LexEVS

MAYO CLINIC

DIVISION OF BIOMEDICAL INFORMATICS

Requirements Specification
LexEVS 2008-2009
LexGrid Vocabulary Services for caBIG™ (LexBIG)

Nov 5, 2008
Document Change Record

	Version Number
	Date
	Description

	0.5
	10/31/2006
	Draft version available for public review.

	1.0
	12/06/2006
	LexBIG deployment phase review.

	2.0
	12/20/2006
	Final.

	2.5
	02/24/2008
	Draft 3.0 (additional section 3.1, covering semantic tech, browsing, value set, and GForge use cases for review at Mayo/NCI F2F)

	3.0
	02/28/2008
	Final 3.0 (incorporate review comments)

	4.0
	08/06/2008
	Draft for 2008/2009 release activity (introduced new section 3, moved prior release requirements to section 4)

	4.1
	10/17/2008
	Update and differentiate and refine version 4.3/5.0 requirements.

	5.0
	11/05/2008
	Final revision for versions 4.3/5.0.

TABLE OF CONTENTS

11.
Introduction

1.1
Scope
1
1.2
Identification
1
1.3
System Overview
1
1.4
Document Overview
2
1.5
Related documents
2
2.
Project Description
3
2.1
Project Perspective
3
2.2
Constraints
2
2.3
Qualification Provisions
3
2.4
Assumptions and Dependencies
3
3.
Requirements
4
3.1.
Structural Requirements
4
3.2.
Functional Requirements
5
3.3.
Support Requirements
7
4.
RequirementS history
10
4.1
Additional Requirements – Mar 2008
10
Ontology Reasoning
10
Browser Support
6
Value Sets
10
GForge Support
12
4.2
Initial Project Requirements
16
Administration
16
Architecture
22
Documentation and Training Materials
25
Functional Characteristics
26
Performance
30
Security
31
Serviceability
32
Appendix A – Acronym List
33

1. Introduction

This document presents software requirements for future phases of the LexGrid Vocabulary Services for caBIG project (LexBIG), developed by the Mayo Clinic Division of Biomedical Informatics for caBIG™.

1.1 Scope

This document describes requirements to satisfy the following sources:

· Vocabulary service providers. Describes organizations currently supporting externalized API-level interfaces to terminological content for the caBIG™ community. Practically speaking, this describes the NCI EVS and caCORE teams. Current API-level interfaces include the caCORE EVS and Metaphrase APIs. Several discussions have occurred with the EVS team to refine requirements regarding backward compatibility with existing services and data interchange formats.

· Vocabulary integrators. Describes organizations that desire to integrate new terminological content or relations to be served to the caBIG™ community. This includes organizations such as NCI (NCI Thesaurus, Meta Thesaurus), but may include submissions by other providers (e.g. LOINC) for certification and approval for use within caBIG™ applications.

· Vocabulary users. Describes the caBIG™ community in general. As more ontologies are adopted and referenced by the caBIG™ community, additional application requirements and patterns of use will emerge.

1.2 Identification

EVS, Version 5.0
1.3 System Overview

This document presents requirements for the LexGrid Terminology Services (LexBIG) project, which is being developed by the Mayo Clinic Division of Biomedical Informatics for caBIG. The goal of the project is to build a vocabulary server accessed through a well-structured application programming interface (API) capable of accessing and distributing vocabularies as commodity resources. The server is to be built using standards-based and commodity technologies. Primary objectives for the project include:

· Provide a robust and scalable open source implementation of EVS-compliant terminology services. The API specification will be based on but not limited to fulfillment of the caCORE EVS API. The specification will be further refined to accommodate changes and requirements based on prioritized needs of the caBIG community.

· Provide a flexible implementation for terminology storage and persistence, allowing for alternative mechanisms without impacting client applications or end users. Initial development will focus on delivery of open source freely available solutions, though this does not preclude the ability to introduce commercial solutions (e.g. Oracle).

· Provide standard tooling for load and distribution of vocabulary content. This will involve support of standardized representations in UMLS Rich Release Format (RRF) and the OWL web ontology language. (Vocabulary editing, vocabulary submission, and vocabulary cross-linking are out of scope for this aim.)

1.4 Document Overview

This document is provided for open review and dissemination to the caBIG™ community. The remaining SRS sections are organized as follows:

· Section 2. Project Description: Describes the general factors that affect the LexBIG configuration and related tooling.

· Section 3. Requirements: Describes current software requirements to a level of detail sufficient to enable designers to design a system to satisfy those requirements, and testers to test that the system satisfies those requirements.
· Section 4. Requirements History: Maintains a historic record of requirements from prior release cycles and contract periods.
1.5 Related documents

	Description
	Owner

	LexBIG Use Cases
	Mayo Foundation

2. Project Description

2.1 Project Perspective

The following illustrations are intended to provide context for requirements definition by presenting a high level overview of anticipated system components and interactions.
EVS 4.x

[image: image1.emf]

	This diagram depicts general relationship of system components to the LexBIG software and content repository in the EVS 4.x releases. Client access to the caCORE EVS API will be consistent with prior caCORE releases. However, code is introduced to the EVS implementation that interfaces with the LexBIG vocabulary engine. The LexBIG software in turn satisfies requests by pulling data from the LexBIG indexes and repository. In practice, the database environment can either be deployed to the same or an alternate server system. The EVS 3.x model is still referenced in this release and supported via the caCORE SDK interfaces. Direct access to the LexGrid model is provided through java interfaces via the LexBIG API and Distributed LexBIG API.

EVS 5.x

[image: image2.emf]LexEVS 5.0

Distributed

LexBIG

API

Lucene Index

Files

Java

MySQL

LexBIG DB

SOAP

REST

	This diagram depicts general relationship of system components to the LexBIG software and content repository expected in the EVS 5.x releases. The EVS model version 3.x is retired and replaced by the LexGrid model. All EVS service tiers (Java, Distributed Java, caCORE SDK, and caGrid) will consistently work in terms of the LexGrid model and LexBIG interfaces. These new LexGrid-based EVS services are sometimes refered to as ‘LexEVS’ to distinguish from legacy EVS services.

Deployment
	
[image: image3.emf]Editors

Browsers

Query

Tools

Staged Deployment

EVS

Clients

NCI Server

caCORE / Java Runtime

NCI Server

caCORE / Java Runtime

Production Servers

caCORE/LexBIG/Java Runtime

NCI Server

caCORE / Java Runtime

NCI Server

caCORE / Java Runtime

Integration Servers

caCORE/LexBIG/Java Runtime

NCI Server

caCORE / Java Runtime

NCI Server

caCORE / Java Runtime

Development & Test Servers

caCORE/LexBIG/Java Runtime

LexGrid

repositories

(MySQL)

Promote

	NCI processes require the ability to deploy code to multiple server environments which reflect stages of code development and deployment. Specific stages may differ from those pictured, and databases may be unique or shared at various levels at the discretion of NCI system operators. However, there is a general requirement to provide tools that assist in moving LexBIG code, indexes, and configuration files from server to server.

2.2 Constraints

· Requirements must not contradict caBIG™ architectural or compatibility guidelines.

· All future requirements have not been prioritized or priorities may change based on caBIG direction.

2.3 Qualification Provisions

This section defines the qualification methods that will be used to ensure that each requirement in Section 3 has been met. Qualification methods may include:

· Demonstration: Manual verification. The operation of the system or component that relies on observable functional operation not requiring the use of instrumentation, special test equipment, or subsequent analysis.

· Test: The operation of the system or component using instrumentation or other special test equipment to collect data for later analysis.

