Design and Implementation Specification 1.1
for

EVS Grid service for caGrid 1.1
Last Updated: March 10, 2008
Owner: Wilberto Garcia
Telephone: (301) 443-3343
Email: garciawa2@mail.nih.gov
National Cancer Institute Center for BioInformatics

6116 Executive Blvd.

Rockville, MD 20852

[image: image1.png]

1 Revision History

Content changes to this document from the previous to the current level are indicated by revision bars (|) unless a complete rewrite is indicated.
	Date
	Version
	Description
	Author

	11/16/2006
	1.0
	Initial document
	Avinash Shanbhag

	11/17/2006
	
	Added content
	Avinash Shanbhag

	03/10/2008
	1.1
	Modified document to caGrid 1.1 and EVS API 4.0.
	Wilberto Garcia

	Note: If this document has been inspected, please indicate the inspection date that each version is based on in the “Change Description and Explanation” area. Entries in this log must be maintained for at least 3 years.

21
Revision History

2
Document Purpose
5
3
Implementation Overview
6
3.1
Team Members
6
3.2
Description
6
3.3
Scope
6
3.4
Architecture
7
3.4.1
EVS Grid Service Class Diagram
7
3.4.2
EVS Grid Service Sequence Diagram
8
3.5
Assumptions
9
3.6
Dependencies
9
3.7
Issues
9
3.8
Third Party Tools
9
4
Implementation Contents
10
4.1
Server
10
4.1.1
Algorithms
10
4.1.2
Batch Processes
10
4.1.3
APIs
10
4.1.3.1
getServiceVersion
10
4.1.3.2
getMetaSources
10
4.1.3.3
getVocabularyNames
11
4.1.3.4
searchDescLogicConcept
11
4.1.3.5
getHistoryRecords
12
4.1.3.6
searchMetaThesaurus
13
4.1.4
Error Handling
14
4.1.5
Database Changes
14
4.2
Client
14
4.2.1
JSP/HTML
14
4.2.2
Servlet
14
4.2.3
Error Handling
14
4.3
Security Issues
15
4.4
Performance
15
4.5
Internationalization
15
4.6
Installation / Packaging
15
4.7
Migration
15
4.8
Documentation Considerations
15
5
System Testing
16
5.1
Test Guidelines
18
5.2
Test Cases
18
5.3
Test Results
18
DOCUMENT APPROVAL
19

List of TABLES

6Table 1 – Team Members

2 Document Purpose

This document provides the detailed design and implementation of Enterprise Vocabulary Service (EVS) caGrid Service. It should be noted that the EVS Grid Service is no longer part of the caGrid 1.1 infrastructure and will be deployed as a separate unit. This is a change from the previous release of the EVS Grid Service.
The EVS caGrid service will allow programs to utilize the caGrid 1.1 infrastructure to access EVS information that is currently being produced by NCICB.

3 Implementation Overview

3.1 Team Members

Table 1 – Team Members

	Role
	Name

	Development Lead
	Wilberto Garcia

	Documentation Lead
	Wilberto Garcia

	Project Manager
	Johnita Beasley

	Test Lead
	Steve Hunter

	Director
	Avinash Shanbhag

3.2 Description

The EVS grid service will be used to obtain data accessible via the EVSAPI 4.1 service. Please refer to the CACORE EVS API 4.0 technical guide for details on the EVSAPI 4.1 EVS APIs.

3.3 Scope

The EVS Grid service will provide programmatic access to the EVS domain objects that are available via the EVS information model.

