMLS

MDBCAC Topology and morphology Cancer genome research

ELC2001 NCBI tissue taxonomy Tissue classification for genetic
data such as cDNA libraries

ICD03 Oncology classifications Cancer genome research and
incidence reporting

MedDRA Regulatory reporting terminology Adverse event reporting

MMHCC Mouse Cancer Database
terminology

Mouse Models of Human Cancer
Consortium

CTRM Core anatomy, diagnosis, and
agent terminology

Translational research by NCICB
applications

Vocabulary Content Usage

Table 1.1 NCI local source vocabularies included in the Metathesaurus (Continued)

http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/umlsdoc.html
http://www.nlm.nih.gov/research/umls/umlsdoc.html

caCORE EVS API Technical Guide

10

Metathesaurus editors can also create an alternative name for the concept that is more
indicative of its intended interpretation. In such cases, all three concept names are
preserved.

Defined Relationships
The UMLS Metathesaurus uses several types of defined relationships. The NCI
Metaphrase interface captures the four relationships described in Table 1.2.

Categorization of Concepts
The UMLS Semantic Network is an independent construct that provides consistent
categorization for all concepts contained in the UMLS Metathesaurus and defines a
useful set of relationships among those concepts. As of the 2005AC release, the
Semantic Network defined a set of 135 basic semantic types or categories that could
be assigned to concepts, as well as 54 relationships that could hold among the various
types.

Major groupings of semantic types include organisms, anatomical structures, biologic
function, chemicals, events, physical objects, and concepts or ideas. Each UMLS
Metathesaurus concept is assigned at least one semantic type. In some cases, several
types are assigned. In all cases, the most specific semantic type available in the
network hierarchy is assigned to the concept.

About Knowledge Representation
Knowledge representation has long been a prime focus in artificial intelligence
research. This area of research asks how we can accurately encode the rich and highly
detailed world of information that is required for the application area being modeled and
yet, at the same time, capture the implicit common sense knowledge. One of the most
common approaches to this problem in the 1970s was to use frame-based
representations.

The basic idea of a frame is that important objects in our world fall into natural classes,
and that all members of these classes share certain properties or attributes, called
slots. For example, all dogs have four legs, a tail (or a vestige of one), and whiskers.
Restaurants generally have tables, chairs, eating utensils, and menus. Thus, when we
enter a new restaurant or encounter a new dog, we already have a frame of reference
and some expectation about the properties and behaviors of these entities.

Relationship Description

Broader (RB) The related concept has a more general meaning.

Narrower (RN) The related concept has a more specific meaning.

Synonym (SY) The two concepts are synonymous.

Other related (RO) The relationship is not specified, but it is something other than
broader, narrower, or synonymous.

Table 1.2 Relationships defined in the UMLS Thesaurus

Chapter 1: About the Enterprise Vocabulary Services and LexBIG

11

In a seminal 1975 paper by Marvin Minsky, the author placed the frame representation
paradigm in the context of a semantic network of nodes, attributes, and relations.
Figure 1.1 shows this simple frame-based representation of an earthquake as it might
be used in a semantic network of news stories.1

Figure 1.1 An earthquake in a semantic network of news stories

First‐Order Predicate Logic
At the same time that frame-based representations were being explored, a popular
alternative approach was to use some subset of first-order predicate logic (FOL), often
implemented as a Prolog program. While propositional logic allows us to make simple
statements about concrete entities, a complete first-order logic allows us to make
general statements about anonymous elements with the introduction of variables as
placeholders. Table 1.3 contrasts the difference in expressivity between propositional
logic and FOL.

In other words, using FOL, you can express general rules of inference that can be
applied to all entities whose attributes satisfy the left-hand side of the inference
operator. Thus, simply asserting Man(Socrates) entails Mortal(Socrates).

Since logic programming is based on the tenets of classical logic and comes equipped
with automated theorem-proving mechanisms, this approach enabled the development
of inference systems whose soundness and completeness could be rigorously
demonstrated. But while many of these early inference systems were logically sound

1. Patrick Winston, Artificial Intelligence (Massachusetts: Addison-Wesley, 1984).

Propositional Logic First-order Predicate Logic

All men are mortal.
Socrates is a man.
Socrates is mortal.

 : Man(x) => Mortal(x)
Man(Socrates) => Mortal(Socrates)

Table 1.3 Propositional logic vs. first‐order predicate logic

x∀

caCORE EVS API Technical Guide

12

and complete, they were often not very useful, as they could only be applied to highly
proscribed areas, or “toy problems.” The problem was that a complete first-order
predicate logic is itself computationally intractable, as certain statements may prove
undecidable.

Suppose, for example, that we are trying to establish that some theorem, P(x), is true.
The way a theorem prover works is to first negate the theorem and, subsequently, to
combine the negated theorem () with stored axioms in the body of knowledge to
show that this leads to a logical contradiction. Ultimately, when the theorem prover
derives the conclusion that is inconsistent—that it results in the null
set—the program terminates and the theorem is considered proven.

This method of proof by refutation is guaranteed to terminate when it is indeed upheld
by the body of knowledge. The problems arise when the initial theorem is not valid, as
its negation may not produce a logical contradiction, and thus the program may not
terminate.

In contrast, frame representations offered a rich, intuitive means of expressing domain
knowledge, yet they lacked the inference mechanisms and rigor that predicate logic
systems could provide. As suggested by Figure 1.1 on page 11, the frame
representation captures a good deal of implicit knowledge. For example, we expect that
all disaster events, including earthquakes, have information about fatalities and injuries
and the extent of loss and property damage. In addition, we expect that these events
will have locations, dates, and individuals associated with them.

Early efforts to apply predicate logic to frame representations to make information
explicit, however, soon revealed that the problem was computationally intractable. This
occurred for two reasons: (1) The frame representation was too permissive; more
rigorous definitions were required to make the representation computational; and (2)
first-order predicate logic itself was computationally intractable.

Several subsets of complete FOL have since been defined and successfully applied to
develop useful computational models capable of significant reasoning. For example,
the Prolog programming language is based on a subset of FOL that severely limits the
use of negation.

The family of description logic (DL) systems is a more recent development. Because
these systems function as an auto-classifier, they are especially well-suited to the
development of ontologies, taxonomies, and controlled vocabularies.

Description Logic
You can view description logic as a combination of the frame-based approach with
FOL. Both models had to be scaled back to achieve an effective solution. Like frames,
the DL representation allows for concepts and relationships among concepts, including
simple taxonomic relations as well as other meaningful types of association. Certain
restrictions however, are placed on these relations. Specifically, any relation that
involves class membership, such as the is-a or inverse is-a relations, must be strictly
acyclic.

The predicate logic used in a description logic system is also limited in various ways,
depending on the implementation. For example, the minimal form of a DL does not
allow any form of existential quantification. This limitation allows for a very easily
computed solution space, but the resulting expressivity is severely diminished. The

P x()¬

P x() P x()¬∧

Chapter 1: About the Enterprise Vocabulary Services and LexBIG

13

next step up in representational power allows limited existential quantification without
atomic negation.

Today there is a large family of description logics that have been realized with varying
levels of expressivity and resulting computational complexities. In general, DLs are
decidable subsets of FOL, and the decidability is due in large part to their acyclicity. The
theory behind these models is beyond the scope of this discussion. For more
information, read The Description Logic Handbook by Franz Baader, et al. (eds.),
Cambridge University Press, 2007, ISBN 978-0-521-87625.

The two main ingredients of a DL representation are concepts and roles. A major
distinction between description logics and other subsets of FOL is its emphasis on set
expression Person Young can be interpreted as the set of all children, with the
corresponding FOL expression Person(x) Young(x). Syntactically then, DL
expressions are variable free, with the understanding that the concepts always
reference sets of elements.

A DL role is used to indicate a relationship between the two sets of elements
referenced by a pair of concepts. In general, DL notations are rather terse, and the
concept (or set of elements) of interest is not explicitly represented. Thus, to represent
the set of individuals whose children are all female, we would use \/x hasChild.Female.
The equivalent expression in FOL might be something like this:

\/x :hasChild(y.x) female(x)

In terms of set theory, a role potentially defines the Cartesian product of the two sets.
Roles can have restrictions, however, which place limitations on the possible relations.
A value restriction limits the type of elements that can participate in the relation; a
number restriction limits the number of such relations in which an element can
participate.

In addition, each role defines a directed relation. For example, if x is the child of y, y is
not also the child of x. In the above example, the parent concept hasChild is considered
the domain of the relation, and the child is considered the range. Elements belonging to
the set of objects defined by the range concept are also called role fillers. Number
restrictions apply to the number of role fillers that are required or allowed in a relation.
For example, a parent can be defined as a person having at least one child:

Person (child)

A DL representation is constructed from a ground set of atomic concepts and atomic
roles, which are simply asserted. Defined concepts and defined roles are then derived
from these atomic elements, using the set operations such as intersection, union, and
negation. Most DLs also allow existential and universal quantifiers, as in the above
examples. Note, however, that these quantifiers always apply to the role fillers only.

The fundamental inference operation in DL is subsumption, and is usually indicated
with subset notation. Concept A is said to subsume B, or A B when all members of
concept B are contained in the set of elements defined by concept A, but not vice
versa. That is, if B is a proper subset of A, then A subsumes B. This capability has far-
reaching repercussions for vocabulary and ontology developers, as it enables the
system to automatically classify newly introduced concepts. Moreover, correct
subsumption inferencing can be highly nontrivial, as this generally requires examining

∩
∧

→

∩

⊆

caCORE EVS API Technical Guide

14

all of the relationships defined in the system and the concepts that participate in those
relations.

Description Logic in the NCI Thesaurus
The NCI Thesaurus is currently developed using the proprietary Apelon, Inc.,
Ontylog™ implementation of description logic. Ontylog is distributed as a suite of tools
for terminology development, management, and publishing. Although the underlying
inference engine of Ontylog is not exposed, the implementation has the characteristics
of what is called an AL- (Attributive Language) or FL- (Frame Language) description
logic. It does not support atomic negation but does appear to provide all other basic
description logic functionality.

The NCI Thesaurus is currently edited and maintained in the Terminology Development
Environment (TDE) provided by Apelon. The TDE is an XML-based system that
implements the DL model of description logic based on Apelon's Ontylog Data Model.
The Data Model uses four basic components: Concepts, Kinds, Properties, and Roles.
Use of the Apelon TDE for editing and maintenance of the NCI Thesaurus will change
with the BioMedGT Wiki and Protégé 1.2 Tool Releases expected in early 2008.

As in other DL systems, concepts correspond to nodes in an acyclic graph, and roles
correspond to directed edges defining relations between concept members. Each
concept has a unique kind. Formally, kinds are disjoint sets of concepts and represent
major subdivisions in the NCI Thesaurus.

More concretely, kinds are used in the role definitions to constrain the domain and
range values for that role. Each role is a directed relation that defines a triplet
consisting of two concepts and the way in which they are related. The domain defines
the concept to which the role applies, and the range defines the possible values—in
other words, concepts that can fill that role. For example, the role geneEncodes might
have its domain restricted to the Gene_Kind and its range to the Protein_Kind. This role
then essentially states that Genes encode Proteins.

As in all DLs, all roles are passed from parent to child in the inheritance hierarchy. For
example, a Malignant Breast Neoplasm has the role located-in, connecting it to the
concept Breast. Thus, since the concept Breast Ductal Carcinoma is-a Malignant
Breast Neoplasm, it inherits the located_in relation to the Breast concept. These lateral
non-hierarchical relations among concepts are referred to as associative or semantic
roles, in contrast to the hierarchical relations that reflect the is-a roles. In the first-order
algebra upon which Ontylog DL is based, every defined relationship also has a defined
inverse relationship. For example, if A is contained by B, then B contains A. Inverse
relationships are useful and are expected by human users of ontologies. However, they
have a computational cost. If the edges connecting concept nodes are bi-directional,
then the computation quickly becomes intractable. Therefore in the Ontylog
implementation of DL, inverse relationships are not stored explicitly but computed on
demand.

Chapter 1: About the Enterprise Vocabulary Services and LexBIG

15

Concept Edit History in the NCI Thesaurus
One of the primary uses of the NCI Thesaurus is as a resource for defining tags or
retrieval keys for the curation of information artifacts in various NCI repositories.
However, since these tags are defined at a fixed point in time, they necessarily reflect
the content and structure of the NCI Thesaurus at that time only.

Given the rapidly evolving terminologies associated with cancer research, there is no
guarantee that the tags used at the time of curation in the repository will still have the
same definition in subsequent releases of the Thesaurus. In most cases the
deprecation or redefinition of a previously defined tag is not disastrous, but it may
compromise the completeness of the information that can be retrieved.

To address this issue, the EVS team has developed a history mechanism for tracing the
evolution of concepts as they are created, merged, modified, split, or retired. (In the
NCI Thesaurus, no concept is ever deleted.) The basic idea is that each time an edit
action is performed on a concept, a record is added to a history table. This record
contains information about relations that held for that concept at the time of the action.
It also contains other information such as the version number and time stamp that can
be use to reconstruct the state when the action was taken (Table 1.4).

Capturing the history data for a Split, Merge, or Retire action is more complicated. In a
Split, a concept is redefined by partitioning its defining attributes between two concepts,
one of which retains the original concept's code and one that is newly created. This
action is taken when ambiguities in the original concept's meaning require clarification
by narrowing its definition.

In the case of a Split, three history records are created: one for the newly created
concept (with a null Reference_Code), and two for the original concept that is being
split. In the first of these two records, the Reference_Code is the code for the new
concept; in the second, it is the code of the split concept (Figure 1.2).

Column Name Description

History_ID Unique consecutive number for use as the database primary key

Concept_Code Concept code for the concept currently being edited

Action Edit action: {Create, Modify, Split, Merge, Retire}

Baseline_Date Date of NCI Thesaurus Baseline (see the following discussion)

Reference_Code Shows the concept code of a second concept either participating in or
affected by the editor’s action. This captures critical information
concerning the affect of the edit actions on other concepts. The value
will always be null if the action is Create or Modify.

Table 1.4 Summary of information stored in the history table

caCORE EVS API Technical Guide

16

Figure 1.2 History records for the Split action

A Merge action are is similar to a Split. In a Merge, two ambiguous concepts must be
combined, and only one of the original concepts is retained. Like a Split action, the
Merge action creates three history records: two for the concept that will be retired
during the merge, and one for the retained concept. The Reference_Code in the history
record for the retained concept is the same as the Concept_Code; that is, the concept
points to itself as a descendant in the Merge action. The Reference_Code is null in one
of the entries for the retiring concept, while the second entry has the code of the
retained concept; thus, this Reference column points to the concept into which the
concept in the Concept_Code column is being merged.

Finally, if the action is Retire, there are as many history entries as the concept has
parent concepts. The Reference column in these entries contains the concept code of
the parent concepts—one parent concept per history entry. The motivation for this is
that end users with documents coded by such retired concepts may find a suitable
replacement among the concept's parents at the time of retirement.

The caCORE EVS APIs support concept history queries.

Working with the NCI Thesaurus

Downloading the NCI Thesaurus
You can download the NCI Thesaurus in several formats, including simple tab-delimited
ASCII and OWL (the Web Ontology Language). The files are available for download on
the NCICB download site.

The format of the ASCII flat file is extremely simple. For each concept, the download
file includes the following information:

The concept code: all terms have the “C” prefix, followed by the integer index;

The concept name: this name may contain embedded punctuation and spaces;

A pipe-delimited list of parent concepts, as identified in the NCI Thesaurus by
is-a relations;

A pipe-delimited list of synonyms, the first of which is the preferred name; and

One of the NCI definitions for the term, if one exists. Each of these separate
types of information is tab-delimited; within a given category, the individual
entries are separated by a pipe symbol (|). Only the third and fourth

http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl

Chapter 1: About the Enterprise Vocabulary Services and LexBIG

17

categories—i.e., the parent concepts and synonyms—have multiple entries
requiring the pipe separators.

Note that while much of the information available from the interactive Meta-
phrase server is included in the download, any information outside the NCI
Thesaurus description logic vocabulary (e.g., Diagnosis, Laboratory,
Procedures, etc.) is not.

The following example shows the contents of the flat file download for the term
Mercaptopurine:

If you want to use an encoded format rather than the simple ASCII form, download the
OWL encoding of the NCI Thesaurus, which is described in the next section.