· Analysis: The processing of accumulated data obtained from other qualification methods. Examples are reduction, interpretation, or extrapolation of test results.

· Inspection: The visual examination of code, documentation, etc.

· Special qualification methods: Any special qualification methods for the system, such as special tools, techniques, procedures, facilities, and acceptance limits.

2.4 Assumptions and Dependencies

Requirements can assume availability of the following software environment:

· Java Development Kit (JDK 5.0)

· MySQL (5.x)

· JBoss (4.0.x)

· caGrid (1.2)

3. Requirements

This section describes requirements for consideration of the next contract phase, informed by investigation performed during the earlier contract period of performance ending Sept 2008. Many of these requirements will be satisfied as part of a combined release of the LexBIG infrastructure and EVS API (LexEVS), supplemented by publication of related caGrid services.
3.1. Structural Requirements

Merge of the LexBIG and EVS APIs is proposed to be completed during this timeframe. The EVS 3.x model and related analytic/data services will be retired and replaced by LexGrid model and services. To differentiate old and new, the LexGrid-based EVS interfaces are referred to here as ‘LexEVS’. In addition to API alignment, additional emphasis will be placed on a simplified experience for EVS installation and administration through consolidated product packaging. In addition to this ‘external’ consolidation, internal consolidation of API layers is also proposed to streamline development, maintenance, and test.

Table 3.1-1: Structural Requirements
	Req ID
	Requirement

	V5_STR_01
	Complete Model and API Transition from EVS 3.x to LexEVS

	V5_STR_02
	LexBIG / EVS Infrastructure Convergence (e.g. security)

	V5_STR_03
	Refactor and Simplify Code Layers

	V5_STR_04
	Simplified Product Build/Deployment

	V5_STR_05
	Simplified Service Install/Configuration

	V5_STR_06
	Simplified Service Discovery

Complete Model and API Transition from EVS 3.x to LexEVS
	Req ID
	V5_STR_01

	Description
	As of EVS API version 4.2, the EVS 3.x model and related analytic/data services are provided but considered to be on a path for deprecation. While point releases (e.g. 4.3) will need to maintain this functionality, the next major release (5.0) will provide opportunity for change in terms of model and interface compatibility. From an infrastructure standpoint, this completes a multi-release shift to using the LexBIG code base.

Release 4.3 activities must formalize deprecation. This will include adding annotation to JavaDoc for all public interfaces, as well as formal announcement of transition plans in release notices and published materials.

Release 5.0 activities must enact this change in terms of implementation, test procedures, and documentation. This involves…
· Removal of current EVS API, LexBIG Wrapper, and EVS grid code from active development branches.
· Adjust build and deployment scripts as required.
· Simultaneous release of LexEVS java, distributed/web services, and caGrid service tiers. All will be based on LexBIG API and/or LexGrid model and not the traditional EVS (v3) API or model.
· Publication of updated caCORE SDK client (coordinated with generation of data services per functional requirement V5_FNC_01).

	Priority
	High

LexBIG/EVS Infrastructure Convergence
	Req ID
	V5_STR_02

	Description
	Intent of this item is to ensure required functionality provided in the legacy EVS layers is merged to the LexBIG code base.

Specifically, all remote-accessible LexEVS services must implement security for protected vocabulary sources (e.g. MedDRA). This includes the distributed LexBIG, LexEVS caGrid analytic and data services, and caCORE SDK-generated interfaces.
As of release 4.2, security is already implemented in the distributed LexBIG tier. This layer in turn provides support for all interfaces that utilize the distributed API to fulfill requests, including legacy EVS API, legacy EVS SDK, and LexEVS caGrid analytic services.

This leaves as notable exceptions the LexEVS SDK interfaces and LexEVS caGrid Data service. These services are implemented directly against the database layer and not requiring intermediate translation through the LexBIG Java API. While more anticipated to improve performance and maintainability, this also bypasses the security protections offered by the distributed API.
Equivalent security must be added to these additional layers. This is anticipated to involve changes to code, packaging, and configurable settings (e.g. to maintain security tokens).

	Priority
	High

Refactor and Simplify Code Layers
	Req ID
	V5_STR_03

	Description
	Whereas previous items focus on merging of legacy EVS and LexBIG, this item is more directly focused on LexBIG internal architecture.
LexBIG originally evolved from a compilation of various LexGrid tooling and new code to support NCI and caBIG™ requirements. The code base, while quite functional, sometimes carries unnecessary dependencies and complexity that increases long term cost of maintenance and development.
Specific recommendation would be to reconsider architecture of the LexBIG load and export frameworks and linkage to the GUI tool.

	Priority
	Med-Low

Simplified Product Build/Deployment
	Req ID
	V5_STR_04

	Description
	Simple deployment of LexEVS is desirable/required to ensure timely releases, reduce barriers for adoption and promote availability of additional vocabularies to the caBIG™ community.

Build, deployment, and test of LexBIG/EVS is currently a complex, time consuming and error prone process involving multiple modules (LexBIG infrastructure, LexEVS wrapper, EVS API).
Recommendation is to develop an automated system based on the NCI Build and Deployment Automation (BDA) frameworks. BDA will be leveraged to provide:

· Automated build of the LexEVS core installation and repository, remote server and remote client packages.
· Automated test execution and report generation, including daily verification or ‘smoke screen’ tests and more extensive pre-release validation (multiple databases, additional source loads, etc).
· Additional information to consider for future changes (e.g. code coverage and profiling).

	Priority
	High

Simplified Product Install/Config
	Req ID
	V5_STR_05

	Description
	LexBIG infrastructure is currently deployed through a Java-based utility, run as an executable JAR, and supplemented by a guide to Administrators to assist with post-install configuration.
While adequate for a limited user base, deployment is error prone and often requires assistance to configure database connections and other environment-specific properties. Installation experience has room for improvement, and providing assistance would be beneficial to enable wide-scale adoption in support of a federated vocabulary infrastructure.
A fully-automated point-and-click installation is unlikely. However, significant improvement to the user experience would be achieved by providing a wizard-based configuration tool to assign settings such as:
· Database type, configuration, connection pool size
· Logging options
· Security configuration
The configuration tool would be enhanced to provide possible options, protect against invalid values or combinations of values, and provide context sensitive help to the user. The tool could be launched during or after the initial installation.

	Priority
	Med

Simplified Service Discovery (grid)
	Req ID
	V5_STR_06

	Description
	EVS will provide both analytic services (available in EVS 4.2) and data services (V5_FNC_01) through LexBIG interfaces to vocabulary content via the caGrid™. However, these services will not be able to realize their full potential for adoption until terminology-specific metadata can be registered and made available for discovery.
As part of VCDE activities, the Terminology Metadata working group has defined a conceptual model to serve as metadata for terminology services.
· Harmonized conceptual model (snapshot): http://gforge.nci.nih.gov/frs/download.php/3957/20080402_TermMetadata.PNG
· Harmonized conceptual model (EA representation): http://gforge.nci.nih.gov/frs/download.php/3782/20080402_TermMetadata_0.011.zip
While this model has yet to be registered to the caDSR and incorporated into implementation, procedure for doing this has been investigated as part of prior-release LexBIG activities and is documented in the following whitepaper:
· http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/admin/phase1.final/LexBIG_discovery_client.pdf?rev=1.2;content-type=application%2Foctet-stream;cvsroot=lexbig
The following steps are proposed to fulfill this item:
· Create and submit a silver level submission package for the terminology metadata model.
· Lead efforts for initial registration of model elements to the caDSR.
· Develop Introduce extensions to populate and publish terminology metadata at time of service registration.
· Develop a custom terminology discovery client based on this metadata.
Activities would be coordinated with appropriate members of the caBIG™ architectural workspace. Initial focus would be to register the model to caDSR and establish demonstratable prototypes of all required tools.
Note: This activity was under consideration in prior releases, but did not proceed pending investigation and model definition by the TermMeta working group. With model now defined/approved and availability of LexGrid-based caGrid services, ‘building blocks’ are available to proceed. Experience gained in bring the LexGrid model to Silver review would also be beneficial in submitting the Terminology Metadata model.