The EVS grid service will be registered in Cancer Data Standards Repository (caDSR) under the following category:

	EVS Grid Service

	Context
	caBIG

	Classification Scheme
	caGrid

	Version
	4.1

The EVS grid service will provide access to the EVS information model registered in the caDSR under the following category:

	EVS Information Model

	Context
	caCORE

	Classification Scheme
	caCORE

	Version
	4.1

The following APIs will be made available thru the EVS grid service:

	Name of the Operation
	Comments
	Inputs For the Operation
	Returned Information from the Operation

	getServiceVersion
	Returns current service version information including version of EVSAPI used.
	No Input
	String

	searchDescLogicConcept
	Searches a valid Vocabulary such as NCI Thesaurus and returns Description Logic concepts that meet the search criteria
	The EVSDescLogicConceptSearchParams will contain Vocabulary Name, the search term and the maximum limit of returned objects
	Array of DescLogicConcept objects

	searchMetaThesaurus
	Searches NCI meta thesaurus and returns Meta Thesaurus information that meet the search criteria
	The EVSMetaThesaurusSearchParams will contain the search term, the CUI, source, short response, score and the maximum number of returned objects
	Array of MetaThesaurusConcept objects

	getHistoryRecords
	Searches a valid vocabulary in NCI thesaurus for history information
	The EVSHistoryRecordsSearchParams will contain vocabulary name and the concept code for which the history information is searched
	Array of HistoryRecord objects

	getVocabularyNames
	Returns all the vocabularies present in the Description Logic
	No Input
	Array of DescLogicConceptVocabularyName objects

	getMetaSources
	Used to obtain Meta thesaurus sources
	No Input
	Array of Source objects

The API will access the following objects and from the EVSAPI information model:

· DescLogicConcept
· MetaThesaurusConcept
· HistoryRecord

The following objects are registered by the EVS grid service information model:

· DescLogicConceptVocabularyName
· EVSDescLogicConceptSearchParams
· EVSHistoryRecordsSearchParams
· EVSSourceSearchParams
3.4 Architecture

3.4.1 EVS Grid Service Class Diagram

[image: image2.emf]cd Logical Model_evsgrid3.1

service::

EVSDescLogicConceptSearchParams

- vocabularyName: String

- searchTerm: String

- limit: int

service::

EVSMetaThesaurusSearchParams

- searchTerm: String = null

- limit: int = 0

- source: String = null

- cui: boolean = false

- shortResponse: boolean = false

- score: boolean = false

service::

EVSHistoryRecordsSearchParams

- vocabularyName: String = null

- conceptCode: String = null

service::EVSSourceSearchParams

- code: String = null

- sourceAbbreviation: String = null

service::EVSQueryService

+ searchDescLogicConcept(EVSDescLogicConceptSearchParams) : DescLogicConcept[]

+ searchMetaThesaurus(EVSMetaThesaurusSearchParams) : MetaThesaurusConcept[]

+ getHistoryRecords(EVSHistoryRecordsSearchParams) : HistoryRecord[]

+ getVocabularyNames() : DescLogicConceptVocabularyName[]

+ getMetaSources() : Source[]

+ searchSourceByCode(EVSSourceSearchParams) : MetaThesarusConcepts[]

service::

DescLogicConceptVocabularyName

- vocabularyName: String = null

3.4.2 EVS Grid Service Sequence Diagram

The sequence diagram for the operation “getMetaSources” is described below:

[image: image3.emf]sd Interactions

EVSGridServiceClient EVSGridServicePortType EVSGridServicePortType Call EVSGridServiceProviderImplEVSGridServiceImpl

Return Boxed Results of Array of Source objects using Castor

mapping (evs-service-xml-mapping.xml) for transforming XML

into gov.nih.nci.evs.domain.Source objects

getMetaSources

getMetaSources

invoke

getMetaSources

getMetaSources

getMetaSourcesResponse

getMetaSourcesResponse

Source[]

The same classes will be interacting for all the operations in the service.

3.5 Assumptions

· The EVS service will be based on the latest EVSAPI 4.1 patch release built by NCICB.
· The EVSAPI 4.1 patch release will be available and deployed at NCICB at the following URL: http://evsapi.nci.nih.gov/evsapi40/services/evsapi41Service
· The EVSAPI 4.1 domain model will be loaded in GME in the following namespace: gme://caCORE.caCORE/4.1/

· The EVS grid service will not have any method level security. All security requirements will be handled by the actual deployment of the underlying EVSAPI 4.1service

· The EVS grid service will not be deployed as a “core” service by caGrid at NCICB as was previously done, but rather will now be deployed as a standalone service.
· The EVS grid service release schedule will no longer be coupled to the caGrid deployment schedule as previously done.
· Multiple version of EVS grid service may be active at the same instance in time depending solely on the availability of the underlining EVSAPI service.

