System Testing 1.0

for

LexEVS Grid Service for caGrid 1.2
Last Updated: August 29, 2008
Owner: Kevin Peterson
Telephone: (507) 293-3781

Email: kevin.peterson@mayo.edu
Mayo Clinic

200 1st St. SW

Rochester, MN 55905

[image: image2.png]W MAYO CLINIC

1. Introduction
The LexEVS Grid Services are meant to expose the LexBIG 2.3 (http://informatics.mayo.edu) API via caGrid Services. For more information about the LexEVS Grid Services, including documentation, build instructions, and sample code, see http://gforge.nci.nih.gov/docman/index.php?group_id=491&selected_doc_group_id=3749&language_id=1
2. Testing Strategy
· Unit Tests

JUnit Tests were used to test individual segments of code (for
example, one API call or Grid Service Call). Any previously defined
critical use-case, or frequently used sequence of Grid Service calls are
also tested. Finally, any documented bugs are individually tested.
· Integration Tests

LexEVS Grid Service is dependent on EVSAPI and LexBIG. All tests of

LexEVS Grid Services indirectly test the dependent layers. Efforts were

made to keep the JUnit tests as similar as possible between the layers, so

that integration errors could be diagnosed quickly. In this way, the same

JUnit test can be ran on all of the layers to determine where the problem

arises.
· UI Tests

The LexEVS Grid Service Java Client Interfaces are used during the JUnit

tests, and are meant to replicate common use-cases for a user. Other

approaches were tested, such as sending SOAP messages (without using

the Java client). Also, the Grid-Enabled LexBIG GUI was used (see

below).
3. Testing Approach
JUnits were geared more to exercise common user use-cases than having a one-to-one JUnit-API Method relationship. Because of the nature of the API, a series of calls together (for instance, create a query, place restrictions on the query, and return the results – all being separate Grid Service calls) gives most accurate testing results.

Because LexEVS Grid Services are based on the LexBIG API, there was an established idea of what the critical user use-cases would be. These scenarios have been identified for specific testing.

UI testing was done mainly with a Grid-Enabled version of the LexBIG GUI, which can be found here http://informatics.mayo.edu/LexGrid/downloads/LexBIGCaGridServices/LexEVS_GridGUI_Installer.jar
This was adapted as strictly a testing tool, enabling LexEVS Grid Services to be called on command without having to write code or test scripts. This process was not automated, however, as it was used to test specific problems found in the automated JUnit tests, as well as for demonstration purposes.

Receiving/Sending SOAP messages was tested using tcpmon (https://tcpmon.dev.java.net/). Along with allowing SOAP messages to be sent to the server, SOAP messages could be intercepted and examined for correctness.
4. Testing Process
· Junits
· Directories

· /test – the main test directory

· /buildtest – the build directory

· /lib – necessary jar libraries used by the JUnit tests

· /logs – any output from the JUnit tests

· /reports – generated (XML or HTML) test result reports

· /src – JUnit test source code

· /testExtended – placeholder for future tests (not used at this time).
· JUnit Test Packages

These are the major JUnit test packages. Each may be found in the

/test/src directory

· org.LexGrid.LexBIG.Impl

Tests the various API service calls (Main Service and Service Contexts)

· org.LexGrid.LexBIG.Impl.bugs

Tests known bugs

· org.LexGrid.LexBIG.Impl.dataAccess

Tests Security handling (including multiple simultaneous connections)

· org.LexGrid.LexBIG.Impl.function.metadata

Tests the Metadata API (LexBIGServiceMetadata Service Context)

· org.LexGrid.LexBIG.Impl.function.query

Extensive Tests of various queries/restrictions, etc. The largest group of tests. This is also where the identified critical use-case scenarios are tested.
· org.LexGrid.LexBIG.Impl.function.helpers

Tests various test case helper methods
· org.LexGrid.LexBIG.Impl.function.History
Tests the History API (HistoryService Service Context)

· Grid Service Security

· Security is tested via JUnit tests in the package org.LexGrid.LexBIG.Impl.dataAccess. These tests are set up to mimic anticipated security-related use-cases. For example, single client connections (with our without security), multiple simultaneous client connections(with each client requesting different security), and other combinations. For more information on how security is implemented in LexEVS Grid Service, see the section “Security Issues” in the LexEVS Grid Service Design and Implementation Document Located at http://gforge.nci.nih.gov/docman/index.php?group_id=491&selected_doc_group_id=3879&language_id=1
· Environment

· Because of the software dependencies of LexEVS Grid Service, all layers (EVSAPI and LexBIG) were updated as new releases became available. Testing for LexEVS Grid Service 4.2 was done with EVSAPI 4.2 and LexBIG 2.3. Because all of these projects shared similar development/testing cycles, alpha/beta, etc, releases were used as soon as they became available.

· For more information on setting up the environment for testing, see the documentation at http://gforge.nci.nih.gov/docman/index.php?group_id=491&selected_doc_group_id=3749&language_id=1
· Bug Tracking

· GForge http://gforge.nci.nih.gov/projects/lexevs/ was used for all bug tracking and feature requests

5. Executing Tests
Tests were executed after every new deployment to the hosting container (JBoss). Also, anytime a new version of a dependency was introduced (for example, a beta release of LexBIG), the full suite of tests were run to check for integration/regression problems. To run the tests manually, follow the steps below. For more information about building/deploying the service, as well as SVN connection info, see http://gforge.nci.nih.gov/docman/index.php?group_id=491&selected_doc_group_id=3876&language_id=1
1. Check out the latest LexEVS Grid Service code from the SVN repository.

2. Build the Service: From the Service base directory, run the command ‘ant all’ to build the service.

3. Navigate to the the JUnit Tests directory located in the /test directory.
4. Inside the directory /test/resources there is a Test.properties file. Here you can change coding scheme names, versions, etc, to match what is actually loaded. This is intended to allow the tests to run successfully on different versions of loaded content.
5. Make sure to set the "serviceUrl" in this file to point to the LexEVS Grid service URL you want to test. If your testing includes secure vocabularies, the SecurityTokens may also be set here.
6. From inside the /test directory, run the command 'ant' -- Running all the JUnit tests is the default ant task.

7. The results will be placed in a /reports directory.
NOTE:

A sample vocabulary has been created to test various test conditions that are not easily tested using the standard vocabularies. This vocabulary is included with the LexEVS Grid Service source code and is located in /test/resources/AutomobilesHier.xml.
Failure to load this vocabulary prior to running the JUnit tests will cause several tests to fail.

6. Results
JUnit Test results will be posted at release boundaries at: http://gforge.nci.nih.gov/docman/index.php?group_id=491&selected_doc_group_id=3928&language_id=1
[image: image1]