	Priority
	Low (Note: Deprioritized; current direction is for term meta model and tooling extensions to be handled by caBIG VCDE and Arch groups, respectively).

3.2. Functional Requirements

Requirements in support of use cases for integration of reasoning support.
Table 3.2-1: Functional Requirements
	Req ID
	Requirement

	V5_FNC_01
	LexEVS Data Services

	V5_FNC_02
	caDSR Enablement

	V5_FNC_03
	Additional Enablement of NCI OWL Sources

	V5_FNC_04
	Metadata Registry (MDR) Warehouse Support

	
	

LexEVS Data Services
	Req ID
	V5_FNC_01

	Description
	As the legacy EVS 3.x model and legacy SDK interfaces and caGrid™ data services are retired, LexBIG must provide comparable services based on the LexGrid model. This involves additional processing for the 'LexGrid' data items currently undergoing silver review. Note that for purposes of this work item we are ignoring the 'LexBIG' model extensions entirely, since those objects do not exist in the database. The 'LexGrid' data model components surfaced in the review (e.g. concepts, properties, associations) will be the basis for the new data services.
For data service calls, it is highly desirable (required, unless absolutely no other option is available) to avoid the development of custom code to mediate requests between the data service and database layers. This approach, taken by prior EVS services, has been problematic in terms of performance and ongoing maintenance.

Priority should be given instead to use standard SDK direct-to-database bindings. However, due to the database schema used by LexBIG (e.g. general purpose tables are used to service many objects) some customization of the code generation process may be required.
Note: Silver level submission package for LexEVS services was submitted according to the prior contract. The initial submission is considered sufficient to cover definition of data services in addition to analytic services. However, the review package will not be formally approved during that timeframe. In addition to implementation of the data service, this requirement includes continued attention or adjustments required to accommodate the silver (and gold, if applicable) review process.

	Priority
	High

caDSR Enablement
	Req ID
	V5_FNC_02

	Description
	The caDSR represents the primary adopter of EVS services. Therefore, it is critical to establish a migration path for caDSR applications from legacy EVS services to new LexEVS services.
Extent of changes, if any, required by the caDSR team must be established and executed on. Activities encapsulated by this requirement include:
· Regularly scheduled communication with caDSR developers
· Continued development of new API features required by caDSR.
· Provision of early release code, test programs, examples, and documentation to streamline adoption.

	Priority
	Med-High

Additional Enablement of NCI OWL Sources
	Req ID
	V5_FNC_03

	Description
	During the EVS 4.2 release cycle, it was identified that some information in the MGED ontology could not be accessed via the LexBIG API. Since some items were defined as instance data, they were bypassed by the NCI OWL loader. The issue was deferred to the next release.
In the 4.2 timeframe, a prototype OWL loader was made available that acknowledges and imports instance data. However, this loader is not yet ‘aware’ of NCI-specific requirements (e.g. the handling of imbedded complex properties). Therefore, the traditional NCI OWL loader was maintained and used for EVS 4.2 activities.
In 5.0 timeframe, the following is proposed:
· Update the new OWL loader for NCI awareness
· Update the API to allow query of instance data

	Priority
	Med-High

Metadata Registry (MDR) Warehouse Support
	Req ID
	V5_FNC_04

	Description
	Initial thought has been given to using LexBIG to load a version of caDSR content as a series of OWL-based sources. As a result, LexEVS services could be used to query both caDSR and EVS content, providing a single tool set, API and repository for referencing terminology and related metadata.
LexBIG should prototype this function, providing support to load the metadata ontologies as defined by the caDSR team. This may result in need for loader enhancements to account for any unique MDR artifacts.
New query interfaces (possibly through a new registered extension) should also be considered to account for any unique search capabilities or convenience methods required to satisfy MDR functionality.

	Priority
	Med

3.3. Support Requirements

Requirements in support of use cases for integration of reasoning support.
Table 3.3-1: Support Requirements
	Req ID
	Requirement

	V5_SUP_01
	Consolidate LexBIG and EVS Test Suites

	V5_SUP_02
	Mayo Local Deployment of LexEVS Services

	V5_SUP_03
	Education and Documentation

	V5_SUP_04
	Major release

	V5_SUP_05
	Minor release

	V5_SUP_06
	Support for Inter-Ontology Mappings

	V5_SUP_07
	Ongoing Prioritization and Resolution of GForge Items

	
	

Consolidate LexBIG and EVS Test Suites
	Req ID
	V5_SUP_01

	Description
	Currently the LexBIG, Distributed LexBIG, and EVS API automated test buckets are separately maintained. With the 5.0 release, there will be a single API defined across Java, Distributed, and caGrid layers. This should work in favor of simplification and reuse of the same basic test cases at all tiers. Tooling and documentation should be developed as required to allow simple execution of these common automated tests at all levels.
In addition, new tests will need to be created to verify LexEVS caGrid data services (based on the LexGrid model). Tests based on the legacy EVS 3.x model should be removed from any active regression tests.

	Priority
	Med-High

Mayo Deployment of LexEVS Services
	Req ID
	V5_SUP_02

	Description
	With EVS development and significant caBIG™ activity at Mayo Clinic, it is necessary for Mayo to maintain a complete environment to deploy and test all EVS services/tiers. During the proposed timeframe, focus would be on the following:
· Secure any required hardware, coordinated with NCI
· Deploy EVS 5.0 remote-accessible services (web, distributed, grid)
· Load caBIG™-certified vocabulary sources
· Load NCI-required vocabulary sources
· Install NCI BioPortal (requires assistance by NCI staff)

	Priority
	High

Education and Documentation
	Req ID
	V5_SUP_03

	Description
	Review and updates must be considered for the following:
· EVS Technical Guide
· LexBIG Administrator Guide
· LexBIG Programmer Guide
· caBIG EVS (Zope-based) web pages
· LexEVS GForge WIKI
In addition, materials for a formal training session (boot camp) should be created and submitted to the caBIG™ training workspace. Given the planned API shift in the 5.0 release, it may be beneficial to organize an EVS ‘boot camp’.

	Priority
	Med-High

Major Release
	Req ID
	V5_SUP_04

	Description
	Mayo Clinic LexEVS team would be responsible for the EVS 5.0 software release including development, test, and production rollout. Activities would be coordinated with NCI staff and processes. Rollout would include deployment to Mayo sysetems (V5_SUP_02).

	Priority
	High

Minor Release
	Req ID
	V5_SUP_05

	Description
	Mayo Clinic LexEVS team (with assistance from NCI) will be responsible for the EVS 4.3 software release (if required) including development, test, and production rollout. As a point release, activities would utilize the same processes and dev/qa/production tiers as EVS 4.2.

	Priority
	Med-High

Support for Inter-Ontology Mapping
	Req ID
	V5_SUP_06

	Description
	Some discussion and initial investigation has been given to storing simple mappings between ontologies as separately versioned and searchable coding schemes within the LexBIG system. The LexGrid model and LexBIG API support this today. However, it may be required to assist with the creation and storage of specific mappings of interest to NCI.