3.6 Dependencies

· EVSAPI 4.1 service needs to be available and running correctly

· The EVSAPI 4.1 domain model needs to be registered in caDSR

· The EVS service input classes needs to be registered in caDSR

· The EVS service and operations will use the Introduce toolkit to generate the appropriate structure for registering the service into caDSR

· A concept code for “core” Grid service will be provided by the EVS team

3.7 Issues

· None

3.8 Third Party Tools

· Introduce Toolkit

· Globus Toolkit (4.0.3) or appropriate version supported by caGrid 1.1)

· caGrid 1.1 core infrastructure

4 Implementation Contents

4.1 Server

The EVS grid service will be deployed as a “stand alone” grid service at NCICB.

4.1.1 Algorithms

None

4.1.2 Batch Processes

None

4.1.3 APIs

4.1.3.1 getServiceVersion
	getServiceVersion()

	Description:
	Return service version

	Input:
	None

	Output:
	org.2001.XMLSchema.String

	Exception:
	None

	Implementation Details:
	Return constant string containing version information.

4.1.3.2 getMetaSources

	getMetaSources()

	Description:
	This method will return an array of gov.nih.nci.evs.domain.Source objects that are published by the EVSAPI service.

	Input:
	None

	Output:
	gov.nih.nci.evs.domain.Source[]

	Exception:
	RemoteException

	Implementation Details:
	The API will use the EVSAPI to query the EVS service as follows:

Step 1: Connect to the EVSAPI service running at NCICB

EVSApplicationService appService = (EVSApplicationService) ApplicationServiceProvider

.getApplicationService();
Step 2: Build a gov.nih.nci.evs.query.EVSQueryImpl object and set the operation as “getMetaSources” as follows:

EVSQuery metaSearch = new EVSQueryImpl();

metaSearch.getMetaSources();

Step 3: Invoke the EVSAPI search method as follows:

metaResults = appService.evsSearch(metaSearch);

4.1.3.3 getVocabularyNames

	getServiceVersion

	Description:
	This method will return an array of gov.nih.nci.cagrid.evs.service.DescLogicConceptVocabularyName objects that contain the vocabulary names that are supported by the EVSAPI service.

	Input:
	None

	Output:
	gov.nih.nci.cagrid.evs.service.DescLogicConceptVocabularyName []

	Exception:
	RemoteException

	Implementation Details:
	The API will use the EVSAPI to query the EVS service as follows:

Step 1: Connect to the EVSAPI service running at NCICB

EVSApplicationService appService = (EVSApplicationService) ApplicationServiceProvider

.getApplicationService();

Step 2: Build a gov.nih.nci.evs.query.EVSQueryImpl object and set the operation as “getVocabularyNames” as follows:

EVSQuery evsSearch = new EVSQueryImpl();

 evsSearch.getVocabularyNames();

Step 3: Invoke the EVSAPI search method as follows:

evsResults = appService.evsSearch(evsSearch);

4.1.3.4 searchDescLogicConcept

	getServiceVersion

	Description:
	This method will return an array of gov.nih.nci.evs.domain.DescLogicConcept objects that are published by the EVSAPI service.

The API will take following input: valid vocabulary name (present in the list from the getVocabularyNames), a valid search term that either corresponds to the concept “name” or concept “code” and return the appropriate array of gov.nih.nci.evs.domain.DescLogicConcept objects. All the “associated” objects and attributes corresponding to the EVSAPI information model can be navigated, except for the following:

1. Instances of gov.nih.nci.evs.domain.EdgeProperties are not populated currently by the EVSAPI service. These objects are used to specify relationship between a concept and its immediate parent when a DefaultMutableTree is generated. And, the EVSAPI service does NOT produce a Tree.