C6 Mercaptopurine Immunosuppressants|Purine Antagonists

Mercaptopurine|1,3-AZP|1,7-Dihydro-6H-purine-6-thione|
3H-Purine-6-thiol|6

Thiohypoxanthine|6 Thiopurine|6-MP|6-Mercaptopurine|
6-Mercaptopurine

Monohydrate|6-Purinethiol|6-Thiopurine|6-Thioxopurine|
6H-Purine-6-thione,1,7-dihydro- (9CI)|6MP|
7-Mercapto-1,3,4,6-tetrazaindene|AZA|
Alti-Mercaptopurine|Azathiopurine|BW 57-323H|CAS

50442|Flocofil|Ismipur|Leukerin|Leupurin|MP|Mercaleukim|
Mercaleukin|Mercap|Mercaptina|Mercapto-6-purine|
Mercaptopurinum|Mercapurin|Mern|NCI-C04886|NSC755|
Puri-Nethol|Purimethol|Purine-6-thiol (8CI)|Purine-6-thiol

Monohydrate|Purine-6-thiol, Monohydrate|Purinethiol|Purinethol|
U-4748|WR-2785

An anticancer drug that belongs to the family of drugs called
antimetabolites.

caCORE EVS API Technical Guide

18

OWL Encoding of the NCI Thesaurus
OWL, as specified and proposed by the World Wide Web Consortium (W3C), is an
emerging standard for the representation of semantic content on the Web. Building on
the earlier groundwork laid by XML, the Resource Description Framework (RDF) and
RDF schema, and subsequently by DAML + OIL, OWL represents the culmination of
what has been learned from these previous efforts.

While XML provides surface syntax rules and XML schema provide methods for
validating a document's structure, neither can impose semantic constraints on how a
document is interpreted. RDF provides a data model for specifying objects (resources)
and their relations, and RDF schema allow us to associate properties with the individual
resources as well as taxonomic relations among the objects. Yet, even these
extensions could not provide the breadth and depth of representation needed to
encode nontrivial, real-world information. OWL adds vocabulary for describing arbitrary
non-hierarchical relations between classes, cardinality constraints, resource
equivalences, richer typing of properties, and enumerated classes.

A major focus of the W3C is the establishment of the Semantic Web, which is a far-
reaching infrastructure with the purpose of providing a framework whereby autonomous
self-documenting agents and Web services can exchange meaningful information
without human intervention (see http://www.w3.org/2001/sw/). OWL is the first step
towards realizing this vision.

Because of collaborative efforts with Dr. James Hendler and the University of Maryland,
the NCI Thesaurus is now available for download in OWL format. This section
describes the mapping of the NCI Thesaurus to OWL format, which proceeds via the
Ontylog XML elements declared in Apelon's Ontylog DTD. The four basic elements are
kinds, concepts, roles, and properties, each described in the following list:

Kinds are the top-level superclasses in the Thesaurus. They enumerate the
different possible categories of all concepts and include such things as
Anatomy, Biological Processes, Chemicals and Drugs. Each NCI Thesaurus
kind is converted to an owl:Class.

An NCI Thesaurus concept describes a specific concept under one of the kind
categories. Each NCI Thesaurus concept is converted to an owl:Class.

Roles capture how concepts relate to one another. Generally, roles have
restricted domains and ranges, which limit the sets of concepts that can
participate in the role according to their categories (e.g., kinds). The defining
roles within a concept definition provide these local restrictions on the ranges of
roles. Each NCI Thesaurus role is converted to an owl:ObjectProperty.

NCI Thesaurus properties encode the attributes that pertain to a class; they
contain metadata that describes the class, but not its instantiations or
subclasses. Each NCI Thesaurus property is converted to an
owl:AnnotationProperty.

Most of the NCI Thesaurus comprises concept definitions. This is also where the most
complex semantics occur. Each concept in the Thesaurus has three main types of
associated data: defining concepts, defining roles, and properties. A defining concept is
essentially a superclass; the defined concept in OWL has an rdfs:subClassOf
relationship to the defining concept.

http://www.w3.org/2001/sw/

Chapter 1: About the Enterprise Vocabulary Services and LexBIG

19

The defining roles and properties are mapped as described above. The owl:Annotation-
Property is actually a subclass of rdf:Property, and, like rdfs:comment and rdfs:label,
can be attached to any class, property, or instance. This allows properties from the
Thesaurus to be associated directly with a concept's corresponding class without
violating the rules of OWL.

In addition to any explicitly named properties, each element in the Thesaurus also has
a uniquely defined code and id attribute associated with it. These are used as unique
identifiers in the Apelon development software and, as such, are not defined explicitly
as roles or properties. In mapping these identifying attributes to OWL, we have treated
these as special cases of the explicit property elements. Just like other properties in the
Thesaurus, they are mapped as owl:AnnotationProperties. Table 1.5 on page 19
summarizes the mapping of elements in the Ontylog DTD to OWL elements.

Ontylog Name Conversion
In mapping to OWL, all Ontylog concept names must be converted to proper RDF
identifiers (rdf:id) following the RDF naming rules. This is achieved by removing any
spaces in the original names and substituting all illegal characters with underscores.
Names that begin with numbers are also prefixed with underscores to make them legal.
The original concept name however, is preserved as an rdfs:label.

The process of converting names follows these steps:

1. Replace any plus sign characters (“+”) with the word plus.

2. Prefix all role names are prefixed with the letter “r” to ensure that roles and
properties with the same name do not clash.

3. Replace any characters that are not alphanumeric with an underscore (“_”).

4. Prefix all names that have leading digits with an underscore.

5. Replace multiple adjacent underscores in the corrected name with a single
underscore.

Ontylog Element OWL Element Comment

kindDef owl:Class

roleDef owl:ObjectProperty

propertyDef owl:AnnotationProperty

conceptDef owl:Class

name* rdf:ID Applies to the name sub-element of
kindDef, roleDef, propertyDef, and
conceptDef.

name rdfs:label Because the conceptDef name
contains some useful semantics, the
original form is retained as an
rdfs:label. No other name elements
are retained in rdfs:label.

Table 1.5 Ontylog DTD to OWL Conversions

caCORE EVS API Technical Guide

20

Note: Name Ontology elements are converted to rdf:ID as described in the Ontylog Name
Conversion section. namespaceDef and namespace elements are not mapped to OWL.

Additional information about Ontylog encoding is available in the Ontylog DTD, which
can be downloaded from the NCICB EVS FTP site along with the zipped ASCII flat file
and the Ontylog XML encoding. The current OWL translation of the NCI Thesaurus
contains over 500,000 triples and is available in zipped format from the FTP site, as
well as in unzipped format at http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl, the
mindswap Web site for download or online viewing.

Code owl:AnnotationProperty Defined as an
owl:AnnotationProperty with
rdf:ID="code". Code values remain
the same for each concept.

ID owl:AnnotationProperty Defined as an
owl:AnnotationProperty with
rdf:ID="ID". ID values remain the
same for each concept.

definingConcepts rdfs:subClassOf The concept supplement of
definingConcepts is mapped to the
rdf:resource attribute of the
rdfs:subClassOf element.

Domain rdfs:domain

Range rdfs:range

definingRoles / role / name owl:onProperty definingRoles are converted to OWL
restrictions on properties. The name
child element of definingRoles/role is
taken as the rdf:resource attribute of
the owl:onProperty element.

definingRoles / role / name owl:someValuesFrom definingRoles are converted to OWL
restrictions on properties. The value
child element of definingRoles/role is
taken as the rdf:resource attribute of
the owl:someValuesFrom element.

Ontylog Element OWL Element Comment

Table 1.5 Ontylog DTD to OWL Conversions

http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl
http://ncicb.nci.nih.gov/

Chapter 1: About the Enterprise Vocabulary Services and LexBIG

21

Ontylog Mappings

Mapping of Gene Ontology to Ontylog
The LexBIG Terminology Server provides access to the Gene Ontology™ Consortium's
(GO) controlled vocabulary. The GO ontologies are widely used, most likely because of
their simple design and their potential for automated transfer of biological
annotations—from model organisms to more complex organisms—based on sequence
similarities.

GO comprises three independent controlled vocabularies (ontologies) encoding
biological process, molecular function, and cellular components for eukaryotic genes.
GO terms are connected by two relations, is-a and part-of, which define a directed
acyclic graph. Although concepts in the ontologies were initially derived from only three
model systems (yeast, worm, and fruit fly), the goal was to encode concepts in such a
way that the information is applicable to all eukaryotic cells. Thus, GO vocabularies do
not represent species-specific anatomies, as this would not support a unifying
reference for species-divergent nomenclatures.

Each month, the NCI will load the latest version of GO into a test instance of the DTS
server and, following validation in the Ontylog environment, will promote it to a
production server for programmatic access by NCI applications. The NCI converts GO
into the Ontylog XML representation (necessary for import into the DTS server) using a
stylesheet transformation followed by some post-processing to satisfy Ontylog
constraints. The NCI intends to ensure that the version of GO on the DTS server will
not be more than a month behind the current version available from http://
www.geneontology.org. However, skipping releases might be necessary if unforeseen
complications arise.

Table 1.6 and Table 1.7 summarize the encoding of GO elements into Ontylog.

Ontology Element Instance Name (and optional description)

namespaceDef GO

kindDef GO_Kind

roleDef part-of
This role is unused, but the software required that at least one role be
declared.

propertyDef Preferred_Name

propertyDef Synonym

propertyDef DEFINITION

propertyDef Dbxref
Complex property containing two XML GO entitites:
go:database_symbol and go:reference. These entities respectively use
the following tags: database_symbol and reference.

Table 1.6 Ontylog elements used for GO mapping

http://www.geneontology.org
http://www.geneontology.org

caCORE EVS API Technical Guide

22

The go:name stored in Preferred_Name is as declared in GO. However, the go:name
used in the Ontylog name might have been modified during the conversion process by
appending underscores to make the Ontylog name unique.

Mapping of MedDRA to Ontylog

Vocabulary Hierarchy Structure
The Ontylog version of MedDRA reflects the native hierarchy with terms organized
according to their term type, as shown in Figure 1.3.

SOC (System Organ Class)

|__ HLGT (High Level Group Term)

|__ HLT (High Level Term)

|__ PT (Preferred Term)

|__LLT (Lowest Level Term)

Figure 1.3 Hierarchy of MedDRA

The Special Search Categories (SSC) are under the concept AssociativeTerm-
Group(SSCs), which the EVS created as a header concept for the SSC terms to be
grouped together. All the System Organ Class (SOC) concepts, as well as the top
header concept for the SSCs, are under the MedDRA[V-MDR] root node. Although Low
Level Terms (LLTs) can have any type of relationship to their Preferred Term (PT) (for
example, a synonym of the PT), the Ontylog version presents them all as children
concepts. The Associative Term Group (SSCs) concept has a special code and term
type not found in MedDRA to distinguish it from other terms in the vocabulary.

propertyDef part-of
Complex property containing two XML GO entities: go:name and
go:accession. These entities respectively use the following tags: go-
term and go-id.

GO term element conceptDef element (propertyDef)

go:accession Code

go:name Name

go:isa definingConcepts

go:name Property Preferred_Name

go:synonym Property Synonym

go:definition Property DEFINITION

go:part-of Property part-of

go:dbxref Property dbxref

Table 1.7 Mapping of GO term to Ontylog conceptDef

Ontology Element Instance Name (and optional description)

Table 1.6 Ontylog elements used for GO mapping (Continued)

Chapter 1: About the Enterprise Vocabulary Services and LexBIG

23

Concept Codes and Names
The concept name is created from the MedDRA term followed by the MedDRA code
enclosed in brackets. The Ontylog concept name must be unique so that including the
code in the name guarantees uniqueness. For display purposes, the property
Preferred_Name should be used instead of the concept name; it contains the
unadorned MedDRA term. The Ontylog concept code is the MedDRA code.

Roles
A single role has been defined. The role has_associated_term is used to relate SSC
top-level categories with their associated PT terms. All the concepts in the vocabulary
are primitive.

Properties
Table 1.8 shows the properties defined for MedDRA 6 in Ontylog. It also indicates their
provenance in the MedDRA distribution. Properties that are not derived directly from
MedDRA show a dash in the MedDRA Entity column.

Of the MedDRA-derived properties, only Cross-reference is not a straightforward
name-value pair. This property has subfields encoded in XML. The XML elements are
source and source code, where the source code contains a code or symbol assigned
by an external vocabulary source to a specific term.

Two properties are not derived from MedDRA: NCI_META_CUI and UMLS_CUI. These
properties contain the Concept Unique Identifier (CUI) of concepts in the NCI
Metathesaurus containing MedDRA terms. The property name indicates whether the
CUI is assigned to the concept by Unified Medical Language System (UMLS) or by the
NCI. The Term_Type property is indirectly derived from MedDRA and indicates the
hierarchy level of a term with the term types as shown in Figure 1.3. In addition, the
term type for Obsolete Lower Level Terms (OLLT) is also used.

Ontology Property MedDRA Entity

Code_in_Source MedDRA code (llt_code, pt_code, hlt_code,
etc.)

Cross-reference, cross reference to
WHOART

COSTART, ICD9-CM, and so forth

Descriptor_ID pt_code of an LLT

MedDRA_Abbreviation soc_abbrev, spec_abbrev

NCI_META_CUI -

Preferred_Name MedDRA name (llt_name, pt_name,
hlt_name, and so forth)

Primary_SOC pt_soc_code of a PT

Serial_Code_International_SOC_Sort_Order intl_ord_code

Term_Type -

UMLS_CUI -

Table 1.8 Properties defined in the Ontylog version of MedDRA

caCORE EVS API Technical Guide

24

Mapping of MGED Ontology to Ontylog
The native MGED Ontology (MO) is edited in OilEd and distributed in the Defense
Advanced Research Projects Agency (DARPA) Agent Markup Language (DAML) +
Ontology Inference Layer (OIL) XML format. DAML+OIL can be converted to the
Ontylog Description Logic (DL) in a relatively straightforward manner. However, some
valid DAML+OIL constructions cannot be represented in Ontylog DL, including
enumerations and specific combinations of ObjectProperties that result in classification
cycles in Ontylog.

In MO version 1.1.9, two ObjectProperties have been asserted near the top of the
hierarchy on the MGEDCoreOntology class. On conversion to Ontylog, these
assertions generate classification cycles; however, the data cannot be massaged as
was done in preliminary conversions with previous versions of MO because the fix
would have required modifications to every converted concept. Consequently,
beginning with MO v 1.1.9, all the ObjectProperties in DAML+OIL are converted to
Ontylog properties (rather than Ontylog roles), which are annotations ignored by the
classifier.

Vocabulary Hierarchy Structure
The Ontylog conversion preserves the MO class hierarchy structure. One minor
difference is that the Ontylog concept hierarchy also represents MO class instances,
since there is no distinction between classes and instances in Ontylog. A non-MO, top-
level concept, OrphanConcepts has been added in the Ontylog representation to hold
MO instances of Thing.

Concept IDs, Codes, and Names
MO classes and instances are identified solely by their name; no codes or numeric IDs
are assigned. For the conversion to Ontylog, MO class or instance names are retained
as concept names.

As Ontylog concepts also require unique codes and IDs, a code and an ID are created
during the conversion. The ID reflects the position of the class or instance in the XML
tree. The code is derived from the ID by adding the prefix X-MO-; therefore, the code is
not guaranteed to remain invariant from version to version of the MO. A mapping table
is available whenever the MO is updated.

Roles
No roles have been defined. All concepts are primitive.

Properties
All the object and datatype properties defined in MO have been converted to Ontylog
properties. With the exception of has_reason_for_deprecation and has_database, all
the properties have been manually propagated to children concepts in the database to
mimic the expected role inheritance. In addition, new properties have been defined as
shown in Table 1.9.

Chapter 1: About the Enterprise Vocabulary Services and LexBIG

25

The Preferred_Name property is recommended for display purposes, while Synonym is
recommended for searches by dependent applications. (Even though the value of both
properties is the same, the EVS tries to maintain a certain consistency in the usage of
properties for the benefit of all users.) The Concept_Type property holds one of two
values: mged_class, or mged_instance.