	Priority
	Med

Ongoing Prioritization and Resolution of GForge Items
	Req ID
	V5_SUP_07

	Description
	Several LexEVS GForge items were deferred to the GForge release. Several of these require minor cleanup (e.g. #15222, #15044) while some are anticipated to be obsoleted with removal of the distributed LexBIG adapter and withdrawal of EVS 3.x support (e.g. #15045). However, there are a few items such as #15449 that are considered non-trivial. Adequate time and resource will be required to resolve and close these items.

	Priority
	Med-High

4. RequirementS history
Note: This section describes requirements considered in past LexBIG releases, and are included here for historic reference only. Proposed items for the next release cycle are consolidated in section 3.0.

4.1 Additional Requirements – Mar 2008
This section describes requirements for consideration of future LexBIG releases, informed by investigation performed during the contract period ending Mar 2008. Some of these requirements will be satisified using caCORE or caGRID infrastructure.

Ontology Reasoning

Requirements in support of use cases for integration of reasoning support.
Feedback from Mayo/NCI F2F: In general, defining requirements based on ontology reasoning is deferred pending results of the caBIG™ small working group on Semantic Query, which is hoped to clarify use cases.
Table 4.1.1-1: Ontology Reasoning Requirements
	Req ID
	Requirement

	V3_ONR_01
	LexBIG Reasoner API Extension

	V3_ONR_02
	Load Option for Reasoner-based Concept Check

	V3_ONR_03
	API Support for Concept Placement

	V3_ONR_04
	Load Option for Reasoner-based Instance Check

	V3_ONR_05
	API Support for Instance Placement

	V3_ONR_06
	Define Ontology to Support Inter-Ontology Mapping

	V3_ONR_07
	Develop Program for Inter-Ontology Lexical Match

	V3_ONR_08
	Develop Program for Inter-Ontology Reasoner-based Match

	V3_ONR_09
	Support BioPortal Option to Generate Certification Report

LexBIG Reasoner API Extension

	Req ID
	V3_ONR_01

	Description
	Incorporate reasoning support within the LexBIG runtime. The LexBIG API currently defines several points of extension for loaders, sers, filters, etc. It is recommended that the portion of the API dedicated to reasoning also be implemented as a pluggable extension, potentially accommodating many reasoners but focusing on open source offerings such as Pellet.
Specific API functions are yet to be determined. In the next 6-month period, the requirement is to close investigation, harden architecture, and finalize all API interfaces.
This may require definition of additional constructs to the LexBIG service model, but is not anticipated to impact the LexGrid terminology model.

	Priority
	Deferred

	Trace from UseCase
	UC_ONR_01

Load Option for Reasoner-Based Concept Check

	Req ID
	V3_ONR_02

	Description
	Currently, each LexBIG load service supports an option to validate content as a pre-cursor step to load. The option accepts a numeric ‘level’ to signify the level of check to perform. So, for example, the XML loader includes level ‘10’=check well formed and ‘20’=check xml conforms to schema. In this case, the user selects a new level (e.g.‘100’) = reasoner-based concept check.
Note that the current intent is to enable reasoning for any source imported to the LexBIG runtime, including those not typically handled by reasoners such as RRF. Therefore, the requirement is to add this option to all loaders and respective API-level interfaces.
The generated report notes inconsistencies, if any. For example, assume that we have two concepts A and B, such that A is a subClassOf B (denoted by: A (B) in a particular ontology. Now, if an ontology developer tries to introduce a new axiom, such that A is disjoint from B (denoted by A ≠ B), then the reasoner will raise an exception since both subClassOf and disjoint relationships between A and B cannot hold simultaneously.

	Priority
	Deferred (dependency on V3_ONR_01)

	Trace from UseCase
	UC_ONR_01

API Support for Concept placement

	Req ID
	V3_ONR_03

	Description
	As part of reasoning extension to the LexBIG API, provide a service that accepts a concept definition (QBE pattern), and associations of interest. Possibly related concepts can optionally be provided to help inform the underlying reasoner by isolating possible subsets of the ontology to reason over.
The API should return an indication of ‘if’ and ‘where’ a concept based on the search term might be inserted.
This may require definition of additional constructs to the LexBIG service model, but is not anticipated to impact the LexGrid terminology model.

	Priority
	Deferred

	Trace from UseCase
	UC_ONR_04

Load Option for Reasoner-Based Instance Check

	Req ID
	V3_ONR_04

	Description
	Currently, each LexBIG load service supports an option to validate content as a pre-cursor step to load. The option accepts a numeric ‘level’ to signify the level of check to perform. So, for example, the XML loader includes level ‘10’=check well formed and ‘20’=check xml conforms to schema. In this case, the user selects a new level (e.g.‘200’) = reasoner-based instance check.
The generated report should identify concept definitions and relations that are contradictory or redundant. For example, if an entity ‘Bob’ is declared as an instance of ‘Man’ and as an instance of ‘Woman’, and it is further defined that ‘Man’ != ‘Woman’, then there is an inconsistency to report.
Note that the current intent is to enable reasoning for any source imported to the LexBIG runtime, including those not typically handled by reasoners such as RRF. Therefore, the requirement is to add this option to all loaders and respective API-level interfaces.

	Priority
	Deferred (dependency on V3_ONR_01)

	Trace from UseCase
	UC_ONR_02

API Support for Instance placement

	Req ID
	V3_ONR_05

	Description
	As part of reasoning extension to the LexBIG API, provide a service that accepts an instance definition (QBE pattern), and associations of interest. Possibly related concepts can optionally be provided to help inform the underlying reasoner by isolating possible subsets of the ontology to reason over.
The API should respond with a report of additional relationships that could be considered. For instance, if we have A (B, and a (A, then querying for all instances belonging with B should return a.
This may require definition of additional constructs to the LexBIG service model, but is not anticipated to impact the LexGrid terminology model.

	Priority
	Deferred (dependency on V3_ONR_01)

	Trace from UseCase
	UC_ONR_07

Define Ontology to Support Inter-Ontology Mapping

	Req ID
	V3_ONR_06

	Description
	Create an ‘ontology of ontologies’ for all caBIG-certified sources, available on the grid and deployed with the EVS infrastructure.
Among other information, this new ontology maintains a mapping of semantic compatibility at the level of defined relationships. So, for example, it indicates that ‘PAR’ in UMLS RRF maps to ‘subclassOf’ in OWL. It could also maintain direct mappings between identifying concept properties (e.g. noting that concept property ‘UMLS_CUI’ in ontology ‘A’ is directly mapped to the ‘CUI’ property in ontology ‘B’).
This could be pursued in parallel with other tasks such as UC_ONR_01, and can be used for non-reasoner match (UC_ONR_05).

	Priority
	Deferred

	Trace from UseCase
	UC_ONR_05

Develop Program for Inter-Ontology Lexical Match

	Req ID
	V3_ONR_07

	Description
	Utilizes the mappings created in V3_ONR_06.
Program should accept a concept definition from Ontology ‘A’. Based on concept match between identifying properties (or direct lexical match) and mapped association information, concepts are reported from ontology ‘B’.

	Priority
	Deferred

	Trace from UseCase
	UC_ONR_05

Develop Program for Inter-Ontology Reasoner-based Match

	Req ID
	V3_ONR_08

	Description
	Utilizes the mappings created in V3_ONR_06.
Program should accept a concept definition from Ontology ‘A’. Based on concept match between identifying properties (or direct lexical match) and mapped association information, concepts are reported from ontology ‘B’.
This is a reasoner-based version of V3_ONR_07. The reasoner will rely on inter-ontology mappings for semantic alignment of properties, identifiers, and relationships. The reasoner will rely on the ability to subset ontologies into manageable chunks that can either be pre-processed or dynamically produced.