2. Instances of gov.nih.nci.evs.domain.Qualifier are not populated by the EVSAPI service.

3. Instances of gov.nih.nci.evs.domain.TreeNode are not populated by the EVSAPI service.

	Input:
	gov.nih.nci.cagrid.evs.service.EVSDescLogicConceptSearchParams

	Output:
	gov.nih.nci.evs.domain.DescLogicConcept[]

	Exception:
	RemoteException

InvalidInputExceptionType

	Implementation Details:
	The API will use the EVSAPI to query the EVS service as follows:

Step 1: Connect to the EVSAPI service running at NCICB

EVSApplicationService appService = (EVSApplicationService) ApplicationServiceProvider

.getApplicationService();
Step 2a: Determine if the search term set in the input (EVSDescLogicConceptSearchParams.searchTerm) is a concept code or a name.

Step 2b: If the search term is a “concept code”, then build a gov.nih.nci.evs.query.EVSQueryImpl object and set the operation as “getDescLogicConceptNameByCode” as follows:

EVSQuery evsSearch = new EVSQueryImpl();

evsSearch. getDescLogicConceptNameByCode(EVSDescLogicConceptSearchParams.getVocabularyName(),

 EVSDescLogicConceptSearchParams.getSearchTerm()

);

Step 2c: If the search term is a “concept name”, then build a gov.nih.nci.evs.query.EVSQueryImpl object and set the operation as “searchDescLogicConcepts” as follows:

EVSQuery evsSearch = new EVSQueryImpl();

evsSearch. searchDescLogicConcepts (EVSDescLogicConceptSearchParams.getVocabularyName(),

 EVSDescLogicConceptSearchParams.getSearchTerm()

);

Step 3: Invoke the EVSAPI search method as follows:

Results = (List)appService.evsSearch(evsSearch);

Note:

It the search term is a “concept code”, then the result from Step 3 is the “name” corresponding to the concept code. This “name” is then used to call Step 2c and Step 3 again to obtain the results.

4.1.3.5 getHistoryRecords

	getServiceVersion

	Description:
	This method will return an array of gov.nih.nci.evs.domain.HistoryRecord objects that are published by the EVSAPI service.

The API will take following input: valid vocabulary name (present in the list from the getVocabularyNames) and a valid concept “code” and return the appropriate array of gov.nih.nci.evs.domain.HistoryRecord objects. All the “associated” objects and attributes corresponding to the EVSAPI information model can be navigated.

	Input:
	gov.nih.nci.cagrid.evs.service.EVSHistoryRecordsSearchParams

	Output:
	gov.nih.nci.evs.domain.HistoryRecord[]

	Exception:
	RemoteException

InvalidInputExceptionType

	Implementation Details:
	The API will use the EVSAPI to query the EVS service as follows:

Step 1: Connect to the EVSAPI service running at NCICB

EVSApplicationService appService = (EVSApplicationService) ApplicationServiceProvider

.getApplicationService();
Step 2: Build a gov.nih.nci.evs.query.EVSQueryImpl object and set the operation as “getVocabularyNames” as follows:

EVSQuery evsSearch = new EVSQueryImpl();

 evsSearch.getHistoryRecords(EVSHistoryRecordsSearchParams.getVocabularyName(),

 EVSHistoryRecordsSearchParams.getConceptCode());

Step 3: Invoke the EVSAPI search method as follows:

Results = (List)appService.evsSearch(evsSearch);

4.1.3.6 searchMetaThesaurus

	getServiceVersion

	Description:
	This method will return an array of gov.nih.nci.evs.domain.MetaThesaurusConcept objects that are published by the EVSAPI service.

The API will take following input:

· Valid Meta Thesaurus source abbreviation (present in the list from the API getMetaSources. A value of “*” indicates that the search term will be queried against ALL available sources

· Search term refers to the concept “name” to be searched in the appropriate source or all sources as indicated above

· The appropriate settings of the tuning parameters to indicate whether the search term is a Concept Unique Identifier (CUI) or a regular search term. If the search term is a CUI, then, the search term is validated to adhere to the following restrictions:

· The CUI begins with the letter “C”

· The CUI has a maximum length of 8 characters

The API will return the appropriate array of gov.nih.nci.evs.domain. MetaThesaurusConcept objects. All the “associated” objects and attributes corresponding to the EVSAPI information model can be navigated.