About LexBIG
caCORE EVS is the adopter site for the open source, public domain terminology server
LexBIG, developed by the Mayo Clinic as part of the caBIG Program. The goal of
caCORE EVS is to adopt LexBIG as the sole terminology server infrastructure for the
EVS.

The Apelon DTS server is a proprietary server that does not allow exposure of the API.
As a result, caCORE EVS 3.2 and earlier versions have provided a custom API that
communicates directly with the DTS Server and is publicly available. The caCORE EVS
4.0 release begins the transition to LexBIG by re-exposing the caCORE EVS 3.2
custom API with LexBIG as the back-end terminology server. Additionally, the caCORE
EVS 3.2 API will continue to be supported for approximately one year. This gives users
who have implemented the caCORE EVS 3.2 API time to plan for the retirement of the
Apelon DTS server by the NCI EVS team.

LexBIG is based on the LexGrid Model, Mayo’s proposal for standard storage of
controlled vocabularies and ontologies. The LexGrid Model defines how vocabularies
should be formatted and represented programmatically, and it is intended to be flexible
enough to accurately represent a wide variety of vocabularies and other lexically based
resources. The model also defines several different server storage mechanisms such
as relational databases, LDAP, and XML format.

The LexGrid Model provides the core representation for all data managed and retrieved
through the LexBIG system. It is now rich enough to represent vocabularies provided in
numerous source formats, including Open Biomedical Ontologies (OBO), Web
Ontology Language (OWL), and the Unified Medical Language System (UMLS) Rich
Release Format (RRF). This common model is a critical component of the LexGrid
project. Once disparate vocabulary information can be represented in a standardized
model, users can build common repositories to store vocabulary content and common
programming interfaces and tools to access and manipulate that content.

Ontylog Property MGED Ontology Entity

DEFINITION rdfs:comment value

Preferred_Name rdf:about value

Synonym rdf:about value

Concept_Type -

Table 1.9 New properties defined in the Ontylog version of the MGED ontology

http://informatics.mayo.edu/LexGrid/index.php?page=lgm
http://obo.sourceforge.net/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.nlm.nih.gov/research/umls/meta2.html
http://www.nlm.nih.gov/research/umls/meta2.html

caCORE EVS API Technical Guide

26

LexBIG has three major components:

Service management tools to load, index, and manage vocabulary content for
the vocabulary server;

an API providing Java interfaces to various functions, including lexical queries,
graph representation and traversal, and NCI change event history; and

a Graphical User Interface providing access to service management and API
functions.

The LexBIG API enables querying information stored in the LexGrid model. Similar
APIs have been developed for LexBio that are used at the National Center for
Bioontologies (NCBO). The NCI EVS has adopted and modified the NCBO’s BioPortal
as a Web browser for LexBIG. You can access the NCI BioPortal at http://
bioportal.nci.nih.gov.

To summarize, LexBIG provides the following features:

A robust, scalable, open source implementation of EVS-compliant vocabulary
services. The API specification will be based on, but not limited to, fulfillment of
the caCORE EVS API. The specification will be further refined to accommodate
changes and requirements based on prioritized needs of the caBIG™
community.

A flexible implementation for vocabulary storage and persistence, allowing for
alternative mechanisms without affecting client applications or end users. Initial
development will focus on delivery of open source, freely available solutions,
though this does not preclude the ability to introduce commercial solutions such
as Oracle.

A standard tool for loading and distributing vocabulary content. This includes,
but is not limited to, support of standardized representations such as UMLS
Rich Release Format (RRF), OWL, and Open Biomedical Ontologies (OBO).

http://www.bioontology.org/ncbo/faces/pages/ontology_list.xhtml
http://bioportal.nci.nih.gov
http://bioportal.nci.nih.gov
http://www.bioontology.org/
http://www.bioontology.org/

27

CHAPTER

2
ABOUT CACORE

This chapter provides an overview of the NCICB caCORE infrastructure.

Topics in this chapter:

Architecture Overview on this page

Components of caCORE on page 28

Architecture Overview
The NCI Center for Bioinformatics (NCICB) provides biomedical informatics support
and integration capabilities to the cancer research community. The NCICB has created
a core infrastructure called Cancer Common Ontologic Representation Environment
(caCORE), a data management framework designed for researchers who need to be
able to navigate through a large number of data sources.

By providing a common data management framework, caCORE helps streamline the
informatics development throughout academic, government, and private research labs
and clinics. The components of caCORE support the semantic consistency, clarity, and
comparability of biomedical research data and information. caCORE is open-source
enterprise architecture for NCI-supported research information systems, built using
formal techniques from the software engineering and computer science communities.

The four characteristics of caCORE include

Model Driven Architecture (MDA)

n-tier architecture with open Application Programming Interfaces (APIs)

Use of controlled vocabularies, wherever possible

Registered metadata

The use of MDA and n-tier architecture, both standard software engineering practices,
enables easy access to data by other applications. The use of controlled vocabularies

caCORE EVS API Technical Guide

28

and registered metadata, less common in conventional software practices, requires
specialized tools that are generally unavailable.

As a result, the NCICB (in cooperation with the NCI Office of Communications) has
developed the Enterprise Vocabulary Services (EVS) system to supply controlled
vocabularies, and the Cancer Data Standards Repository (caDSR) to provide a
dynamic metadata registry.

When a system meets all four development characteristics listed earlier in this section,
it is said to be “caCORE-like.” Such systems provide several advantages:

With its open APIs, the n-tier architecture frees the end user (whether human or
machine) from having to understand the implementation details of the
underlying data system to retrieve information.

The maintainer of the resource can move the data or change implementation
details without affecting the ability of remote systems to access the data.

Most importantly, the system is semantically interoperable; it uses runtime-
retrievable information to provide an explicit definition and complete data
characteristics for each object and attribute that can be supplied by the data
system.

Components of caCORE
The components that comprise caCORE are EVS, caDSR, caBIO, CSM, and CLM. The
following subsections provide a brief description of each component.

Enterprise Vocabulary Services (EVS)
EVS provides controlled vocabulary resources that support the life sciences domain,
implemented in a description logics framework. EVS vocabularies provide the semantic
raw material from which data elements, classes, and objects are constructed.

Cancer Data Standards Repository (caDSR)
The caDSR is a metadata registry based upon the ISO/IEC 11179 standard. It is used
to register the descriptive information needed to render cancer research data reusable
and interoperable. The caBIO, EVS, and caDSR data classes are registered in the
caDSR, as are the data elements on NCI-sponsored clinical trials case report forms.

Cancer Bioinformatics Infrastructure Objects (caBIO)
The caBIO model and architecture is the primary programmatic interface to caCORE.
Each of the caBIO domain objects represents an entity found in biomedical research.

Unified Modeling Language™ (UML) models of biomedical objects are implemented in
Java as middleware connected to various cancer research databases to facilitate data
integration and consistent representation. Examining the relationships between these
objects can reveal biomedical knowledge that was previously buried in various primary
data sources.

Chapter 2: About caCORE

29

Common Security Model (CSM)
The Common Security Model (CSM) provides a flexible solution for application security
and access control with three main functions:

Authentication to validate and verify a user's credentials

Authorization to grant or deny access to data, methods, and objects

User Authorization Provisioning to allow an administrator to create and assign
authorization roles and privileges.

Common Logging Module (CLM)
The Common Logging Module (CLM) provides a separate service under caCORE for
audit and logging capabilities. It also comes with a Web-based locator tool.

Client applications can use the CLM directly, without the application using any other
components such as the CSM.

About the caCORE 4.0 Release Paradigm
In September 2007, the NCICB Infrastructure and Product Management Team made
the decision to separate the caCORE Components that had previously been bundled
and released together. This decision was geared toward allowing each of the
infrastructure product teams to be more responsive in addressing specific needs of the
user community. caCORE EVS is the first component to release under the new release
paradigm. With each component release there is a product-specific technical guide.

This guide focuses on the EVS component of caCORE 4.1, a minor release addressing
defects and feature requests. For more details on the other components, refer to the
caCORE Overview page at http://ncicb.nci.nih.gov/NCICB/infrastructure/
cacore_overview, which directs you to other product-specific technical guides.

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview

caCORE EVS API Technical Guide

30

31

CHAPTER

3
ABOUT THE

CACORE EVS ARCHITECTURE
This chapter describes the architecture of the caCORE EVS. It includes information
about the client-server communication and describes the system software packages.

Topics in this chapter:

caCORE EVS System Architecture on this page

Client Technologies on page 33

caCORE EVS Software Packages on page 34

caCORE EVS System Architecture
The caCORE EVS infrastructure exhibits an n-tiered architecture with client interfaces,
server components, back-end objects, and additional back-end systems (Figure 3.1).
This n-tiered system divides tasks or requests among different servers and data stores.
This isolates the client from the details of where and how data is retrieved from the
LexBIG terminology server.

Clients such as browsers and applications receive information from back-end objects.
Java applications also communicate with back-end objects via domain objects
packaged within the EVS Client Archive (JAR file). Non-Java applications can
communicate via SOAP (Simple Object Access Protocol). Back-end objects
communicate directly with the LexBIG API.

Most of the caCORE EVS infrastructure is written in the Java programming language
and leverages reusable, third-party components. Figure 3.1 (page 32) illustrates the
architectural overview.

caCORE EVS API Technical Guide

32

Figure 3.1 caCORE EVS architecture

The caCORE EVS infrastructure is composed of the layers described in Table 3.1.

Layer Description

Application Service Consolidates incoming requests from the various interfaces and
translates them to native query requests that are then passed to
the data layers. All interfaces provide full, anonymous, read-only
access to all data.

Data Source Delegation Conveys each query that it receives to the respective LexBIG
Service objects that can perform the query.

Object-Object Mapping
(OOM)

Following the façade design pattern, provides an additional
interface layer that enables access to a large number of modules
and functions in the caCORE EVS system.

LexBIG Service API Comprises four primary subsystems:
Service Management provides administration control for
loading a vocabulary and activating a service.
Service Metadata provides external clients with information
about the vocabulary content (the NCI Thesaurus) and
appropriate licensing information.
Query Operations provide numerous functions for querying
and traversing vocabulary content.
Extensions provides a mechanism to extend the specific
service functions, such as Loaders, or re-wrap specific query
operations into convenience methods.

 The LexBIG Service is designed to run standalone or as part of a
larger network of services. For more information refer to the
LexBIG Programmer’s Guide.

Table 3.1 caCORE infrastructure layers

http://gforge.nci.nih.gov/frs/download.php/2440/LexBIG-programmers-guide-2.1.1.pdf

Chapter 3: About the caCORE EVS Architecture

33

Client Technologies
Applications that use the Java programming language can access EVS directly through
the domain objects provided by the EVS Client Archive (see Chapter 4). The network
details of the communication to the caCORE EVS server are transparent to developers,
preventing them from having to deal with issues such as network and database
communication and enabling them to concentrate on the biological problem domain.

The caCORE EVS system also enables non-Java applications to use SOAP clients to
interface with caCORE EVS Web services. SOAP is a lightweight, XML-based protocol
for the exchange of information in a decentralized, distributed environment. It consists
of an envelope that describes the message and a framework for message transport.
caCORE EVS uses the open source Apache Axis package to provide SOAP-based
Web services to users. This allows other languages such as Python or Perl to
communicate with caCORE EVS objects in a straightforward manner.

The caCORE EVS architecture includes a presentation layer that uses the technologies
described in Table 3.2.

Communication between the client interfaces and the server components occurs over
the Internet using the HTTP protocol. The server components are deployed in a Web
application container as a Web archive (.war) file that communicates with the LexBIG
terminology server.

Technology Description

J2SE application server Tomcat or JBoss

Java Server Pages
(JSPs)

Web pages that have Java embedded in the HTML and can
incorporate dynamic content in the page.

Java servlets Server-side Java programs that Web servers can run to generate
content in response to client requests.

JavaBeans Reusable software components that work with Java.

Table 3.2 caCORE EVS presentation layer technologies

caCORE EVS API Technical Guide

34

caCORE EVS Software Packages
The caCORE EVS software comprises several domain and system packages.
The following subsections discuss both package categories.

Domain Packages
Table 3.3 describes several Java domain packages that are a significant part of the
caCORE EVS software.

Figure 3.2 caCORE EVS packages

Package Description

caCORE EVS domain
(gov.nih.nci.evs.domain)

Provides access to the Java 3.2 interfaces and classes such as
DescLogicConcept and MetaThesaurusConcept
(Figure 3.2). For a complete list of domain objects, see the EVS
3.2 Object Model.

query
(gov.nih.nci.evs.query)

Contains classes that facilitate a custom query mechanism for
EVS domain objects. This package is discussed in Chapter 4,
Interacting with caCORE EVS, on page 37.

lexbig
(gov.nih.nci.lexbig)

Contains the Distributed LexBIG (DLB) Adapter classes
described in Table 3.4 on page 35.

Table 3.3 caCORE EVS domain packages

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/EA/EVS3-2Model/index.htm
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/EA/EVS3-2Model/index.htm

Chapter 3: About the caCORE EVS Architecture

35

System Packages
In addition to domain packages, the caCORE EVS API specification includes several
system packages. A system package contains several subpackages, including

a lib folder that holds the third-party libraries required to deploy the system,
and

a src folder that contains the bulk of the EVS system code; the subpackages in
this folder include the EVSQuery classes, the Distributed LexBIG Adapter
(DLBAdapter) classes, and the system package.

The system package includes the following types of subpackage:

application service package (described in Client Technologies on page 33)

data access package

delegate/service locator package

proxy package

Web service package.

Table 3.4 describes several key system packages.

Package Description

EVS Query
(gov.nih.nci.evs.query)

Contains the evsQuery and evsQueryImpl Java
interface and class.

DLBAdapter
(gov.nih.nci.lexbig.ext)

Contains the DLBAdapter classes. These
convenience methods are used to supplement access
to the Distributed LexBIG API (described in Chapter 4).

Data Access
(gov.nih.nci.system.dao)

Layer at which the query is parsed from objects to the
native query, the query is executed, and the result sets
are converted back to domain objects results. This
layer has implementation for external data access
layer for querying other subsystems. It also contains
the security objects required to support the controlled
access requirements to the MedDRA data source.

Proxy Interface
(gov.nih.nci.system.client.proxy)

Serves as the gateway for requests from Java and
platform-independent Web service clients.

Web Service
(gov.nih.nci.system.webservice)

Contains the Web service wrapper class that uses
Apache’s Axis.

Web
(gov.nih.nci.system.web)

Contains useful utilities.

Table 3.4 caCORE EVS system packages

caCORE EVS API Technical Guide

36

37

CHAPTER

4
INTERACTING WITH CACORE EVS

This chapter describes the components of the caCORE EVS and the service interface
layer provided by the EVS API architecture. It gives examples of how to use the EVS
APIs. It also describes the Distributed LexBIG API and the Distributed LexBIG Adapter.

Topics in this chapter:

caCORE EVS Components on page 38

EVS 3.2 Object Model on page 39

EVS 3.2 Domain Object Catalog on page 40

EVS Data Sources on page 41

Installing and Configuring the EVS 3.2 Java API on page 41

Search Paradigm on page 47

About EVSQuery and EVSQueryImpl on page 48

Web Services API on page 55

XML-HTTP API on page 62

About the XMLUtility Class on page 65

Distributed LexBIG API on page 67

Distributed LexBIG Adapter Example of Use on page 71

caCORE EVS API Technical Guide

38

caCORE EVS Components
The caCORE EVS API is a public domain, open source wrapper that provides full
access to the LexBIG Terminology Server. LexBIG hosts the NCI Thesaurus, the NCI
Metathesaurus, and several other vocabularies. Java clients accessing the NCI
Thesaurus and Metathesaurus vocabularies communicate their requests via the open
source caCORE EVS APIs, as shown in Figure 4.1.

Figure 4.1 Overview of the caCORE EVS 4.0 release components

The open source interfaces provided as part of caCORE EVS 4.x include Java APIs, a
SOAP interface, and an HTTP REST interface. The Java APIs are based on the EVS
3.2 object model and the LexBIG Service object model.

The EVS 3.2 model, exposed as part of caCORE 3.2, has been re-released with
LexBIG as the back-end terminology service in place of the proprietary Apelon DTS
back end. The SOAP and HTTP REST interfaces are also based on the 3.2 object
model. The SDK 4.0 was used to generate the EVS 3.2 Java API, as well as the SOAP
and HTTP REST interfaces.