	Priority
	Deferred (Depends on V3_ONR_07)

	Trace from UseCase
	UC_ONR_06 (dependency on V3_ONR_01)

Support BioPortal Option for Certification Report

	Req ID
	V3_ONR_09

	Description
	Provide a program to facilitate valid submissions that accepts an ontology and generates a report with issues and recommendations. The program should accept any file format understood by the LexBIG EVS runtime (OBO, OWL, RRF, XML).
The report should indicating compliance with caBIG standard definition (perhaps provided as a ‘gold-standard’ ontology or ontology of compliance rules), the result of verifying relational integrity, and the result of verifying instance data (if applicable).

	Priority
	Deferred

	Trace from UseCase
	UC_ONR_03

Browser Support

Requirements in support of use cases for generalized Browser functionality.

Table 4.1.2-1: Browser Support Requirements
	Req ID
	Requirement

	V3_BRS_01
	Discontinue Inversion of Subtype Relationships

	V3_BRS_02
	Add Manifest Support to All Loaders

	V3_BRS_03
	Add Next-Level Available Indicator to Hierarchy Convenience Methods

	V3_BRS_04
	Change LexGrid Model to Distinguish Instances

	V3_BRS_05
	Add API Support to Query Instances

	V3_BRS_06
	Support Export of Instance Data

	V3_BRS_07
	Composite Ontology Load and Namespace Separation

	V3_BRS_08
	Change LexGrid Model to Support Inter-Association Relationships

	V3_BRS_09
	Add API Support to Query Inter-Association Relationships

Discontinue Inversion of Subtype Relationships

	Req ID
	V3_BRS_01

	Description
	Some relationships are still being modified or inverted during the load process (e.g. ‘subClassOf’ converted to ‘hasSubtype’). This is unchanged during the current release to provide backward compatibility while programmers change code to use the hierarchy convenience method API. Once changed, loaders can switch association names and directionality with minimum impact to the calling application.
This item primary affects the OWL and OBO loaders (currently representing subclassing relations as hasSubtype) and UMLS loader (currently representing inverse_isa as hasSubtype). Secondary examples and test programs may also be impacted.

	Priority
	Med

	Trace from UseCase
	UC_BRS_01

Add Manifest Support to All Loaders and
	Req ID
	V3_BRS_02

	Description
	Manifest files are XML files conforming to a formal schema that allow customization of coding scheme metadata (e.g. names, copyright information, version, supported hierarchies). They can be used to supplement or override default values registered during the load.
Some loads required the introduction of manifest support to complete successfully. Currently the OWL loaders take a manifest file as a parameter along with the OWL source. For the NCI OWL load, this allows sources other than the Thesaurus to be loaded that carry artifacts of the NCI curation process (e.g. embedded complex props).
However, other sources would benefit from this same level of customization. To carry this out, the load API should be enhanced to load a manifest independent of source. Further, this API should allow the manifest to be loaded multiple times after the initial source is imported in order to allow metadata update without full reload of the ontology. All loaders should also support manifests, since load-time is a natural time to introduce he metadata, but impact to each loader will be kept low by invoke the common manifest API.

	Priority
	High

	Trace from UseCase
	UC_BRS_02

Add Next-Level Available Indicator to Hierarchy Convenience Methods

	Req ID
	V3_BRS_03

	Description
	CodedNodeGraph currently supports an option on resolve to leave the last level or ‘hop’ of associations unresolved. This serves as a way to tell if a tree can be expanded further without actually resolving any contained concepts or references.
This is currently not featured in the new hierarchy API (getHierarchy* methods), which was deliberately kept simple to facilitate ease of use. However, this is a basic requirement in order to provide visual cues to the user.

	Priority
	Med

	Trace from UseCase
	UC_BRS_02

Change LexGrid Model to Distinguish Instances
Feedback from Mayo/NCI F2F:

· Instance data inside an ontology has a lot of implications, opening the door as a general purpose storage mechanism for data. For now, recommendation is to avoid handling of instance data in LexBIG.

· Support OWL full, DL, or light? If we can get VCDE to define our compliance then we’ll have our scope. Recommended to make a statement of what we support/don’t support.

	Req ID
	V3_BRS_04

	Description
	The current LexGrid model deals well with relations and conceptual types, but lacks formal semantics for asserting Instance data. Instances and classes are both represented as coded entries (concepts). In order to represent semantics for a growing base of OWL ontologies, LexGrid must distinguish instance data.
In order to support LexBIG API changes, the core model and components must be modified including XML schema, Java bean representations (EMF, Castor), database storage, and indexing code.

	Priority
	High

	Trace from UseCase
	UC_BRS_05

Add API Support to Query Instances

	Req ID
	V3_BRS_05

	Description
	In order to support ontologies that support instance data (e.g. OWL), the LexBIG API must be enhanced to query instances separate from concepts (which are used to represent OWL classes).
The API is anticipated to follow the same pattern established for querying concepts (allow multiple restrictions on criteria to be placed, followed by deferred resolution with options to optimize payload, etc).

	Priority
	Deferred

	Trace from UseCase
	UC_BRS_05 (dependency on V3_BRS_04)

Support Export of Instance Data

	Req ID
	V3_BRS_06

	Description
	Whereas V3_BRS_05 addresses programmatic access to instance data, this requirement is focused on export to a file format (e.g. XML) for consumption.
To carry out, the XML Export extension of the LexBIG Service Model should be enhanced to support export of instance data. This option would apply to any imported source carrying instance data (OWL, OBO, etc).

	Priority
	Deferred

	Trace from UseCase
	UC_BRS_06 (dependency on V3_BRS_04)

Composite Ontology Load and Namespace Separation

	Req ID
	V3_BRS_07

	Description
	Some source formats, such as OWL, allow a new ontology to incorporate or extend existing ontologies. The resulting ontology becomes a ‘composite’ work.
The LexBIG OWL API should be changed to support load, query, and administration of these composite ontologies as single sources. This will require significant changes to the OWL loader, with specific attention to namespace separation.
This will impact the core LexGrid core model, XML schema, Java bean representations (EMF, Castor), database storage, and indexing code in addition to the LexBIG OWL loader, query API, and administration tools.

	Priority
	High

	Trace from UseCase
	UC_BRS_08

Change LexGrid Model to Support Inter-Association Relationships

	Req ID
	V3_BRS_08

	Description
	Similar to changes for instance data in support of OWL sources. The OWL ontology language allows for ObjectProperties (roles) to have domain, range and subPropertyOf relations defined on them. In terms of the LexGrid model, this effectively allows relationships between associations.
Changes are required in order to allow the LexGrid model to fully represent these semantics without introduction of secondary ‘helper’ concepts to act on behalf of the associations.
This will impact the core LexGrid core model, XML schema, Java bean representations (EMF, Castor), database storage, and indexing code in addition to the LexBIG OWL loader, query API, and administration tools.

	Priority
	Med/High

	Trace from UseCase
	UC_BRS_07

Add API Support to Query Inter-Association Relationships

	Req ID
	V3_BRS_09

	Description
	In order to support ontologies that provide relationships between associations or roles (e.g. OWL), the LexBIG API must be enhanced to query associations separate from concepts (which are used to represent OWL classes).
The API is anticipated to follow the same pattern established for querying concepts (allow multiple restrictions on criteria to be placed, followed by deferred resolution with options to optimize payload, etc).