	Input:
	gov.nih.nci.cagrid.evs.service.EVSMetaThesaurusSearchParams

	Output:
	gov.nih.nci.evs.domain.MetaThesaurusConcept[]

	Exception:
	RemoteException

InvalidInputExceptionType

	Implementation Details:
	The API will use the EVSAPI to query the EVS service as follows:

Step 1: Connect to the EVSAPI service running at NCICB

EVSApplicationService appService = (EVSApplicationService) ApplicationServiceProvider

.getApplicationService();
Step 2: Build a gov.nih.nci.evs.query.EVSQueryImpl object and set the operation as “searchMetaThesaurus” as follows:

EVSQuery evsSearch = new EVSQueryImpl();

 evsSearch.searchMetaThesaurus(EVSMetaThesaurusSearchParams.getSearchTerm(),

 EVSMetaThesaurusSearchParams.getLimit(),

 EVSMetaThesaurusSearchParams.getSource(),

 EVSMetaThesaurusSearchParams.isCui(),

 EVSMetaThesaurusSearchParams.isShortResponse(),

 EVSMetaThesaurusSearchParams.isScore());

Step 3: Invoke the EVSAPI search method as follows:

Results = (List)appService.evsSearch(evsSearch);

4.1.4 Error Handling

Error Connecting to EVSAPI Service

All the APIs will throw an exception (java.rmi.RemoteException) if EVSAPI service was unavailable. The following error message will be wrapped into the error “message”

 “Error in connecting to theEVSAPI Service. Please check that the following URI is working correctly: <EVSAPI Service URL>”

The actual code will be as shown below:

throw new ServiceException(CONN_ERROR, re);
Input Error

All the APIs that accept “inputs” will also throw the exception (gov.nih.nci.cagrid.evsgridservice.stubs.types.InvalidInputExceptionType) if invalid inputs are passed to the API.

The detailed fault will be described in the “faultString” attribute of the class, as shown below:

InvalidInputExceptionType fault = new InvalidInputExceptionType();

fault.setFaultString("Invalid inputs: EVSSourceSearchParams object cannot be NULL");

throw fault;

4.1.5 Database Changes

None

4.2 Client

The Introduce toolkit generates a “client” class that will be provided to the users.

4.2.1 JSP/HTML

None

4.2.2 Servlet

None

4.2.3 Error Handling

None

4.3 Security Issues

All the information accessed by the EVS grid service is publicly available from NCICB and users are expected to follow the licensing requirements currently in place for accessing and using NCI EVS information.

4.4 Performance

The EVS service will take advantage of all improvements made to the EVSAPI services with the exception of lazy loading. EVS grid service, being in nature a web service is currently not taking advantage of lazy loading since objects are transferred as fully populated objects. However, future releases of EVS grid service may refractor the interface in such as way as to take advantage of some of the benefits brought about by the inclusion of lazy loading in to EVSAPI service.

4.5 Internationalization

Not Internationalized

4.6 Installation / Packaging

The service will be installed and deployed as a “stand alone” service at NCICB.

4.7 Migration

Both the current version of EVS grid service may be “in service” simultaneously if the corresponding underlying EVSAPI service is also “in service” to manage migration of clients.
4.8 Documentation Considerations

The EVS grid service client API will be described in the EVSAPI User Guide and the Programmers Guide.

5 System Testing

The System test case for the EVS grid service is described in the following:

	Package
	gov.nci.nih.cagrid.tests.core.steps.

	Class
	EvsCheckServiceStep

	Main method
	runStep

The actual methods and the test cases that are tested by the “Main method” are described below:

	API
	Test Cases
	Test Results

	testMetaThesaurus
	1. Call “searchMetaThesaurus” API based on search term (breast), all source flag (“*”) and obtain array of MetaThesaurusConcept objects.

2. Navigate all the associated objects for ONE of the MetaThesaurusConcept objects in the list from 1.

	1. The API should return valid instances (not null) of MetaThesaurusConcept objects.

2. The CUI and Name attributes are not NULL.

3. The “identical” MetaThesaurusConcept is obtained when the API “searchMetaThesaurus” is invoked passing the CUI from 2.