The only difference between the EVS 3.2 API exposed as part of the caCORE EVS 4.x
and the API exposed as part of caCORE 3.2 is the back-end terminology server used to
retrieve the vocabulary data. The interface (API calls) are the same and should only
require minor adjustments to user applications.

Note: You cannot integrate caCORE 3.2 components with caCORE EVS 4.x. If you used
multiple components of caCORE 3.2 (for example, EVS with caDSR), you need to
continue to work with the caCORE 3.2 release until the other caCORE 4.0 components
are available.

The LexBIG object model was developed by the Mayo Clinic. In its native form, the
associated API assumes a local, non-distributed means of access. With caCORE EVS
4.x, a proxy layer enables EVS API clients to access the native LexBIG API from
anywhere without having to worry about the underlying data sources. This is called the
Distributed LexBIG (DLB) API.

Chapter 4: Interacting with caCORE EVS

39

The DLB Adapter is another option for caCORE EVS 4.x clients who choose to
interface directly with the LexBIG API. This is essentially a set of convenience methods
intended to simplify the use of the LexBIG API. For example, a series of method calls
against the DLB API might equate to a single method call to the DLB Adapter.

Note: The DLB Adapter is not intended to represent a complete set of convenience methods.
As part of the caCORE EVS 4.x release, the intention is that users will work with the
DLB API and suggest useful methods of convenience to the EVS Development Team.

EVS 3.2 Object Model
The EVS 3.2 Java API is based on the EVS 3.2 object model. The UML Class diagram
(object model) in Figure 4.2 provides an overview of the EVS 3.2 domain object
classes. The DescLogicConcept and MetaThesaurusConcept are two central
Concept classes in the model, with most of the other classes organized around these
entities. The Vocabulary and SecurityToken classes were added as part of the
caCORE 3.2 release. The SecurityToken class can be used to specify security
credentials such as username, password, and security token.

The DAO Security model provides data level security to vocabularies. The
MedDRASecurity class, which implements the DAOSecurity interface, validates a
token against the MedDRA vocabulary and prevents unauthorized users from
performing any queries against MedDRA. To access MedDRA using the EVS 3.2 Java
API, users must obtain a valid token from the NCICB.

Figure 4.2 caCORE EVS 3.2 Java API domain object classes

caCORE EVS API Technical Guide

40

Note: Since the EVS API is generated using the SDK, note that the EVS API diverges
somewhat from the other caCORE domain models (caDSR and caBIO) in its search
mechanisms. While the other APIs have direct access to their databases, the EVS API
does not. Since all EVS queries are passed through the LexBIG APIs, the search and
retrieval capabilities are effectively proscribed by the features implemented by the
open terminology server.

EVS 3.2 Domain Object Catalog
The caCORE EVS domain objects are implemented as JavaBeans in the
gov.nih.nci.evs.domain package. The only interface implemented by the EVS
domain objects is java.io.serializable.

Table 4.1 lists and describes each class. For more detailed descriptions about each
class and its methods, see the caCORE EVS 4.1 JavaDocs.

EVS Domain Object Description

Association Relates a concept or a term to another concept or term.
Association has three categories:

concept association
term association
synonyms (concept-term associations)

Atom An occurrence of a term in a source.

AttributeSetDescript
or

Set of concept attributes that should be retrieved by a given
operation.

Definition Textual definition from an identified source.

DescLogicConcept Fundamental vocabulary entity in the NCI Thesaurus.

EdgeProperties Specifies the relationship between a concept and its
immediate parent when a DefaultMutableTree is generated
using the getTree method.

EditActionDate Stores edit action and date information. This class is
deprecated and will be removed from a future release. Use
the History class instead.

History Stores concept history information.

HistoryRecord Stores the DescriptionLogicConcept code.

MetaThesaurusConcept Fundamental vocabulary entity in the NCI Metathesaurus.

Property Attribute of a concept. Examples of properties are Synonym,
Preferred_Name, and Semantic_Type.

Qualifier Attached to associations and properties of a concept.

Role Entity that defines a relationship between two concepts.

SemanticType Category defined in the semantic network. A semantic type
can be used to group similar concepts.

Table 4.1 caCORE EVS domain objects and descriptions

http://gforge.nci.nih.gov/frs/download.php/2704/evsapi4.0_JavaDocs.zip

Chapter 4: Interacting with caCORE EVS

41

EVS Data Sources
The EVS data source is the open source LexBIG terminology server. EVS clients
interface with the LexBIG API to retrieve desired vocabulary data. The EVS provides
the NCI with services and resources for controlled biomedical vocabularies, including
the NCI Thesaurus and the NCI Metathesaurus.

NCI Thesaurus
The NCI Thesaurus is composed of over 27,000 concepts represented by about 78,000
terms. The Thesaurus is organized into 18 hierarchical trees covering areas such as
Neoplasms, Drugs, Anatomy, Genes, Proteins, and Techniques. These terms are
deployed by the NCI in its automated systems for uses such as key wording and
database coding.

NCI Metathesaurus
The NCI Metathesaurus maps terms from one standard vocabulary to another,
facilitating collaboration, data sharing, and data pooling for clinical trials and scientific
databases. The Metathesaurus is based on the Unified Medical Language System
(UMLS) developed by the National Library of Medicine (NLM). It is composed of over
70 biomedical vocabularies.

Installing and Configuring the EVS 3.2 Java API
The EVS 3.2 Java API bundled with the caCORE EVS 4.x release provides direct
access to domain objects and all service methods. Because caCORE EVS is natively
built in Java, this API provides the fullest set of features and capabilities.

The EVS API home page provides a user interface (UI) to the Java API. The interface is
available at http://evsapi.nci.nih.gov/evsapi40.

Silo A repository of customized concept terminology data from a
knowledge base. Single silo or multiple silos can exist, with
each silo consisting of semantically related concepts and
extracted character strings associated with those concepts.

SecurityToken Stores security information for a vocabulary.

Source A knowledge base.

TreeNode Specifies the relationship between a concept and its
immediate parent when a DefaultMutableTree is
generated using the getTree method. This class is
deprecated and will be removed from a future release. Use
EdgeProperties instead.

Vocabulary Vocabulary entity or namespace.

EVS Domain Object Description

Table 4.1 caCORE EVS domain objects and descriptions (Continued)

http://evsapi.nci.nih.gov/evsapi40

caCORE EVS API Technical Guide

42

Note: The caCORE 3.2 release also provides an EVS 3.2 Java client API. The difference
between the 3.2 and the 4.x clients is the back‐end terminology server. caCORE 3.2 uses
the proprietary Apelon DTS and caCORE EVS 4.x uses LexBIG. The API is the same
and should only require minor updates to a client application wanting to migrate to the
EVS 3.2 Java API provided with caCORE EVS 4.x.

Software Requirements
The caCORE EVS Java 3.2 API uses the following software on the client machine
(Table 4.2).

Downloading the Java API Client Package
The client package is available on the NCICB Web site. To download it, follow these
steps:

1. Using your browser, go to http://ncicb.nci.nih.gov.

2. On the left navigation bar of the NCICB welcome page, click the more link to the
right of the DOWNLOADS category (Figure 4.3).

Figure 4.3 Downloads section of the NCICB Web site

Software Version Required?

Java 2 Platform Standard Edition Software 5.0
Development Kit (JDK 5.0)

1.5.0 or higher Yes

Apache Ant 1.6.5 or higher Yes

Table 4.2 caCORE EVS Java API client software

More link

http://ncicb.nci.nih.gov

Chapter 4: Interacting with caCORE EVS

43

3. When prompted, enter your name, e-mail address, and institution name.

4. Click Enter the Download Area.

5. Read and accept the license agreement.

6. On the caCORE EVS downloads page, download the EVS Zip file from the
Primary Distribution section.

Installing the Package
After downloading the caCORE EVS client package, extract the contents of the
downloadable archive to a directory on your hard drive (for example, c:\evsapi on
Windows or /usr/local/evsapi on Linux).

The extraction includes the directories and files listed in Table 4.3.

Directory Files Description Component

./build build.xml Ant build file Build file

./conf application-config-
client.xml

xml-mapping.xml

log4j.properties.xml Logging utilities
configuration
properties

*.xsd

./lib spring.jar Spring framework HTTP remoting

acegi-security-1.0.4.jar Spring Security

asm.jar

antlr-2.7.6.jar Apache Ant

log4j-1.2.14.jar Logging utilities Logging

commons-logging-1.1.jar

commons-codec-1.3.jar

commons-collections-
3.2.jar

commons-pool-1.3.jar

evsapi40-beans.jar EVS API beans Domain classes

evsapi40-framework.jar caCORE EVS
framework

lb*.jar LexBIG classes

lg*.jar LexGRID classes LexBIG

lucene*.jar Index search LexBIG

Table 4.3 Extracted directories and files in caCORE EVS client package

caCORE EVS API Technical Guide

44

The following files are required to use the Java API:

all of the files in the conf directory, and

all of the jar files in the lib directory of the caCORE EVS client package.

When building applications, include these files in the Java classpath. The included
build.xml file demonstrates how to do this when using Ant for command-line builds.
If you are using an integrated development environment (IDE) such as Eclipse, refer to
the tool's documentation for information on how to set the classpath.

castor-1.0.2.jar Castor serializer/
deserializer

XML conversion

xercesImpl.jar Apache Xerces
XML parser

sdk-client-framework.jar XML schemas for
objects

./src TestClient.java Java API client
samples (for local,
remote, and Web
service clients)

Sample code

TestEVS.java Java API EVS
client sample

TestFilterRM.java

TestGetXMLClient
.java

XML utility sample

TestServerConfig.java

TestServerConfigLoader
.java

TextXMLClient.java

Directory Files Description Component

Table 4.3 Extracted directories and files in caCORE EVS client package (Continued)

Chapter 4: Interacting with caCORE EVS

45

Verifying the Installation
After installing the caCORE EVS client, follow these steps to run the simple example
program:

1. Open a command prompt or terminal window from the directory where you
extracted the downloaded archive.

2. Type this command: ant.

This command displays a list of Ant targets that identify the test execution
options, as shown in the following code example:

3. Enter the desired Ant command to compile and run the associated test class.

The following is a short segment of code from the TestClient class with an
explanation of its functioning. Successfully running similar code indicates that
you have properly installed and configured the caCORE EVS client.

1 Buildfile: build.xml
2
3 help:
4 [echo] ===============================
5 [echo] caCORE EVS API - HELP
6 [echo]
7 [echo] To run the test programs, use the following commands:
8 [echo]
9 [echo] 1. TestClient - ant run

10 [echo] 2. TestEVS - ant runevs
11 [echo] 3. TestXML - ant runxml
12 [echo]
13
14 BUILD SUCCESSFUL
15 Total time: 0 seconds

1 EVSApplicationService appService =
2 (EVSApplicationService)ApplicationServiceProvider

.getApplicationService("EvsServiceInfo");
3
4 try
5 {
6 DescLogicConcept dlc = new DescLogicConcept();
7 dlc.setName("ear*");
8 Collection results =

appService.search("gov.nih.nci.evs.domain
.DescLogicConcept", dlc);

9 System.out.println("Results: "+ results.size());
10
11 for(Object o : results)
12 {
13 DescLogicConcept obj = (DescLogicConcept)o;
14 System.out.println("Concept name : "+ obj.getName()

+"\t"+ obj.getCode());
15 Vector propList = (Vector)obj.getPropertyCollection();
16 if (propList == null)
17 {
18 System.out.println("NO properties found");
19 }

caCORE EVS API Technical Guide

46

Table 4.4 explains specific statements in the code example by line number.

Although this is a fairly simple example of the use of the EVS Java API, you can follow
a similar sequence with more complex criteria to perform sophisticated manipulation of
the data provided by caCORE EVS. The following sections provide additional
information and examples.

20 else
21 {
22 System.out.println("Properties: "+

propList.size());
23 }
24
25 Vector roleList = (Vector) obj.getRoleCollection();
26 if (roleList == null)
27 {
28 System.out.println("No roles found");
29 }
30 else
31 {
32 System.out.println("Roles: "+ roleList.size());
33 }
34 }
35
36 } catch(Exception e) {
37 System.out.println(">>>"+e.getMessage());
38 e.printStackTrace();
39 }

Line Number Explanation

1 Creates an instance of a class that implements the
EVSApplicationService interface. This interface defines the
service methods used to access data objects.
NOTE: The EvsServiceInfo is passed to the
getApplicationService()method to support the integration and
coexistence of the other CORE applications (i.e., no naming clashes).

4 Creates a criterion object that defines the attribute values for which
to search.

6 Calls the search method of the EVSApplicationService
implementation with parameters that determine

the returned object type:
gov.nih.nci.evs.domain.DescLogicConcept

the criteria that returned objects must meet, defined by the dlc
object.

9 - 25 Instructs the search method to return objects in a collection, iterate
through the objects, and print basic information about them.

Table 4.4 Explanation of statements in the installation verification procedure

Chapter 4: Interacting with caCORE EVS

47

Search Paradigm
The caCORE EVS architecture includes a service layer that provides a single, common
access paradigm to clients that use any of the provided interfaces. As an object-
oriented middleware layer designed for flexible data access, caCORE EVS relies
heavily on strongly typed objects and an object-in/object-out mechanism.

Accessing and using a caCORE EVS system requires the following steps:

1. Ensure that the client application has access to the objects in the domain space.

2. Formulate the query criteria using the domain objects.

3. Establish a connection to the server.

4. Submit the query objects and specify the desired class of objects to be returned.

5. Use and manipulate the result set as desired.

caCORE EVS systems use four native application programming interfaces (APIs).
Each interface uses the same paradigm to provide access to the caCORE EVS domain
model, with minor changes specific to the syntax and structure of the clients. The
following sections describe each API, identify installation and configuration
requirements, and provide code examples.

The sequence diagram in Figure 4.4 illustrates the caCORE EVS API search
mechanism implemented to access the NCI EVS vocabularies.

Figure 4.4 Sequence diagram ‐ caCORE 4.0 EVS API search mechanism

To perform an EVS search, call the evsSearch operation defined in the Applica-
tionService class:

List evsSearch(EVSQuery evsQuery);

caCORE EVS API Technical Guide

48

About EVSQuery and EVSQueryImpl
The gov.nih.nci.evs.query package consists of the EVSQuery.java interface
and the EVSQueryImpl.java class. The methods defined in the EVSQuery.java
file can be used to query the LexBIG Terminology Server. The query object generated
by this class can hold one query at a time.

The following example code segment demonstrates an EVSQuery object that calls the
searchDescLogicConcept method.

To perform a search on the Description Logic Vocabulary, you must specify the
vocabulary name. In most instances, methods that do not require vocabulary names
are NCI Metathesaurus queries.

EVSQuery Methods and Parameters
Most of the methods defined in the EVSQuery accept concept names or concept
codes. If a method requires a vocabulary name as a parameter along with a concept
code or name, you must pass a valid DescLogicConcept name or code to the search
method.

Note: A search term is a String and is not considered a valid concept name. To get a valid
DescLogicConcept name, you must perform a search using the
searchDescLogicConcept method. Likewise, to get a valid
MetaThesaurusConcept name or CUI (Concept Unique Identifier) you must
perform a search using the searchMetaThesaurus method. Most of the search
methods defined in the EVSQuery require a valid concept name or code.

Some of the methods defined in the EVSQuery are listed in Table 4.5.

1 String vocabularyName = "GO";
2 String conceptCode = "GO:0005667";
3 EVSQuery evsQuery = new EVSQueryImpl();
4 evsQuery.searchDescLogicConcept(vocabularyName,conceptCode,

true);

Method Name Parameter Comments Returned by
evsSearch

searchDescLogicConc
ept

String
vocabularyName

A valid Description
Logic vocabulary
name such as
NCI_Thesaurus,
GO, or HL7.

Returns one or
more
DescLogicCon
cepts in a List.

String searchTerm Any string value

int limit Maximum number
of records

Table 4.5 Methods defined in the EVSQuery

Chapter 4: Interacting with caCORE EVS

49

searchMetaThesaurus String
searchTerm

Any String value or
a valid Concept
Unique Identifier. A
Concept Unique
Identifier is used to
uniquely identify
concepts in the
Metathesaurus.