	Priority
	Deferred

	Trace from UseCase
	UC_BRS_07

Value Sets

Requirements in support of use cases for incorporation of Value Set functionality.
Feedback from Mayo/NCI F2F: In general, deriving requirements from value set use cases is deferred pending results of the caBIG™ small working group to be convened on this topic.
Table 4.1.3-1: Value Set Requirements
	Req ID
	Requirement

	V3_VLS_01
	Provide Value Set Loader Extension and XML Loader

	V3_VLS_02
	Provide Value Set Export

	V3_VLS_03
	Provide Value Set API for Admin Operations (tag, remove, enable/disable)

	V3_VLS_04
	Query Value Set API

	V3_VLS_05
	Query Value Set Content API

	V3_VLS_06
	API to Validate Code in Value Set

Provide Value Set Loader Extension and XML Loader
	Req ID
	V3_VLS_01

	Description
	Provide a new class implementing the LexBIG loader interface to import value set definitions. The initial format to recognize is the native XML format as defined by the LexGrid model definition (according to the following schema http://informatics.mayo.edu/schema/2006/01/LexGrid/valueDomains.xsd).
Note that XML is considered a good starting point since tools are readily available to work with XML and assist with transformation. However, direct support for other prominent formats should also be considered.

	Priority
	Deferred

	Trace from UseCase
	UC_VLS_01

Provide Value Set Export
	Req ID
	V3_VLS_02

	Description
	Export value sets to a file format (e.g. XML) for consumption.
The API is anticipated to follow the same pattern established for exporting other items from the runtime system.
Once again the initial target format is anticipated be XML, since the LexGrid XSD schema provides a compatible formalized definition, and XML tools are readily available to assist with transformation to other formats. However, direct export to other prominent formats should also be considered.

	Priority
	Deferred

	Trace from UseCase
	UC_VLS_02

Provide Value Set API for Admin Operations
	Req ID
	V3_VLS_03

	Description
	Provide standard administration options, using coding scheme operations as a model. For example, allow assignment of tags (e.g. ‘Production’ or ‘Test’, ability to specify active/inactive status, etc).
Operations must be available through direct API invocation, command and GUI interfaces.

	Priority
	Deferred

	Trace from UseCase
	UC_VLS_03

Query Value Set API
	Req ID
	V3_VLS_04

	Description
	Provide interfaces to retrieve value sets loaded to the LexBIG runtime and associated metadata. The API is anticipated to follow the same pattern established for querying code systems.

	Priority
	Deferred

	Trace from UseCase
	UC_VLS_04

Query Value Set Content API
	Req ID
	V3_VLS_05

	Description
	Provide interfaces to retrieve value set content (value domain entries and context-oriented pick text). The API is anticipated to follow the same pattern established for querying concepts (allow multiple restrictions on criteria to be placed, followed by deferred resolution with options to optimize payload, etc).

	Priority
	Deferred

	Trace from UseCase
	UC_VLS_05

API to Validate Code in Value Set
	Req ID
	V3_VLS_06

	Description
	Provide a simple convenience method that accepts a concept code and value set, returning a yes/no indication of whether that code is included by the value set.

	Priority
	Deferred

	Trace from UseCase
	UC_VLS_06

GForge Support

The following requirements are taken from open bug trackers and feature requests in the NCI GForge repository, to be prioritized and considered in the next release cycle.
Feedback from Mayo/NCI F2F: In general, items related to performance or quality of assurance should be considered high priority in any ongoing prioritization of items for the upcoming release.
Table 4.1.4-1: GForge Requirements
	Req ID
	Requirement

	V3_GFG_01
	[#7631] Full normalization support in a future version of LexBIG

	V3_GFG_02
	[#7891] Eliminate the dependencies of restriction methods

	V3_GFG_03
	[#8442] Lazy loading of properties for CodedEntry

	V3_GFG_04
	[#8670] MedDRA SMQ attributes not loaded properly

	V3_GFG_05
	[#8672] Allow external configuration of complex properties

	V3_GFG_06
	[#12357] Loader should allow Presentation properties to be specified

	V3_GFG_07
	[#12802] Documentation of loader mappings from source to LexGrid model

[#7631] Full Normalization Support

	Req ID
	V3_GFG_01

	Description
	In resolving LexBIG support item http://gforge.nci.nih.gov/tracker/?func=detail&atid=135&aid=7008&group_id=14 the following was identified as a requirement that ought to be considered for inclusion in a future release of LexBIG.
The version of LexBIG that comes out just prior to caCORE 4.1 might be a good one to consider if full normalization can be provided without undue performance problems.

LexBIG currently utilizes a stemming algorithm in place of full normalization. Full normalization support (e.g. LVG) should be reconsidered for inclusion. This was originally included in pre-production LexBIG releases but pulled due to performance and packaging considerations.

	Priority
	Deferred – pending user feedback and clarity of use case to drive the requirement.

	Trace from UseCase
	http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=7631&group_id=14&atid=137

[#7891] Eliminate the dependencies of restriction methods

	Req ID
	V3_GFG_02

	Description
	To improve the performance of distributed LexBIG, it is desirable that implementation of all restriction methods, such as restrictToMatching-Properties() in CodedNodeSet, do not involve database access. Validation of input parameters, in this case, property names, may be performed at the resolve stage.

	Priority
	Med

	Trace from UseCase
	http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=7891&group_id=14&atid=137

[#8442] Lazy loading of properties for CodedEntry

	Req ID
	V3_GFG_03

	Description
	Coding scheme data such as URN and Version are available in ResolvedConceptReference(), but not in CodedEntry. This may present difficulties in implementing lazy loading of CodedEntry in the future. It is desirable to find the corresponding CodingScheme from CodedEntry itself.

	Priority
	Med

	Trace from UseCase
	http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=8442&group_id=14&atid=137

[#8670] MedDRA SMQ attributes not loaded properly

	Req ID
	V3_GFG_04

	Description
	Standardized MedDRA Query (SMQ) attributes were introduced into the 10.0 release of MedDRA. There is currently a problem loading this information to LexBIG as association qualifiers. Per communication between Frank Hartel and Ann Setser, there is no need to change for the caCORE 4.0 release. However, initial analysis (see below) indicates this is a bug to be fixed in 4.1 or later.

	Priority
	Med/High

	Trace from UseCase
	http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=8670&group_id=14&atid=134

 [#8672] Allow external configuration of complex properties

	Req ID
	V3_GFG_05

	Description
	Per GForge #8671, additional support is to be added for complex properties (embedded as XML fragments in OWL source as part of the NCI curation process). The initial solution will involve customizing the NCI OWL loader to include enough knowledge to support the sources in caCORE 4.0.

For future releases, it would be desirable to describe these properties in an external configuration file rather than requiring code changes. This would allow support for a wider variety of sources and allow them to be introduced independent of code release schedules.

The OWL manifest is currently used to customize metadata for a code system as part of the load process. More investigation is required, but the manifest may provide a home for complex property definition as well.

	Priority
	Med

	Trace from UseCase
	http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=8672&group_id=14&atid=137

[#12357] Loader should allow Presentation properties to be specified

	Req ID
	V3_GFG_06

	Description
	The LexBIG loader currently has a hard-coded list of property names that will be tagged as "Presentation" properties within LexBIG. Instead, the list of appropriate presentation properties should be set by the manifest.

Why? HL7 does not have any properties named that match the LexBIG list. HL7 is therefore not loaded with any presentation properties, and thus is not searchable through functions that default to the presentation property. Rather than recoding and recompiling each time we encounter one of these, it would be better to just have a manifest for HL7 loads that tells what the presentation properties should be.