4. Test that all the “sources” for the MetaThesaurusConcept object are present as valid meta sources obtained by calling the API “getMetaSources”

5. Test that the “atom” collection is not null. Check that all attributes are populated for each “Atom” object. Also, check that the source for each “Atom” object is a valid meta source (present in the list returned by “getMetaSources”). For each Atom object, test the API “searchSourceByCode” by passing the code and source abbreviation. Test that the resulting MetaThesaurusConcept object is not null.

6. Check that the “definitionCollection” and “Definition” objects are not null.

7. Check that the “SemanticTypeCollection” attribute and “SemanticType” objects are not null.

Check that the “SynonymCollection” attribute and “Synonym” objects are not null.

	testSearchMetaThesaurusConcept
	Calls the API “searchMetaThesaurus” with empty value for Search term.
	The API will throw “InvalidInputExceptionType” exception with the detailed message in the FaultString attribute

	testGetHistoryRecords
	1. Calls the API “getHistoryRecords” passing valid values for concept code and vocabulary name.

2. Call the API “getHistoryRecords” passing valid value for concept code but an invalid value for vocabulary name.

	1. Check that the API returns a list of HistoryRecord objects for valid inputs. Check that the HistoryRecord objects are not null.

2. When invalid inputs are passed to the API, the API throws “InvalidInputExceptionType” exception with the detailed message in the FaultString attribute.

	testGetDescriptionLogicConcept
	1. Calls the API “searchDescLogicConcept” based on search term (“blood”) and test that all the DescLogicConcept objects have valid attributes and association.

2. Call the API “searchDescLogicConcept” based on search term that is Concept code (e.g. “C43723”) and test that the DescLogicConcept object has valid attributes and associations.
	1. The API should return 43 objects (which is one more than the result obtained from the UI. The discrepancy is due to the fact that the UI queries based on “Preferred” name while the EVS core service API queries using the “concept” name).

2. Check that the attributes “name”, “namespaceId”, “code”, “semantictypevector”, “inverseRolecollection” and “inverseAssociationCollection” have valid values.

3. Check that the associations “propertyCollections”, “associationCollection”, “roleCollection” have valid values.

4. Check that the Qualifier object is NOT populated and is null.

5. Check that the “EdgeProperties” and “treeNode” association are NOT populated and are null.

	testGetVocabularyNames
	1. Call the API “getVocabularyNames” and obtain the list of vocabulary names supported by NCI Terminologies
	1. The API should result in a list of vocabulary names supported by NCI terminology server.

	testSearchDescLogicConcept
	1. Calls the API “searchDescLogicConcept” using valid input.

2. Call the API “searchDescLogicConcept” using invalid inputs.
	1. Test the API returns a list of valid instances of DescLogicConcept objects when inputs are valid.

2. Test that the API “searchDescLogicConcept” returns exactly ONE instance of DescLogicConcept object when the input is a “concept code”.

3. Test that the instances of DescLogicConcept object obtained using “name” search and using “concept code” are identical.

4. When following invalid concept code is passed to the API, the API “searchDescLogicConcept” throws “InvalidInputExceptionType” exception with the detailed message in the FaultString attribute:

· Concept code with letters

· Concept code with space

· Wrong concept code

5.1 Test Guidelines

The test cases are integrated with the caGrid 1.0 test framework.

5.2 Test Cases

See System Testing.

5.3 Test Results

See System Testing.

DOCUMENT APPROVAL

Approvers List

The individuals listed in this section constitute the approvers list for the Integration Test Plan document. Formal approval must be received from all approvers prior to the initiation of the next steps in the process.

	Title
	Name

	Project Manager
	

	Development Manager
	

Reviewers List

The individuals listed in this section constitute the reviewers list for the Master Test Plan document. Formal approval is not required from the reviewers, however, it is desirable to have all reviewers review and comment on the document. Reviewers may choose to concentrate on reviewing only those sections that are in their area of responsibility, rather than the entire document.

	Title
	Name

	Technical Writer
	

	END OF DOCUMENT

EVSGrid4Service-Design-and-Implementation.doc Page 19 of 23