Returns one or
more
MetaThesauru
sConcepts in a
List.

int Limit Maximum number
of records.

String Source Source abbrevia-
tion. Each Source
has a source abbre-
viation that can
uniquely identify a
source.

boolean CUI Set to true if a
concept unique
identifier is used as
a search term.

boolean
shortResponse

Set to true for
short response.

boolean score Set to true for
score.

getHistoryRecords String
vocabularyName

A valid Description
Logic vocabulary
name such as
NCI_Thesaurus,
GO, or HL7.

Returns one or
more
HistoryRecor
ds in a List.

String
conceptCode

A valid code of a
DescLogicCon
cept.

getVocabularyNames Returns one or
more Source
objects in a List.

getMetaSources Returns one or
more
MetaThesauru
sConcepts in a
List.

searchSourceByCode String code A valid Atom code. Returns one or
more
MetaThesauru
sConcepts in a
List.

String
sourceAbbrevia
tion

A valid source
abbreviation.

Method Name Parameter Comments Returned by
evsSearch

Table 4.5 Methods defined in the EVSQuery (Continued)

caCORE EVS API Technical Guide

50

Using EVSQuery

Accessing Secured Vocabularies
Secured vocabularies such as MedDRA require a valid security token for access.
The following example shows the syntax for using EVSQuery to set a security token
and access a secured Vocabulary.

Note: You must obtain a valid security token from the NCICB to access MedDRA through the
caCORE EVS API. The security token value used in the example is not valid.

getTree String
vocabularyName

A valid Description
Logic vocabulary
name.

Returns a
DescLogicCon
cept tree in a List.

String
rootName

A valid
DescLogicCon
cept name.

boolean
direction

Set to true if tra-
verse down.

boolean
isaFlag

Set to true if rela-
tionship is child.

int attributes Sets an
AttributeSet
Descriptior
value.

int levels Depth of the tree.

Vector roles Valid role names.

Method Name Parameter Comments Returned by
evsSearch

Table 4.5 Methods defined in the EVSQuery (Continued)

1 gov.nih.nci.evs.query.EVSQuery evsQuery = new
2 gov.nih.nci.evs.query.EVSQueryImpl();
3 gov.nih.nci.evs.security.SecurityToken token = new
4 gov.nih.nci.evs.security.SecurityToken();
5 token.setAccessToken(“123456”);
6 evsQuery.addSecurityToken(“MedDRA”, token);
7 evsQuery.getDescLogicConcept(“MedDRA”, “Blood”, false);

Chapter 4: Interacting with caCORE EVS

51

Creating an EVS Search Request
To create an EVS search request, follow these steps:

1. Add the EvsServiceInfo parameter.

2. Create an ApplicationService instance:

EVSApplicationService appService = (EVSApplicationService)
ApplicationServiceProvider.getApplicationService
(“EvsServiceInfo”);

3. Instantiate an EVSQuery instance, then set the method name and parameters:

EVSQuery evsQuery = new EVSQueryImpl();
evsQuery.searchDescLogicConcepts("NCI_Thesaurus","blood*",10);

4. Set the security token value.

Note: You can omit this step if the vocabulary does not require a security token.
gov.nih.nci.evs.security.SecurityToken token =

new gov.nih.nci.evs.security.SecurityToken();
token.setAccessToken("xxxxxx");
evsQuery.addSecurityToken(vocabularyName, token);

5. Call the evsSearch method defined in the ApplicationService class to
query EVS.

List evsResults = (List)appService.evsSearch(evsQuery);

The result objects are populated. The return type varies based on the search method
call set in the EVSQuery instance.

Examples of Use

Example 4.1: Search for DescLogicConcepts by Term
1 public static void main(String[] args)
2 {
3 try {
4 EVSApplicationService appService =
5 (EVSApplicationService)ApplicationServiceProvider.
6 getApplicationService("EvsServiceInfo");
7 EVSQuery evsQuery = new EVSQueryImpl();
8 evsQuery.searchDescLogicConcepts("NCI_Thesaurus",

"blood*",10);
9 List evsResults = (List)appService.evsSearch(evsQuery);

10 } catch(ApplicationException ex){
11 }
12 }

caCORE EVS API Technical Guide

52

Table 4.6 explains specific statements in the code by line number.

Line Number Explanation

3 Creates an instance of a class that implements the
ApplicationService interface. This interface defines the service
methods used to access data objects.

4 Creates a new EVSQuery object.

7 Specifies the search method and parameters.
The searchDescLogicConcept method performs a search in the
NCI_Thesaurus vocabulary for a term that starts with blood and returns a
maximum of ten concepts if found.

6 Calls the evsSearch method of the ApplicationService
implementation passing the EVSQuery object.
This method returns a List Collection. The type of object that is returned
depends on the search parameters set in the EVSQuery object. In this case
the searchDescLogicConcept method was invoked, and the resulting
objects are of type DescLogicConcept

Table 4.6 Explanation of statements in Example 4.1

Chapter 4: Interacting with caCORE EVS

53

Example 4.2: Search MetaThesaurusConcepts by Atom
1 try {
2 EVSApplicationService appService =

(EVSApplicationService)ApplicationServiceProvider.
getApplicationService(“EvsServiceInfo”);

3 EVSQuery evsQuery = new EVSQueryImpl();
4 evsQuery.searchSourceByAtomCode("10834-0","*");
5 List evsResults = (List)appService.evsSearch(evsQuery);
6
7 for(int m=0; m<evsResults.size(); m++){
8 MetaThesaurusConcept concept =

(MetaThesaurusConcept)evsResults.get(m);
9 System.out.println("\nConcept code: "+concept.getCui()

+"\n\t"+concept.getName());
10 List sList = concept.getSourceCollection();
11 System.out.println("\tSource-->" + sList.size());
12 for(int y=0; y<sList.size(); y++){
13 Source s = (Source)sList.get(y);
14 System.out.println("\t - "+s.getAbbreviation());
15 }
16
17 List semanticList = concept.getSemanticTypeCollection();
18 System.out.println("\tSemanticType---> count ="+

semanticList.size());
19 for(int z=0; z<semanticList.size(); z++){
20 SemanticType sType = (SemanticType)

semanticList.get(z);
21 System.out.println("\t- Id: "+sType.getId()+"\n\t-

Name: "+sType.getName());
22)
23
24 List atomList = concept.getAtomCollection();
25 System.out.println("\tAtoms -----> count = "+

atomList.size());
26 for(int i=0; i<atomList.size(); i++){
27 Atom at = (Atom)atomList.get(i);
28 System.out.println("\t -Code: "+ at.getCode()+" -Name:

"+ at.getName() +" -LUI: "+ at.getLui()+" -Source:
"+ at.getSource().getAbbreviation());

29 }
30
31 List synList = concept.getSynonymCollection();
32 System.out.println("\tSynonyms -----> count = "+

synList.size());
33 for(int i=0; i < synList.size(); i++){
34 System.out.println("\t - "+ (String) synList.get(i));
35 }
36 }
37
38 } catch(ApplicationException ex) {
39
40 }

caCORE EVS API Technical Guide

54

Table 4.7 explains specific statements in the code by line number.

Line Number Explanation

2 Creates an instance of the EVSApplicationService.

3 Creates a new EVSQuery object.

4 Specifies the search method and parameters.
The searchSourceByAtomCode method performs a search on all the
sources specified in the Metathesaurus for MetaThesaurusConcepts
that have an Atom code value 10834-0. The source abbreviation specified is
an asterisk (*). Thus, all sources are searched for the specified atom.

5 Calls the evsSearch method of the EVSApplicationService
implementation passing the EVSQuery object. This method returns a
List collection.
The type of object that is returned depends on the search parameters set in
the EVSQuery object; in this case, the searchSourceByAtomCode
method was invoked, and the resulting objects are of type
MetaThesaurusConcept.

7 - 36 Iterates through the result set (line 7)
Casts the result object to a MetaThesaurusConcept (line 8)
Prints the attributes and association values of the
MetaThesaurusConcept (lines beginning with
System.out.printlin)

Table 4.7 Explanation of statements in Example 4.2

Chapter 4: Interacting with caCORE EVS

55

Web Services API
The caCORE EVS Web Services API enables access to caCORE EVS data and
vocabulary data from development environments where the Java API cannot be used,
or where use of XML Web services is more desirable. This includes non-Java platforms
and languages such as Perl, C/C++, .NET framework (C#, VB.Net), and Python.

The Web services interface can be used in any language-specific application that
provides a mechanism for consuming XML Web services based on the Simple Object
Access Protocol (SOAP). In those environments, connecting to caCORE EVS can be
as simple as providing the end-point URL. Some platforms and languages require
additional client-side code to handle the implementation of the SOAP envelope and the
resolution of SOAP types.To view a list of packages that cater to different programming
languages, visit http://www.w3.org/TR/SOAP/ and http://www.soapware.org/.

To maximize standards-based interoperability, the caCORE Web service conforms to
the Web Services Interoperability Organization (WS-I) basic profile. The WS-I basic
profile provides a set of non-proprietary specifications and implementation guidelines
that enable interoperability between diverse systems. For more information about WS-I
compliance, visit http://www.ws-i.org.

On the server side, Apache Axis is used to provide SOAP-based, inter-application
communication. Axis provides the appropriate serialization and deserialization methods
for the JavaBeans to achieve an application-independent interface. For more
information about Axis, visit http://ws.apache.org/axis/.

Configuration
The caCORE/EVS WSDL file is located at http://evsapi.nci.nih.gov/evsapi41/services/
evsapi41Service?wsdl. In addition to describing the protocols, ports, and operations
exposed by the caCORE EVS Web service, this file can be used by a number of IDEs
and tools to generate stubs for caCORE EVS objects. This enables code on different
platforms to instantiate native objects for use as parameters and return values for the
Web service methods. For more information on how to use the WSDL file to generate
class stubs, consult the specific documentation for your platform.

The caCORE EVS Web services interface has a single end point called
evsapiService, which is located at http://evsapi.nci.nih.gov/evsapi41/services/
evsapi41Service. Client applications should use this URL to invoke Web service
methods.

http://www.w3.org/TR/SOAP/
http://www.soapware.org/
http://www.ws-i.org
http://ws.apache.org/axis/
http://evsapi.nci.nih.gov/evsapi41/services/evsapi41Service?wsdl
http://evsapi.nci.nih.gov/evsapi41/services/evsapi41Service?wsdl
http://evsapi.nci.nih.gov/evsapi41/services/evsapi41Service
http://evsapi.nci.nih.gov/evsapi41/services/evsapi41Service

caCORE EVS API Technical Guide

56

Operations
Through the caCOREService endpoint, developers have access to the following
operations:

Operation getVersion

Input Scheme None

Output Schema <complexType>
<sequence>

<element type="xsd:string"/>
</sequence>

</complexType>

Description Returns an xsd:string containing the version of the running
caCORE system (e.g., caCORE 4.0).

Operation queryObject

Input Schema <complexType>
<sequence>

<element name="in0" type="xsd:string"/>
<element name="in1" type="xsd:anyType"/>

</sequence>
</complexType>

Output Schema <sequence>
<element name="queryReturn"

type="ArrayOf_xsd_anyType"/>
</sequence>

Description Performs a search for objects that conform to the criteria defined by
input parameter in1 and whose resulting objects are of the type
reached by traversing the node graph specified by parameter in0.
The result is a set of serialized objects.
The type ArrayOf_xsd_anyType resolves to a sequence of
xsd:anyType elements.

Operation Query

Input Schema <complexType>
<sequence>

<element name="in0" type="xsd:string"/>
<element name="in1" type="xsd:anyType"/>
<element name="in2" type="xsd:int"/>
<element name="in3" type="xsd:int"/>

</sequence>
</complexType>

Output Schema <sequence>
<element name="queryReturn"

type="ArrayOf_xsd_anyType"/>
</sequence>

Description Identical to the previous queryObject method except that it
allows control over the result set by specifying the row number of the
first row (in2) and the maximum number of objects to return (in3).

Chapter 4: Interacting with caCORE EVS

57

Be aware that a significant decision has been made regarding the behavior of the Web
services interface. When a query is performed with this interface, returned objects do
not contain nor refer to their associated objects. (A notable exception is with the EVS
domain model discussed in the Limitations section on page 61.) This means that a
separate query invocation must be performed for each set of associated objects that
need to be retrieved. Example 4.3 (page 58) demonstrates this functionality.

Considerations
The EVS domain objects are unique in the way they are used with the Web services
interface. EVS classes that can be queried from Web services always provide
associations to their related objects. This enables access to the objects that are not of
type DescLogicConcept, MetaThesaurusConcept, or HistoryRecord.

Because of the unique behavior and properties of the EVS domain model, queries
using the Web services interface can be performed only on the selected attribute
values listed in Table 4.8.

Class Available Search Attributes

DescLogicConcept Name

Code

Property name and value

Role name and value

MetaThesaurusConcept Name

CUI (Concept Unique Identifier)

Atom code and source abbreviation

HistoryRecord DescLogicConcept name or code (HistoryRecord
is the targetObject and the DesLogicConcept is the
criteriaObject).

Table 4.8 Allowable attributes for searching the EVS domain model

caCORE EVS API Technical Guide

58

Examples of Use

Example 4.3: Simple Search (NCI Thesaurus)
This example demonstrates a simple Java query that uses the Web services API.
It uses Apache Axis on the client side to handle the type mapping, SOAP encoding,
and operation invocation.

1 try {
2 String endpointURL = "http://evsapi.nci.nih.gov/evsapi41/

services/evsapi41Service";
3 String methodName = "queryObject";
4 Service service = new Service();
5 Call call = (Call) service.createCall();
6
7 call.setTargetEndpointAddress(new java.net.URL(endpointURL));
8 call.setOperationName(new QName("EVSService", "queryObject"));
9 call.addParameter("arg1",

org.apache.axis.encoding.XMLType.XSD_STRING,
ParameterMode.IN);

10 call.addParameter("arg2",
org.apache.axis.encoding.XMLType.XSD_ANYTYPE,
ParameterMode.IN);

11 call.setReturnType(org.apache.axis.encoding.XMLType.
SOAP_ARRAY);

12
13 QName qnDLCArr = new QName("urn:domain.evs.nci.nih.gov",

"ArrayOf_tns1_DescLogicConcept");
14 call.registerTypeMapping(DescLogicConcept.class, qnDLCArr,

new org.apache.axis.encoding.ser.BeanSerializerFactory(),
new org.apache.axis.encoding.ser.BeanDeserializerFactory());

15
16 DescLogicConcept dlc = new DescLogicConcept();
17 dlc.setName("ear*");
18
19 call.setReturnType(qnDLCArr);
20
21 Object thesarusParams =

new Object[]{"gov.nih.nci.evs.domain.DescLogicConcept",
dlc};

22 DescLogicConcept[] dlcs =
(DescLogicConcept[])call.invoke(thesaurusParams);

23
24 char counter = ‘a’;
25
26 for (DescLogicConcept d: dlcs) {
27 System.out.println("\t" + counter + ") Concept name; " +

d.getName());
28 System.out.println("\t code: " + d.getCode());
29 System.out.println("\t ----------------------------------");
30 counter++;
31 }
32 System.out.println("\tNumber of items returns from Thesaurus "

+ dlcs.length);
33 } catch (Exception ex) {
34 System.out.println(ex.getMessage());
35 }

Chapter 4: Interacting with caCORE EVS

59

Table 4.9 explains specific statements in the code by line number.

Example 4.4: EVS Domain Search (NCI Metathesaurus)
This example demonstrates use of the Web services interface to query data from the
NCI Metathesaurus using EVS domain objects.

Line Number Explanation

4 - 5 Defines a new Web service call.

7 - 11, 19 Sets call properties, including the name of the operation to invoke, the target
property address, the input parameters that will be sent, and the return type.

13 - 14 Maps a serialized object to its Java equivalent using the qualified name of
the object from the WSDL file. In this case, the XML element
urn:domain.evs.nci.nih.gov namespace is mapped to the Java
DescLogicConcept array.

16 - 17 Creates a DescLogicConcept and sets the name attribute to ear*.

21 - 22 Invokes the Web service operation using an array of two objects (target class
name and criteria object) as input parameters; expects an object array as the
result.