	Priority
	Med/High

	Trace from UseCase
	http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=12357&group_id=14&atid=137

[#12802] Documentation of loader mappings from source to LexGrid model
	Req ID
	V3_GFG_07

	Description
	Mayo should provide documentation for each loader (initial focus oon NCI OWL and UMLS/Meta formats) indicating which components of the source terminology are referenced, and how it maps to the LexGrid model.
A secondary request for this item is to provide ability for each loader to generate a report from the load in terms of the above mappings. This report would be referenced by NCI as part of quality assurance activities when loading new content.

	Priority
	Med/High

	Trace from UseCase
	http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=12802&group_id=14&atid=135

4.2 Initial Project Requirements

This section describes the set of requirements for consideration of LexBIG 2.0 release. Some of these requirements will be satisified using caGrid 1.0 infrastructure. This section is divided into the following categories:

· Administration –Requirements related to the installation, configuration, and management of the system.

· Architecture – Requirements related to the definition of system components and making explicit the interfaces and interactions between those components in order to promote long-term health of the system.

· Documentation and Training Materials – Requirements related to the provision of materials required to administer, build to, and use the system.

· Functional Characteristics – Requirements related to input, output, and runtime behavior of the system.

· Performance – Requirements related to system responsiveness and throughput.

· Security – Requirements related to protecting the system environment, content, and runtime access privileges.

· Serviceability – Requirements related to the diagnosis and resolution of problems with the system, as well as the ability to update or remove system code and content.
Administration

Table 4.2.1-1: Administration Requirements
	Req ID
	Requirement

	P2_ADM_01
	Vocabulary Import – OWL

	P2_ADM_02
	Vocabulary Import - OBO

	P2_ADM_03
	Lossless Transformations

	P2_ADM_04
	Fast vocabulary load/import function

	P2_ADM_05
	Support for value sets

	P2_ADM_06
	Collect statistics on vocabulary usage

	P2_ADM_07
	Monitoring system availability and timeliness of response

	P2_ADM_08
	System configuration/reconfiguration

Vocabulary Import – OWL

	Req ID
	P2_ADM_01

	Description
	Import source provided in Ontology Web Language (OWL) format as documented and distributed by NCI including general OWL formats

	Detail
	OWL changes include:
1. Support OWL sources such as MGED and Fugo.
2. The group revisited the subject of role groups. Role groups as anonymous concepts are not searchable via API. The necessary condition rendering of role groups in OWL is collected in the BrowserText as concept IDs with boolean operators. This search capability is deferred for LexBIG 2.0. Searching may include concepts in role or expression or concepts with role group asserted.
3. Queries by concept for associations require subsequent queries of properties to determine if association is an OWL associate or role. Associations have different properties than role groups. Additional convenience methods or other methods could be added to simplify the execution of this type of query. This is deferred for LexBIG 2.0.
Medium priority

	Notes
	

	Trace from User Req
	NCI LexBIG_requirements_2005-07-19.xls – 1.7.7/1.7.8

Vocabulary Import - OBO

	Req ID
	P2_ADM_02

	Description
	Import vocabularies compliant with the Open Biomedical Ontology (OBO) format.

	Detail
	Provide import mechanisms for OBO 1.0 and 1.2 formats

	Notes
	Medium Priority

	Trace from User Req
	NCI LexBIG_requirements_2005-07-19.xls – 1.7.2

Lossless Transformations

	Req ID
	P2_ADM_03

	Description
	Perserve semantics and content in LexGrid Repository

	Detail
	Data cannot be lossy. Future services will need to accommodate future reasoning over a vocabulary or a subset of vocabullary.

	Notes
	Vocabularies are authored in different canonical forms, which in turn yield canonical forms yield different semantics. Therefore, it may be difficult mitigate the loss of semantics.
Medium Priority

	Trace from User Req
	F2F October 5-6, 2006

Fast vocabulary load/import function

	Req ID
	P2_ADM_04

	Description
	Provide a bulk load mechanism for vocabularies.

	Detail
	The feature may be provided with a number of lower level technologies.

	Notes
	With a reasonable configured system the NCI Metathesaurus requires about 24 hours.
Reducing this time would be advantageous for administration purposes.
Medium Priority

	Trace from User Req
	F2F October 5-6, 2006

Support for value sets

	Req ID
	P2_ADM_05

	Description
	Provide the ability to store, manage, and access vocabulary value sets.

	Detail
	Value sets may be treated as independent vocabulary resources that are versioned and governed simliar to a terminology.

	Notes
	Med-High Priority (per Frank’s review)

	Trace from User Req
	F2F October 5-6, 2006

Collect statistics on vocabulary usage

	Req ID
	P2_ADM_06

	Description
	Collect statistics on vocabulary usage
.

	Detail
	· Collect on a per vocabulary basis.
· Retain this information in rotating storage for retrieval and analysis
· Information should track the overall volume of requests and usage of each vocabulary
· The operator should be able to initiate, terminate, and restart the collection of statistics
· An application program should be able to retrieve the current set of statistics at any time
· Logging may occur on different layers (application vs. vocabulary server)

	Notes
	This is a high priority if easy to accomplish, otherwise it would be a lower priority.

	Trace from User Req
	NCI LexBIG Deferred Requirements 3.2.1.1

Monitoring system availability and timeliness of response

	Req ID
	P2_ADM_07

	Description
	Monitoring system availability and timeliness of response.

	Detail
	· The operator shall have the ability to "ping" any distinct layer of the server architecture to verify that that layer is alive and functioning with normal response time.
· The operator shall have the ability to request a display of the various LexBIG component processes that are active at any point in time.
· The operator shall have the ability to request a "ping" of each active process, followed by a report indicating any processes that appear to be stuck or responding slowly.
· The foregoing capabilities shall operate regardless of the physical server on which these processes happen to be running
· Maintain information on the number of instances of each API call in 5 (10?) minute buckets throughout each day. Record this information daily to a flat file (or database table) for retrieval and analysis.
· Provide a standard set of API calls that can be run against a specifiable vocabulary to ascertain the responsiveness of the system at the time the transactions are run.
· This should take the form of a script that is tailorable to a specific vocabulary. It should run and keep track of the time to execute the script. It should then timestamp and save the results for later analysis. It should also report to support personnel by email if the observed response time exceeds a settable threshold.
· This approach should be able to measure levels and trends of system responsiveness as well as to detect momentary outages.
· The script should be able to be scheduled and run on automatic intervals, and should also be executable on demand.

	Notes
	Priority Low

	Trace from User Req
	NCI LexBIG Deferred Requirements 3.2.1.1

System configuration/reconfiguration

	Req ID
	P2_ADM_08

	Description
	System configuration and reconfiguration

	Detail
	System support personnel shall have maximal ability to configure LexBIG system, e.g.,
· to specify the number of instances of each process
· to assign processes to hardware servers
· to specify quantities of various types of storage available to the system
· to specify data stores on a per-vocabulary basis
LexBIG software components shall be able to locate cooperating processes dynamically, without operator assistance, in any permissible configuration.
Dynamic reconfiguration
· Allow static and dynamic configuration of LexBIG component processes to servers
· Support dynamic alteration in the number and function of hardware servers.
· Support dynamic alteration in the number of instances of each process
· Provide a mechanism where cooperating LexBIG components can find each other in order to interoperate without operator assistance.
Operators shall have maximum capability to reconfigure a running LexBIG complex to improve performance, to remove processors for maintenance, or for other purposes. To the greatest extent possible, such changes in configuration shall be accomplished without the necessity to take down and restart the system.