26 - 31 Casts each object in the result array to type DescLogicConcept and
prints the name and code.

Table 4.9 Explanation of statements in Example 4.3

1 try {
2 String endpointURL = "http://evsapi.nci.nih.gov/evsapi41/

services/evsapi41Service";
3 String methodName = "queryObject";
4 Service service = new Service();
5 Call call = (Call) service.createCall();
6
7 call.setTargetEndpointAddress(new java.net.URL(endpointURL));
8 call.setOperationName(new QName("EVSService", "queryObject"));
9 call.addParameter("arg1",

org.apache.axis.encoding.XMLType.XSD_STRING,
ParameterMode.IN);

10 call.addParameter("arg2",
org.apache.axis.encoding.XMLType.XSD_ANYTYPE,
ParameterMode.IN);

11 call.setReturnType(org.apache.axis.encoding.XMLType.
SOAP_ARRAY);

12
13 QName qnMTCArr = new QName("urn:domain.evs.nci.nih.gov",

"ArrayOf_tns1_MetaThesaurusConcept");
14 call.registerTypeMapping(MetaThesaurusConcept.class, qnMTCArr,

new org.apache.axis.encoding.ser.BeanSerializerFactory(),
new org.apache.axis.encoding.ser.BeanDeserializerFactory());

15
16 MetaThesaurusConcept mtc = new MetaThesaurusConcept();
17 MTC.setName("blood*");
18
19 call.setReturnType(qnMTCArr);
20

caCORE EVS API Technical Guide

60

Table 4.10 explains specific statements in the code by line number.

21 Object metaParams = new
Object[]{"gov.nih.nci.evs.domain.MetaThesaurusConcept",
mtc};

22 MetaThesaurusConcept[] meta = null;
23
24 try {
25 meta = (MetaThesaurusConcept[])call.invoke(metaParams);
26 char counter = 'a';
27
28 for (MetaThesaurusConcept m: meta) {
29 System.out.println("\t" + counter + ") Concept name; " +

m.getName());
30 System.out.println("\t code: " + m.getCui());
31 System.out.println("\t ----------------------------------

");
32 counter++;
33 }
34 System.out.println("\tSize" + meta.length);
35 } catch (Exception ex) {
36 System.out.println("Error: " + ex);
37 }
38 } catch (Exception ex) {
39 System.out.println(ex.getMessage());
40 }

Line Number Explanation

4 - 5 Defines a new Web service call.

7 - 11, 14, 19 Sets call properties, including the name of the operation to invoke, the target
property address, the input parameters that will be sent, and the return type.

13 - 14 Maps a serialized object to its Java equivalent using the qualified name of
the object from the WSDL file. In this case, the XML element
urn:domain.evs.nci.nih.gov namespace is mapped to the Java
MetaThesaurusConcept array.

16 - 17 Creates a MetaThesaurusConcept and sets the name attribute to
blood*.

21 - 22 Invokes the Web service operation using an array of two objects (target class
name and criteria object) as input parameters; expects an object array as the
result.

28 - 33 Casts each object in the result array to type MetaThesaurusConcept
and prints the name and code.

Table 4.10 Explanation of statements in Example 4.4

Chapter 4: Interacting with caCORE EVS

61

Limitations
Note the following limitations of the Web Services API and the recommendations for
handling them:

By default, the queryObject operation limits the result set to 1000 objects,
even if the size of the result set is larger. To retrieve more than 1000 objects,
you must use the query operation and specify the first object index (parameter
in2) as greater than 1000.

Result sets serialized and returned by the Web services interface do not
currently include associations to related objects. A consequence of this
behavior is that nested criteria objects with one-to-many associations that are
passed to the query or queryObject operations will throw an exception.

Because the Web services invocation routinely times out, queries that take a
long time to execute may not complete. If this is the case, use the query method
to specify a smaller result count.

Access to the EVS domain model is limited by the Web services interface, as
explained in Table 4.11.

Typical Behavior EVS Model Behavior

Can query for any object in the object
model

Can query only for the following:
DescLogicConcept

HistoryRecord

MetaThesaurusConcept

Does not populate the association values
of the caCORE domain objects. You need
to run a second query to get associated
values.

Populates all attributes of the result
object.

Can perform queries on any attribute
value

Can perform queries only on selected
attribute values. For more information,
see Table 4.5 on page 48.

Table 4.11 Access to the EVS domain model

caCORE EVS API Technical Guide

62

XML‐HTTP API
The caCORE EVS XML-HTTP API, based on the REST (Representational State
Transfer) architectural style, provides a simple interface using the HTTP protocol. In
addition to its ability to be invoked from most Internet browsers, developers can use this
interface to build applications that do not require any programming overhead other than
an HTTP client. This is particularly useful for developing Web applications using AJAX
(Asynchronous JavaScript and XML).

Service Location and Syntax
The CORE EVS XML-HTTP interface uses the following URL syntax:

http://{server}/{servlet}?query={returnClass}&{criteria}&
resultCounter={counter}&startIndex={index}&
pageSize={pageSize}&pageNumber={pageNumber}

Table 4.12 explains the syntax, indicates whether specific elements are required, and
gives examples.

Element Meaning Required Example

server Name of the Web server on
which the caCORE EVS 4.1
Web application is deployed.

Yes evsapi.nci.nih.gov
/evsapi41

servlet URI and name of the servlet
that will accept the HTTP
GET requests.

Yes evsapi41/GetXML

evsapi41/GetHTML

returnClass Class name indicating the
type of objects that this query
should return.

Yes query=DescLogicCon
cept

criteria Search request criteria
describing the requested
objects.

Yes DescLogicConcept
[@id=2]

counter Number of top-level objects
returned by the search.

No resultCounter=500

index Starting index of the result
set.

No startIndex=25

pageSize Number of records to display
on each page.

No pageSize=50

pageNumber The number of the page for
which to display results.

No pageNumber=3

Table 4.12 URL syntax used by the caCORE EVS XML‐HTTP interface

Chapter 4: Interacting with caCORE EVS

63

The caCORE EVS architecture currently provides two servlets that accept incoming
requests:

GetXML returns results in an XML format that can be parsed and consumed by
most programming languages and many document authoring and management
tools.

GetHTML presents result using a simple HTML interface that can be viewed by
most modern Internet browsers.

Within the request string of the URL, the criteria element specifies the search criteria
using XQuery-like syntax. Within this syntax, square brackets ([and]) represent
attributes and associated roles of a class, the at symbol (@) signals an attribute name/
value pair, and a forward slash character (/) specifies nested criteria.

Criteria statements in XML-HTTP queries generally use the following syntax (although
you can also build more complex statements):

{ClassName}[@{attributeName}={value}] [@{attributeName}={value}]…

ClassName}[@{attributeName}={value}]/

{ClassName}[@{attributeName}={value}]/…

Table 4.13 explains the syntax for criteria statements and gives examples.

Examples of Use
The examples in Table 4.14 demonstrate the usage of the XML-HTTP interface. In
actual usage, these queries would either be submitted by a block of code or entered in
the address bar of a Web browser.

Note that the servlet name GetXML in each of the examples can be replaced with
GetHTML to view with layout and markup in a browser.

Parameter Meaning Example

ClassName The name of a class. DescLogicConcept

attributeName The name of an attribute o.f the return
class or an associated class

name

value The value of an attribute. ear*

Table 4.13 Criteria statements within XML‐HTTP queries

Query http://evsapi.nci.nih.gov/evsapi41/
GetXML?query=DescLogicConcept[name=blood*]

Semantic Meaning Find all objects of type DescLogicConcept whose name starts
with blood.

Biological Meaning Find all concepts that refer to blood.

Table 4.14 XML‐HTTP interface examples

caCORE EVS API Technical Guide

64

Working with Result Sets
Because HTTP is a stateless protocol, the caCORE EVS server cannot detect the
context of any incoming request. Consequently, each invocation of GetXML or
GetHTML must contain all of the information necessary to retrieve the request,
regardless of previous requests. Developers should consider this when working with
the XML-HTTP interface.

Retrieving Related Results Using XLinks
When using the GetXML servlet to retrieve results as XML, associations between
objects are converted to XLinks in the XML markup. The link notation, shown below,
enables the client to make a subsequent request to retrieve the associated objects.

<class name="gov.nih.nci.evs.domain.DescLogicConcept"
recordNumber="1">

…
<field name="Vocabulary"

xlink:type="simple"
xlink:href="http://evsapi.nci.nih.gov/evsapi41/

GetXML?Query=Vocabulary&DescLogicConcept[@id=5]"> getVocabulary
</field>
…
</class>

Controlling the Number of Items Returned
The GetXML servlet provides a throttling mechanism that enables developers to define
the number of results returned on any single request and specify where in the result set
to start. The following example are used with a search request that returns 500 results:

resultCounter=450 will return only the last 50 records.

startIndex=50 will return only the first 50 records.

Paging Results
In addition to controlling the number of results to display, the GetXML servlet also
provides a mechanism to support paging. Common to many Web sites, paging displays
results over a number of pages so that, for example, a request that yields 500 objects
could be displayed over 10 pages of 50 objects each.

When the paging feature is used, the GetXML servlet includes XLinks to each of the
result pages in an XML <page> element. The element data of the <page> element is
the number of the page, suitable for output as text or HTML when used with an XSL
stylesheet:

<page number="1">
xlink:type="simple"
xlink:href="http://evsapi.nci.nih.gov/evsapi41/

GetXML?query={query}& pageNumber=4
&resultCounter=1000&startIndex=0"> 4

</page>

Limitations
When specifying attribute values in the query string, note that use of the following
characters generates an error:

[] / \ # & %

Chapter 4: Interacting with caCORE EVS

65

About the XMLUtility Class

Overview
When accessible through the SDK framework, caCORE provides an XMLUtility
class that converts caCORE EVS domain objects between native Java objects and
XML serializations based on standard XML schemas. This utility is available in the
gov.nih.nci.common.util package.

The XML schemas for all caCORE EVS domain objects that are directly generated
from the UML model (described on page 39) are included in the downloadable archive
in the lib directory. Currently, the XMLUtility class generates XML that includes
only object attributes; associated objects are not included.

Two files include the properties used by the XMLUtility class:

xml.properties defines basic information needed by the class and also
contains a property defining the name of the second file.

xml-mapping.xml (the default name) defines the binding between the class
and attribute names and the corresponding XML element and attribute names.

The caCORE EVS client provides a default marshaller and unmarshaller. Developers
who want to use their own marshaller or demarshaller should provide the fully qualified
name of the two classes in the xml.properties file.

Example of Use

Example 4.5: Using the XMLUtility Class
In the following example code, XMLUtility is used to serialize an object and save it
to a file stream. It is then used to instantiate a new object from the file.

1 EVSApplicationService appService =
(EVSApplicationService)ApplicationServiceProvider
.getApplicationService(“EvsServiceInfo”);

2
3 Marshaller marshaller = new caCOREMarshaller("xml-mapping.xml",

false);
4 Unmarshaller unmarshaller = new

caCOREUnmarshaller("unmarshaller-xml-mapping.xml", false);
5 XMLUtility myUtil = new XMLUtility(marshaller, unmarshaller);
6 Class klass = Vocabulary.class;
7 Object o = klass.newInstance();
8 System.out.println("Searching for "+klass.getName());
9 try {

10 Collection results = appService.search(klass, o);
11 for(Object obj : results) {
12 File myFile = new File("./output/" + klass.getName() +

"_test.xml");
13 FileWriter myWriter = new FileWriter(myFile);
14 myUtil.toXML(obj, myWriter);
15 myWriter.close();
16 printObject(obj, klass);
17 DocumentBuilder parser =

DocumentBuilderFactory.newInstance()
.newDocumentBuilder();

caCORE EVS API Technical Guide

66

Table 4.15 explains specific statements in the code by line number.

18 Document document = parser.parse(myFile);
19 SchemaFactory factory =

SchemaFactory.newInstance(XMLConstants
.W3C_XML_SCHEMA_NS_URI);

20
21 try {
22 System.out.println("Validating " + klass.getName() + "

against the schema......\n\n");
23 Source schemaFile = new

StreamSource(Thread.currentThread().getContextClass
Loader().getResourceAsStream(klass.getPackage().get
Name() + ".xsd"));

24 Schema schema = factory.newSchema(schemaFile);
25 Validator validator = schema.newValidator();
26 validator.validate(new DOMSource(document));
27 System.out.println(klass.getName() + " has been

validated!!!\n\n");
28 } catch (Exception e) {
29 System.out.println(klass.getName() + “ has failed

validation!!! Error reason is: \n\n” +
e.getMessage());

}
30
31 System.out.println("Un-marshalling " + klass.getName() +

" from " + myFile.getName() + "......\n\n");
32 Object myObj = (Object) myUtil.fromXML(myFile);
33 printObject(myObj, klass);
34 myWriter.close
35 break;
36 }
37 } catch(Exception e) {
38 System.out.println("Exception caught: " + e.getMessage());
39 e.printStackTrace();
40 }

Line Number Explanation

1 Instantiates the EVSApplicationService.

3 - 5 Instantiates the marshaller and unmarshaller using the appropriate mapping
files and uses them to instantiate the XMLUtility.

10 Searches against the Vocabulary class.

11 Iterates through all of the returned results.

12 Instantiates a new XML file based on the search class.

13 - 16 Uses the XML utility to convert the returned object to XML and write to the
output stream.

16 - 29 Validates the generated XML file.

31 - 40 Unmarshalls the generated XML object from the written file and prints to
System.out.

Table 4.15 Explanation of statements in Example 4.5

Chapter 4: Interacting with caCORE EVS

67

Distributed LexBIG API

Overview
In place of the existing EVS 3.2 object model, caCORE EVS is making a gradual
transition toward a pure LexBIG back-end terminology server and exposure of the
LexBIG Service object model. caCORE 3.2 and earlier required a custom API layer
between external users of the system and the proprietary Apelon Terminology Server
APIs. With the transition to LexBIG, caCORE EVS can publicly expose the open source
terminology service API without requiring a custom API layer.

To allow users of caCORE EVS 3.2 and earlier to prepare for transition to the LexBIG
API, caCORE EVS 4.0 provides a Distributed LexBIG (DLB) API in addition to the EVS
API (based on the 3.2 object model). The DLB API provides remote access to the
LexBIG API residing on the caCORE EVS server.

Architecture
The LexBIG API is exposed by the EVS caCORE System for remote, distributed
access (Figure 4.5). The caCORE System’s EVSApplicationService class
implements the LexBIGService interface, effectively exposing LexBIG via caCORE.

Since in many cases the objects returned from the LexBIGService are not merely
beans, but full-fledged data access objects (DAOs), the caCORE EVS client is
configured to proxy method calls into the LexBIG objects and forward them to the
caCORE server so that they execute within the LexBIG environment.

Figure 4.5 DLB Architecture

The DLB environment will be configured on the caCORE EVS Server (http://
evsapi.nci.nih.gov/evsapi41). This will give the server access to the LexBIG database
and other resources. The client must therefore go through the caCORE EVS server to
access any LexBIG data.

http://evsapi.nci.nih.gov/evsapi41
http://evsapi.nci.nih.gov/evsapi41

caCORE EVS API Technical Guide

68

LexBIG Annotations
To address LexBIG DAOs, the LexBIG API integration incorporated the addition of
(1) Java annotation marking methods that can be safely executed on the client side;
and (2) classes that can be passed to the client without being wrapped by a proxy. The
annotation is named @lgClientSideSafe. Every method in the LexBIG API that is
accessible to the caCORE EVS user had to be considered and annotated if necessary.

Aspect Oriented Programming Proxies
LexBIG integration with caCORE EVS was accomplished using Spring Aspect Oriented
Programming (AOP) to proxy the LexBIG classes and intercept calls to their methods.
The caCORE EVS client wraps every object returned by the LexBIGService inside
an AOP Proxy with advice from a LexBIGMethodInterceptor (“the interceptor”).

The interceptor is responsible for intercepting all client calls on the methods in each
object. If a method is marked with the @lgClientSideSafe annotation, it proceeds
normally. Otherwise, the object, method name, and parameters are sent to the
caCORE EVS server for remote execution.

Figure 4.6 Sequence diagram showing method interception

Chapter 4: Interacting with caCORE EVS

69

LexBIG API Documentation
The Mayo Clinic wrote the LexBIG 2.1.1 API. Documentation describing the LexBIG
Service Model is available on the LexGRID Vocabulary Services for caBIG GForge site
at https://gforge.nci.nih.gov/frs/?group_id=14.

LexBIG Installation and Configuration
The DLB API is strictly a Java interface and requires Internet access for remote
connectivity to the caCORE EVS server. Access to the DLB API requires access to the
evsapi-client.jar file, available for download on the NCICB Web site. The
evsapi-client.jar file needs to be available in the classpath. For more
information, see Installing and Configuring the EVS 3.2 Java API on page 41.

Example of Use

Example 4.6: Using the DLB API
The following code sample shows use of the DLB API to retrieve the list of available
coding schemes in the LexBIG repository.

1 public class Test {
2 /**
3 * Initialize program variables
4 */
5
6 private String codingScheme = null;
7 private String version = null;
8
9 DLBAdapter adapter = null;

10 LexBIGService lbSvc;
11
12 public Test(String codingScheme, String version)
13 {
14 //Set the EVS URL (for remote access)
15 String evsUrl = “http://evsapi.nci.nih.gov/evsapi41/http/

remoteService”;
16
17 boolean isRemote = true;
18 this.codingScheme = codingScheme;
19 this.version = version;
20
21 // Get the LexBIG service reference from EVS Application

Service
22 lbSvc = EVSApplicationService.getRemoteInstance(evsUrl);
23
24 // Set the vocabulary to work with
25 Boolean retval = adapter.setVocabulary(codingScheme);
26
27 codingSchemeMap = new HashMap();
28 try {
29 // Get the LexBIG service from the RemoteServerUtil
30 lbSvc = RemoteServerUtil.createLexBIGService();
31
32 // Using the LexBIG service, get the supported coding

schemes

https://gforge.nci.nih.gov/frs/?group_id=14

caCORE EVS API Technical Guide

70

33 CodingSchemeRenderingList csrl =
lbSvc.getSupportedCodingSchemes();

34
35 // Get the coding scheme rendering
36 CodingSchemeRendering[] csrs =

csrl.getCodingSchemeRendering();
37
38 // For each coding scheme rendering...
39 for (int i=0; i<csrs.length; i++) {
40 CodingSchemeRendering csr = csrs[i];
41
42 // Determine whether the coding scheme rendering is

active or not
43 Boolean isActive =

csr.getRenderingDetail().getVersionStatus()
.equals(CodingSchemeVersionStatus.ACTIVE);

44 if (isActive != null &&
isActive.equals(Boolean.TRUE)) {

45
46 // Get the coding scheme summary
47 CodingSchemeSummary css =

csr.getCodingSchemeSummary();
48
49 // Get the coding scheme formal name
50 String formalname = css.getFormalName();
51
52 //Get the coding scheme version
53 String representsVersion =

css.getRepresentsVersion();
54 CodingSchemeVersionOrTag vt = new;
55 CodingSchemeVersionOrTag();
56 vt.setVersion(representsVersion);
57
58 // Resolve coding scheme based on the formal name
59 CodingScheme scheme = null;
60
61 try {
62 scheme =

lbSvc.resolveCodingScheme(formalname, vt);
63 if (scheme != null)
64 {
65 codingSchemeMap.put((Object) formalname,

(Object) scheme);
66 }
67 } catch (Exception e) {
68 // Resolve coding scheme based on the URN
69 String urn = css.getCodingSchemeURN();
70 try {
71 scheme = lbSvc.resolveCodingScheme(urn, vt);
72 if (scheme != null)
73 {
74 codingSchemeMap.put((Object) formalname,

(Object) scheme);
75 }
76 } catch (Exception ex) {
77 String localname = css.getLocalName();

Chapter 4: Interacting with caCORE EVS

71

Distributed LexBIG Adapter Example of Use
The DLB Adapter is an extension of the DLB API. It provides a set of convenient
methods for simplifying or making familiar use of the DLB API. Access is achieved first
through the EVS API and the DLB API.

The DLB Adapter is designed with dual-mode functionality. It can be used as

a local installation: direct interface to a local installation of the LexBIG API, or

a remote installation: an additional layer to the NCI DLB API.

The DLB Adapter is packaged as a .jar file (dlbadapter.jar). Once this file has
been added to the application classpath, the programmer can decide how to interface
with LexBIG (locally or remotely).

Note: The Javadocs for the DLB Adapter are available at http://gforge.nci.nih.gov/docman/
view.php/366/11758/evsapi_4_1_javadoc.zip.

78
79 // Resolve coding scheme based on the local name
80 try {
81 scheme = lbSvc.resolveCodingScheme(localname,

vt);
82 if(scheme != null)
83 {
84 codingSchemeMap.put((Object) formalname,

(Object) scheme);
85 }
86 } catch (Exception e2) {
87 }
88 }
89 }
90 }
91 }
92 } catch (Exception e) {
93 e.printStackTrace();
94 }
95 }
96
97 /**
98 *Main
99 */

100 public static void main (String[] args)
101 {
102 String name = “NCI Thesaurus”;
103 String version = “06.12d”;
104
105 // Instantiate the Test Class
106 Test test = new Test(name, version);
107 }
108 }

http://gforge.nci.nih.gov/docman/view.php/366/11758/evsapi_4_1_javadoc.zip
http://gforge.nci.nih.gov/docman/view.php/366/11758/evsapi_4_1_javadoc.zip

caCORE EVS API Technical Guide

72

The following code example represents how to use DLB Adapter in both local and
remote modes.

1 public class Test {
2 /**
3 *Initialize program variables
4 */
5 private String codingScheme = null;
6 private String version = null;
7
8 DLBAdapter adapter = null;
9 LexBIGService lbSvc;

10
11 /**
12 *Test constructors
13 */
14 public Test(String codingScheme)
15 {
16 this.codingScheme = codingScheme;
17 this.version = "";
18 }
19
20 public Test(String codingScheme, String version
21 {
22
23 /**
24 * Establish a reference to the EVS Production URL (remote

access).
25 */
26 String evsUrl = “http://evsapi.nci.nih.gov/evsapi41/http/

remoteService”;
27
28 /**
29 * Set the isRemote (LexBIG installation) variable
30 */
31 boolean isRemote = true;
32 this.codingScheme = codingScheme;
33 this.version = version;
34
35 /**
36 * The DLB Adapter allows you to connect to a co-located/local

installation of LexBIG or a remote installation of LexBIG.
37 */
38 if (isRemote)
39 {
40 lbSvc = EVSApplicationService.getRemoteInstance(evsUrl);
41 adapter = new DLBAdapter((EVSApplicationService)lbSvc);
42
43 System.out.println("\n************************************

*********************************");
44 System.out.println

("\n***** Instantiate EVSApplicationService *****");
45 System.out.println("\n************************************

*********************************");
46 }
47 else

Chapter 4: Interacting with caCORE EVS

73

48 {
49 System.out.println("\n************************************

*********************************");
50 System.out.println

("\n***** Instantiate LexBIGServiceImpl *****");
51 System.out.println("\n************************************

*********************************");
52 adapter = new DLBAdapter();
53 }
54 /**
55 * Set the vocabulary to the desired coding scheme.
56 */
57 Boolean retval = adapter.setVocabulary(codingScheme);
58 }
59
60 /**
61 * testGetTree()
62 */
63 public void testGetTree()
64 {
65 String rootname = "C25218";
66 boolean direction = true;
67 int levels = -1;
68 boolean isaflag = true;
69 Vector rolenames = new Vector();
70 rolenames.add(“Technique_Has_Sample_Or_Specimen_Anatomy”);
71
72 /**
73 * Call the getTree() method passing;
74 * 1. The root name
75 * 2. The direction
76 * 3. The number of levels of depth to return
77 * 4. The valid rolenames
78 */
79 DefaultMutableTreeNode dmtn = adapter.getTree

(rootname, direction, levels, 0, isaflag, rolenames)
80 /**
81 * Print the resulting tree.
82 */
83 adapter.printTree(resultFile, dmtn);
84 }
85
86 /**
87 * testMetadata
88 */
89 public void testMetadata()
90 {
91 /**
92 * Set the name of the desired terminology
93 */
94 String urn = "NCI_Thesaurus";
95
96 /**
97 * Invokes the getMetadataProperties() method passing

the terminoloy name (URN).
98 * Returns a NameAndValue array.

caCORE EVS API Technical Guide

74

99 */
100 NameAndValue[] nv_array =

adapter.getMetadataProperties(urn);
101
102 /**
103 * Loops through each returned array element and prints

the name and content values.
104 */
105 for (int j=0; j<nv_array.length; j++)
106 {
107 NameAndValue nv = (NameAndValue) nv_array[j];
108 System.out.println("CS: " + urn + " Metadata Name:

" + nv.getName() + " Metadata Value: " +
nv.getContent());

109 }
110 }
111
112 /**
113 * testMetadata()
114 */
115 public void testTreeTraversal(String codingSchemeName)
116 {
117 /**
118 * Get ALL root concepts
119 */
120 CodedEntry[] a = adapter.getRootConcepts();
121
122 /**
123 * Loop through each returned value and print.
124 */
125 for (int i=0; i<a.length; i++)
126 {
127 CodedEntry ce = (CodedEntry) a[i];
128 printNode(ce, 0);
129 }
130 }
131
132 /**
133 * printNode()
134 */
135 public void printNode(CodedEntry ce, int level)
136 {
137 /**
138 * Get the concept code for the coded entry
139 */
140 String code = ce.getConceptCode();
141
142 /**
143 * Get the subconcepts for the concept code
144 */
145 Vector subconcepts =

adapter.getSubConcepts(code, true, true);
146
147 /**
148 * Loop through each of the subconcepts
149 */

Chapter 4: Interacting with caCORE EVS

75

150 for (int j=0; j<subconcepts.size(); j++)
151 {
152 String subconceptcode = (String)

subconcepts.elementAt(j);
153
154 /**
155 * Execute the findConceptByCode() method and

print the node.
156 */
157 CodedEntry sub =

adapter.findConceptByCode(subconceptcode,
false);

158 printNode(sub, level+1);
159 }
160 }
161
162 /**
163 * testMeta()
164 */
165 public void testMeta()
166 {
167 adapter.setVocabulary("NCI MetaThesaurus");
168 String code = "MTHU000096";
169 String source = "LNC";
170 /**
171 * Get properties by code
172 */
173 Vector v =

adapter.getPropertiesByCode("CL347198");
174
175 /**
176 * Find concepts with source code matching...
177 */
178 Vector v =

adapter.findConceptsWithSourceCodeMatching(
source, code, 1);

179
180 /**
181 * Find coded entries with source code

matching...
182 */
183 Vector v =

adapter.findCodedEntriesWithSourceCodeMatch
ing("NCI MetaThesaurus", "LNC",
"MTHU000096", 1);

184 if (v != null)
185 {
186 /**
187 * Loop through each of the coded entries

and print the concept code and name.
188 */
189 for (int i=0; i<v.size(); i++)
190 {
191 CodedEntry ce = (CodedEntry)

v.elementAt(i);
192 System.out.println(ce.getConceptCode());

caCORE EVS API Technical Guide

76

193 }
194 }
195 }
196
197 /**
198 * testSearchConcepts()
199 */
200 public void testSearchConcepts()
201 int limit = 1000;
202 String source = "MDR";
203 boolean cui = false;
204 boolean shortResult = false;
205 boolean score = false
206 String scheme = "NCI MetaThesaurus";
207 String s = "artery";
208
209 try {
210 /**
211 * Search all concepts in the

MetaThesaurus where the source is
MDR, the search term is 'artery'.

212 */
213 CodedEntry[] a =

adapter.searchConcepts(scheme, s,
limit, source, cui, shortResult,
score);

214 int j = i+1;
215 System.out.println("(" + j +") " +

ce.getConceptCode() + "[" +
adapter.getName(ce) + "]");

216 }
217
218 } catch (Exception e) {
219 e.printStackTrace();
220 }
221 }
222 }
223 }
224 /**
225 * Main
226 */
227 public static void main(String[] args)
228 {
229 String name = "NCI_Thesaurus";
230 String version = "06.12d";
231
232 // Instantiate the Test class
233 Test test = new Test(name, version);
234
235 // Execute the testGetTree() method
236 test.testGetTree();
237
238 // Execute the testSearchConcepts() method
239 test.testSearchConcepts();
240
241 // Execute the testMetadata() method

Chapter 4: Interacting with caCORE EVS

77

242 test.testMetadata();
243 }
244 }

caCORE EVS API Technical Guide

78

79

APPENDIX

A
RESOURCES USED

TO CREATE THIS GUIDE
Books and Articles

The Description Logic Handbook. Franz Baader, et al. (eds.). Cambridge
University Press, 1993.

Artificial Intelligence. Patrick Winston. Addison-Wesley, 1984.

Artificial intelligence. Minsky M, Hillis D, Rudisch G. New England Journal of
Medicine. 1980 Jun 26;302(26):1482.

Java Programming: http://java.sun.com/learning/new2java/index.html

Extensible Markup Language: http://www.w3.org/TR/REC-xml/

XML Metadata Interchange: http://www.omg.org/technology/documents/formal/
xmi.htm

caBIG Material
caBIG: http://cabig.nci.nih.gov/

caBIG Compatibility Guidelines: http://cabig.nci.nih.gov/
guidelines_documentation

caCORE Material
NCICB: http://ncicb.nci.nih.gov/NCICB/infrastructure

caCORE: http://ncicb.nci.nih.gov/NCICB/infrastructure

caBIO: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO

caDSR: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

CSM: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

http://java.sun.com/learning/new2java/index.html
http://www.w3.org/TR/REC-xml/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://cabig.nci.nih.gov/
http://cabig.nci.nih.gov/guidelines_documentation
http://cabig.nci.nih.gov/guidelines_documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure
http://ncicb.nci.nih.gov/NCICB/infrastructure
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

caCORE EVS API Technical Guide

80

Software Products
Java: http://java.sun.com

Ant: http://ant.apache.org/

http://java.sun.com
http://ant.apache.org/

81

APPENDIX

B
ADDITIONAL EXAMPLES

This appendix provides two additional code examples:

Find Tree for Concept and Association on this page

Search Metathesaurus for a Specific Concept/Search Term on page 84

Find Tree for Concept and Association
This example shows how to locate a specific concept node and given association in the
identified vocabulary hierarchy.

1 /*
2 * Copyright: (c) 2004-2007 Mayo Foundation for Medical
3 * Education and Research (MFMER). All rights reserved.
4 * MAYO, MAYO CLINIC, and the triple-shield Mayo logo are
5 * trademarks and service makrs of MFMER.
6 *
7 * Except as contained in the copyright notice above, or as used
8 * to identify MFMER as the author of this software, the trade
9 * names, trademarks, service marks, or product names of the

10 * copyright holder shall not be used in advertising, promotion
11 * or otherwise in connection with this software without prior
12 * written authorization of the copyright holder.
13
14 * Licensed under the Eclipse Public License, Version 1.0
15 * (the “License”); you may not use this file except in
16 * compliance with the License. You may obtain a copy of the
17 * License at http://www.eclipse.org/legal/epl-v10.html.
18
19 * Modified By: NCICB
20

caCORE EVS API Technical Guide

82

21 package org.LexGrid.LexBIG.example;
22
23 import org.LexGrid.LexBIG.DataModel.Collections

.AssociationList;
24 import org.LexGrid.LexBIG.DataModel.Collections

.NameAndValueList;
25 import org.LexGrid.LexBIG.DataModel.Collections

.ResolvedConceptReferenceList;
26 import org.LexGrid.LexBIG.DataModel.Core.AssociatedConcept;
27 import org.LexGrid.LexBIG.DataModel.Core.Association;
28 import org.LexGrid.LexBIG.DataModel.Core.CodingSchemeSummary;
29 import org.LexGrid.LexBIG.DataModel.Core.

CodingSchemeVersionOrTag;
30 import org.LexGrid.LexBIG.DataModel.Core.NameAndValue;
31 import org.LexGrid.LexBIG.DataModel.Core

.ResolvedConceptReference;
32 import org.LexGrid.LexBIG.Exceptions.LBException;
33 import org.LexGrid.LexBIG.Impl.LexBIGServiceImpl;
34 import org.LexGrid.LexBIG.LexBIGService.LexBIGService;
35 import org.LexGrid.LexBIG.LexBIGService.CodedNodeSet

.PropertyType;
36 import org.LexGrid.LexBIG.Utility.ConvenienceMethods;
37 import org.LexGrid.commonTypes.EntityDescription;
38 import gov.nih.nci.system.applicationservice.*;
39
40 /**
41 * Example showing how to determine a branch of associations,

 * starting from a specific concept code.
 */

42 public class FindTreeForCodeAndAssoc {
43 final static int MAX_DEPTH = 5;
44 public FindTreeForCodeAndAssoc() {
45 super();
46 }
47
48 /**
49 * Entry point for processing.
50 * @param args
51 */
52 public static void main(String[] args) {
53 if (args.length < 2) {
54 System.out.println("Example: FindTreeForCodeAndAssoc

\"C25762\" \"hasSubtype\"");
55 return;
56 };
57
58 try {
59 String code = args[0];
60 String relation = args[1];
61 new FindTreeForCodeAndAssoc().run(code, relation);
62 } catch (Exception e) {
63 Util.displayAndLogError("REQUEST FAILED !!!", e);
64 }
65 }
66

Appendix B: Additional Examples

83

67 public void run(String code, String rel)throws LBException {
68 String evsUrl = "http://evsapi.nci.nih.gov/evsapi40/http/

remoteService";
69 CodingSchemeSummary css = Util.promptForCodeSystem();
70 if (css != null) {
71 LexBIGService lbSvc =

EVSApplicationService.getRemoteInstance(evsUrl);
72 String scheme = css.getCodingSchemeURN();
73 CodingSchemeVersionOrTag csvt = new

CodingSchemeVersionOrTag();
74 csvt.setVersion(css.getRepresentsVersion());
75 print(code, rel,0, lbSvc, scheme, csvt);
76 }
77 }
78
79 /**
80 * Handle one level of the tree, and recurse to the
81 * maximum depth.
82 * @param code
83 * @param relation
84 * @param depth
85 * @param lbSvc
86 * @param csvt
87 * @param scheme
88 * @param tagOrVersion
89 * @throws LBException
90 */
91 protected void print(String code, String relation, int depth,

LexBIGService lbSvc, String scheme,
CodingSchemeVersionOrTag csvt) throws LBException {

92
93 // Perform the query...
94 NameAndValue nv = new NameAndValue();
95 NameAndValueList nvList = new NameAndValueList();
96 nv.setName(relation);
97 nvList.addNameAndValue(nv);
98
99 ResolvedConceptReferenceList matches =

lbSvc.getNodeGraph(scheme, csvt,
null).restrictToAssociations(nvList,
null).resolveAsList(ConvenienceMethods.createConceptReferen
ce(code, scheme),true, false, 1, 1,null, new PropertyType[]
{PropertyType.PRESENTATION},null, 1024);

100
101 // Analyze the result ...
102 if (matches.getResolvedConceptReferenceCount() > 0)

{ResolvedConceptReference ref = (ResolvedConceptReference)
matches.enumerateResolvedConceptReference().nextElement();

103
104 // Indent according to level
105 StringBuffer sb = new StringBuffer();
106 for (int i = 0; i < depth-1; i++) sb.append('\t');
107
108 // Print the associations
109 AssociationList sourceof = ref.getSourceOf();
110 Association[] associations = sourceof.getAssociation();

caCORE EVS API Technical Guide

84

Search Metathesaurus for a Specific Concept/Search Term
This example has been commonly used by the caDSR Team. It shows how to search
the Metathesaurus for a desired concept.

111 for (int i = 0; i < associations.length; i++) {
112 Association assoc = associations[i];
113 AssociatedConcept[] acl =

assoc.getAssociatedConcepts().getAssociatedConcept();
114 for (int j = 0; j < acl.length; j++) {
115 // Print
116 AssociatedConcept ac = acl[j];
117 EntityDescription ed = ac.getEntityDescription();
118 Util.displayMessage("\t\t" +

ac.getConceptCode() + "/"+ (ed == null?"**No
Description**":ed.getContent()));

119
120 //Recurse
121 if (depth < MAX_DEPTH)
122 print(ac.getConceptCode(), relation, depth+1, lbSvc ,

scheme, csvt);
123 }
124 }
125 }
126 }

1 import java.io.File;
2 import java.lang.reflect.Method;
3 import java.util.ArrayList;
4 import java.util.Collection;
5 import java.util.Enumeration;
6 import java.util.List;
7 import java.util.Vector;
8 import java.util.jar.JarEntry;
9 import java.util.jar.JarFile;

10
11 import gov.nih.nci.system.client.ApplicationServiceProvider;
12 import gov.nih.nci.system.applicationservice.*;
13 import gov.nih.nci.evs.query.*;
14 import gov.nih.nci.evs.domain.*;
15 import gov.nih.nci.evs.security.*;
16
17 public class TestcaDSR
18 {
19 TestcaDSR client = new TestcaDSR();
20 try
21 {
22 client.testSearch();
23 }
24 catch(Exception e)
25 {
26 e.printStackTrace();
27 }
28 }

Appendix B: Additional Examples

85

29
30 public void testSearch() throws Exception
31 {
32 String termStr = "agent";
33 int metaLimit=100;
34 String metaSource = "*";
35
36 EVSApplicationService appService =

(EVSApplicationService)ApplicationServiceProvider
.getApplicationService(“EvsServiceInfo”);

37
38 try
39 {
40 EVSQuery evsQuery = new EVSQueryImpl();
41 evsQuery.searchMetaThesaurus(termStr, metaLimit,

metaSource, false, false, false);
42
43 List metaResults = (List)evsService.evsSearch(evsQuery);
44
45 System.out.println("\n Running updated version....");
46 System.out.println("\n Results count = " +

metaResults.size());
47 for (int i=0; i < metaResults.size(); i++) {
48 MetaThesaurusConcept metaConcept =

(MetaThesaurusConcept)metaResults.get(i);
49 if (metaConcept != null) {
50 String conceptName = metaConcept.getName();
51 System.out.println("\n\t Concept Name = " +

conceptName);
52 String conceptID = metaConcept.getCui();
53 System.out.println("\n\t Concept ID = " +

conceptID);
54 ArrayList semantic =

metaConcept.getSemanticTypeCollection();
55 System.out.println("\n Semantic size = " +

semantic.size());
56 for (int ii=0; ii < semantic.size(); ii++) {

System.out.println("\n\t Semantic = " +
(SemanticType)semantic.get(ii));

57 }
58 }
59 }
60 } catch(Exception e) {
61 System.out.println(">>>"+e.getMessage());
62 e.printStackTrace();
63 }
64 }

caCORE EVS API Technical Guide

86

87

GLOSSARY
This glossary defines acronyms, abbreviations, and terminology used in this guide.

Term Definition

AJAX Asynchronous JavaScipt and XML

AL Attributitive Language description logic

BioPortal The NCBO Web browser for LexBIG

caBIG cancer Biomedical Informatics Grid: A full cycle of integrated cancer
research

caBIO cancer Bioinformatics Infrastructure Objects: The model and
architecture that serve as the primary programmatic interface to
caCORE.

caCORE cancer Common Ontologic Representation Environment

caDSR cancer Data Standards Repository: Metadata registry based on the
ISO/IEC 11179 standard and used to register the descriptive
information needed to render cancer research data reusable and
interoperable.

CLM Common Logging Module: Provides a separate service under
caCORE for audit and logging capabilities.

CSM Common Security Module: Provides a flexible solution for application
security and access control for caCORE.

CUI Concept Unique Identifier

DAML Agent Markup Language

DARPA Defense Advanced Research Projects Agency

DL Description Logic: A family of systems that is especially well suited to
the development of ontologies, taxonomies, and controlled
vocabularies.

DTS A proprietary server that does not allow exposure of the API.

EVS Enterprise Vocabulary Services: A collaborative effort of the NCI
Center for Bioinformatics.

FL Frame Language description logic

FOL First-Order Predicate Logic

GO Gene Ontology™ Consortium

caCORE EVS API Technical Guide

88

ICD-O-3 Additional vocabularies that are external to the NCI Metathesaurus

IDE Integrated Development Environment

LexBIG Open source public domain terminology server developed by the
Mayo Clinic as part of the caBIG program

MDA Model Driven Architecture

MedDRA Additional vocabularies that are external to the NCI Metathesaurus

MGED Microarray and Gene Expression Data

MO Native MGED Ontology that is edited in OilEd and distributed in the
Defense Advanced Research Projects Agency, Agent Markup
Language, and Ontology Inference Layer XML format

NCBO National Center for Bioontologies

NCI Metathesaurus Comprehensive biomedical terminology database based on the
National Library of Medicine’s Unified Medical Language System
Metathesaurus (UMLS), supplemented with additional cancer-centric
vocabulary.

NCI Thesaurus A core reference terminology and biomedical ontology developed by
the EVS in response to a need for consistent, shared vocabularies
among the various NCI projects and initiatives and in the entire
cancer research community.

NCICB NCI Center for Bioinformatics

NLM National Library of Medicine

OBO Open Biomedical Ontologies

OIL Ontology Inference Layer

OLLT Obsolete Lower Level Terms

OWL Web Ontology Language

RDF Resource Description Framework

RRF Rich Release Format

SDK Software Development Kit: the caCORE SDK is a data management
framework designed for researchers who need to be able to navigate
through a large number of data sources. caCORE SDK is NCICB's
platform for data management and semantic integration, built using
formal techniques from the software engineering and computer
science communities.

SNOMED Additional vocabularies that are external to the NCI Metathesaurus

SOAP Simple Object Access Protocol

SOC System Organ Class

SSC Special Search Categories

SUI String Unique Identifier: assigned to each unique concept name or
string in the NCI Metathesaurus.

TDE Terminology Development Environment

Term Definition

Glossary

89

UML Unified Modeling Language

UMLS Unified Medical Language System Metathesaurus developed by the
National Library of Medicine.

UMLS Semantic
Network

An independent construct that provides consistent categorization for
all concepts in the UMLS Metathesaurus and defines a useful set of
relationships among those concepts.

W3C World Wide Web Consortium: standards organization that develops
interoperable technologies for the Web.

XML Extensible Markup Language: A subset of the Standard Generalized
Markup Language (SGML). Its goal is to enable generic SGML to be
served, received, and processed on the Web in the way that is now
possible with HTML. XML has been designed for ease of
implementation and for interoperability with both SGML and HTML

Term Definition

caCORE EVS API Technical Guide

90

91

INDEX
A
APIs

Distributed LexBIG 67 - 71
Java 34 - 35, 41 - 46
Web Services 55 - 61
XML‐HTTP 62 - 64

C
caCORE

architecture overview 27
components 28 - 29

caBIO 28
caDSR 28
Common Logging Module (CLM) 29
Common Security Module (CSM) 29
EVS 28

release paradigm 29

D
data sources for EVS 41
description logic

in NCI Thesaurus 14
overview 12

Distributed LexBIG Adapter example 71
Distributed LexBIG API

architecture 67
aspect oriented programming proxies 68
documentation 69
example of use 69
installation and configuration 69
LexBIG annotations 68
overview 67

domain object catalog 40

E
EVS

as caCORE component 28
client technologies 33
core components 38
data sources 41

domain object catalog 40
key terminologies 8
object model 39
overview 7
search paradigm 47
software packages 34
system architecture 31

EVSQuery
accessing secured vocabularies 50
creating search request 51
examples of use 51 - 54
methods and parameters 48
overview 48

EVSQueryImpl, overview 48

F
first‐order predicate logic 11

G
Gene Ontology (GO)

mapping to Ontylog 21

J
J2SE, used with EVS 33
Java API 41 - 47

domain packages 34
downloading 42
installing 43
software requirements 42
system packages 35
verifying installation 45

K
kinds in NCI Thesaurus 18
knowledge representation

description logic 12
first‐order predicate logic 11
overview 10

caCORE EVS API Technical Guide

92

L
LexBIG

overview 25
service API 32

M
MedDRA, mapping to Ontylog 22
MGED ontology, mapping to Ontylog 24

N
NCI Metathesaurus, overview 8
NCI Thesaurus

concept edit history 15
description logic use 14
downloading 16
overview 8
OWL encoding 18

O
object model for EVS 39
Ontylog mappings

Gene Ontology (GO) 21
MedDRA 22
MGED ontology 24
OWL 19

OWL in NCI Thesaurus 18

R
Resource Description Framework (RDF)

in NCI Thesaurus 18
Ontylog name conversion 19

roles in NCI Thesaurus 18

S
search paradigm 47
Semantic Web and OWL
SOAP, used with EVS 33

U
UMLS Metathesaurus, about 9

W
Web Ontology Language
See OWL in NCI Thesaurus

Web Services API
configuration 55
considerations 57
examples of use 58 - 60
limitations 61
operations 56
overview 55

X
XML‐HTTP API

examples of usel 63
service location and syntax 62
working with result sets 64

XML Utility Class
example of use 65
overview 65

	Cover Page

	Contents
	About This Guide
	Purpose
	Release Schedule
	Audience
	Additional caCORE Documentation
	Organization of This Guide
	Text Conventions Used
	Credits and Resources

	Ch01:
About the Enterprise Vocabulary Services and LexBIG
	Introduction
	Key EVS Terminologies
	NCI Thesaurus
	NCI Metathesaurus

	About the UMLS Metathesaurus
	Preservation of Terminology
	Disambiguation of Terminology
	Defined Relationships
	Categorization of Concepts

	About Knowledge Representation
	First-Order Predicate Logic
	Description Logic
	Description Logic in the NCI Thesaurus

	Concept Edit History in the NCI Thesaurus
	Working with the NCI Thesaurus
	Downloading the NCI Thesaurus
	OWL Encoding of the NCI Thesaurus
	Ontylog Name Conversion

	Ontylog Mappings
	Mapping of Gene Ontology to Ontylog
	Mapping of MedDRA to Ontylog
	Vocabulary Hierarchy Structure
	Concept Codes and Names
	Roles
	Properties

	Mapping of MGED Ontology to Ontylog
	Vocabulary Hierarchy Structure
	Concept IDs, Codes, and Names
	Roles
	Properties

	About LexBIG

	Ch02:
About caCORE
	Architecture Overview
	Components of caCORE
	Enterprise Vocabulary Services (EVS)
	Cancer Data Standards Repository (caDSR)
	Cancer Bioinformatics Infrastructure Objects (caBIO)
	Common Security Model (CSM)
	Common Logging Module (CLM)

	About the caCORE 4.0 Release Paradigm

	Ch03:
About the caCORE EVS Architecture
	caCORE EVS System Architecture
	Client Technologies
	caCORE EVS Software Packages
	Domain Packages
	System Packages

	Ch04:
Interacting with caCORE EVS
	caCORE EVS Components
	EVS 3.2 Object Model
	EVS 3.2 Domain Object Catalog
	EVS Data Sources
	NCI Thesaurus
	NCI Metathesaurus

	Installing and Configuring the EVS 3.2 Java API
	Software Requirements
	Downloading the Java API Client Package
	Installing the Package
	Verifying the Installation

	Search Paradigm
	About EVSQuery and EVSQueryImpl
	EVSQuery Methods and Parameters
	Using EVSQuery
	Accessing Secured Vocabularies
	Creating an EVS Search Request

	Examples of Use

	Web Services API
	Configuration
	Operations
	Considerations
	Examples of Use
	Limitations

	XML-HTTP API
	Service Location and Syntax
	Examples of Use
	Working with Result Sets
	Retrieving Related Results Using XLinks
	Controlling the Number of Items Returned
	Paging Results
	Limitations

	About the XMLUtility Class
	Overview
	Example of Use

	Distributed LexBIG API
	Overview
	Architecture
	LexBIG Annotations
	Aspect Oriented Programming Proxies
	LexBIG API Documentation
	LexBIG Installation and Configuration
	Example of Use

	Distributed LexBIG Adapter Example of Use

	AppA:
Resources Used to Create This Guide
	Books and Articles
	caBIG Material
	caCORE Material
	Software Products

	AppB:
Additional Examples
	Find Tree for Concept and Association
	Search Metathesaurus for a Specific Concept/Search Term

	Glossary
	Index