	Notes
	Priority Low

	Trace from User Req
	NCI LexBIG Deferred Requirements 3.2.1.1

Architecture

Table 4.2.2-1: Architecture Requirements
	Req ID
	

	P2_ARC_01
	Internationalization Support

	P2_ARC_02
	Metadata Support

	P2_ARC_03
	Registration of Vocabulary Content and Services

	P2_ARC_04
	Federated integration of multiple terminologies

	P2_ARC_05
	Maintain consistency among distributed vocabulary verions

	P2_ARC_06
	Expose Vocabulary Services on caGrid

Internationalization Support

	Req ID
	P2_ARC_01

	Description
	Provide multi-language support for all textual elements (excluding metadata elements such as status, etc.).

	Detail
	Modern terminologies are becoming multilingual, and the back-end services need to be able to support multiple character sets (e.g. Unicode UTF-8).
Early emphasis on Icelandic and Spanish. This would involve language specific search and indexing algorithms to be introduced. The architecture provides this support, but specific languages will require further effort for proper search behavior.

	Notes
	High Priority

	Trace from User Req
	NCI LexBIG_requirements_2005-07-19.xls – 3.6.1

Metadata Support

	Req ID
	P2_ARC_02

	Description
	Provide the ability to designate a version number and other metadata for each imported vocabulary.

	Detail
	Other metadata includes, but is not necessarily restricted to, the name of the vocabulary and some universal vocabulary identifier (URI).

	Notes
	Already provided in LexBIG 1.0.1.

	Trace from User Req
	NCI LexBIG_requirements_2005-07-19.xls – 3.7.7

Registration of Vocabulary Content and Services

	Req ID
	P2_ARC_03

	Description
	Provide the ability to register and advertise vocabulary content and services.

	Detail
	The caGrid infastructure may be utilized to provide advertisement of vocabulary content and services.

	Notes
	Review Semantic Web mechanisms for distributing vocabulary content

	Trace from User Req
	

Federated integration of multiple terminologies

	Req ID
	P2_ARC_04

	Description
	Provide the mechanism to cross-link of vocabulary content based on concept codes.

	Detail
	Capacity to maintain cross linkages between/among components of a single large terminology or related terminologies with cross-referenced content. Similarly, the capacity to cross terminology boundaries to create composite terms from different sources, e.g., disease and anatomy is needed.

	Notes
	This may be provided by leveraging the mapping of content from resources such as NCI Metathesaurus. Dynamic linking can be providing with additional techniques using lexical and semantic features.
Medium Priority

	Trace from User Req
	

Maintain consistency among distributed vocabulary verions

	Req ID
	P2_ARC_05

	Description
	Provide the mechanism to synchronize vocabulary content with a master server.

	Detail
	Capacity to rapidly synchronize changes introduced into a master server to local copies along a chain of distribution. Updates must not destroy unique local content co-residing on a terminology directory server.
· Alert remove servers that new versions are available.
· Preserve local changes to a single concept or a collection of concepts, while accepting updates to that concept or collection of concepts.
· Receive updates from a master server, and apply these updates automatically, after an optional review of the changes to be applied.

	Notes
	This requirement is aided by vocabulary governance and the formal introduction of a vocabulary publisher role.

	Trace from User Req
	

Expose Vocabulary Services on caGrid

	Req ID
	P2_ARC_06

	Description
	Expose LexBIG APIs as caGrid services

	Detail
	This requirement requires the Silver Level LexBIG Package to be reviewed with models annotated via semantic connector workbench. APIs and data objects exposed to caGrid will be reviewed.
The primary services will include advertisement and discovery, searching/access, and administration of vocabulary content.

	Notes
	This requirement is in additional to EVS services as part of caCORE 3.1 that is available on caGrid

	Trace from User Req
	

Documentation and Training Materials

Table 4.2.3-1: Documentation Requirements
	Req ID
	

	P2_DOC_01
	Administrator’s Guide

	P2_DOC_02
	Programmer’s Guide

Administrator’s Guide

	Req ID
	P2_DOC_02

	Description
	Provide a document to address install and configuration of the LexBIG runtime and repository. The document will also describe administration (import, export, versioning, and conversion) of LexBIG vocabularies.

	Detail
	Specific items to be covered:
· transformation of vocabularies to different formats
· versioning process
· process of installing a replacement version
· internal LexBIG reference model: syntax and semantics of internal representation
· acceptable import formats (write or refer to existing documents)
· mapping of acceptable import formats to and from the LexBIG standard

	Notes
	Provide additional changes for new editions of the documentation.

	Trace from User Req
	NCI LexBIG_requirements_2005-08-17.xls – documentation & training materials

Programmer’s Guide

	Req ID
	P2_DOC_02

	Description
	Provide a document to describe LexBIG programmatic interfaces and storage formats.

	Detail
	Specific items to be covered:
· LexBIG Java API interfaces
· LexBIG web service interfaces
· LexBIG XML schema
· LexBIG Database schema
· Examples for the above

	Notes
	Provide additional changes for new editions of the documentation.

	Trace from User Req
	NCI LexBIG_requirements_2005-08-17.xls – documentation & training materials

Functional Characteristics

Table 4.2.4-1: Functional Requirements
	Req ID
	

	P2_FNC_01
	Provide classifier services using vocabulary services

	P2_FNC_02
	Enumerate Kinds

	P2_FNC_03
	Enumerate Relationships

	P2_FNC_04
	Compositional Expressions

	P2_FNC_05
	Decomposition

	P2_FNC_06
	Code Refinement

	P2_FNC_07
	Subsumption

	P2_FNC_08
	Vocabulary updates and concept history

	P2_FNC_09
	Retrieval of uniquely specified concept

	P2_FNC_10
	Thesaurus informed searching

Provide classifier services using vocabulary services

	Req ID
	P2_FNC_01

	Description
	Provide the ability to use a classifier for classifying or inferencing about a concept or features of a concept.

	Detail
	The general rule is not to preclude DL as a future option.

	Notes
	These services may require fast export from LexGrid to other metamodels such as OWL-DL.
Priority low

	Trace from User Req
	NCI F2F, October 4-5, 2006

Enumerate Kinds

	Req ID
	P2_FNC_02

	Description
	User specifies a vocabulary; the server returns list of vocabulary's principal content domains, i.e., subdivisions of the root concept. (The NCI Thesaurus refers to these as ‘Kinds’).

	Detail
	

	Notes
	Implemented as convenience method in version 1.0.1 to return references to all nodes that participate in relations with the system-designated top node (‘@’) for a given relation (e.g. hasSubtype). Relations associated with ‘@’ are precalculated as part of the load process or afterward using special programmatic support.

	Trace from User Req
	NCI LexBIG_requirements_2005-07-19.xls – 1.4.2

Enumerate Relationships

	Req ID
	P2_FNC_03

	Description
	User specifies a vocabulary; the server returns the list of relationships available in that vocabulary, and, if applicable, the domain and range for each.

	Detail
	

	Notes
	We need to extend the API to support domain and range directly. At the moment, these are both first class roles (hasDomain and hasRange).

	Trace from User Req
	NCI LexBIG_requirements_2005-07-19.xls – 1.4.3

Compositional Expressions

	Req ID
	P2_FNC_04

	Description
	Provide the ability to compare compositional expressions for a given vocabulary structure.

	Detail
	Composition -- user specifies two linked concepts and the relationship between them; server returns a single concept that represents the triplet. E.g. inflammation has location liver-->hepatitis.
Compose a post- coordinated expression into a pre-coordinated concept

	Notes
	NCI Thesaurus has Structured Product Label terminology subsets and are obligated to FDA to serve as the reference site

	Trace from User Req
	LexBIG Deferred Requirements 3.2.4.1

Decomposition

	Req ID
	P2_FNC_05

	Description
	Provide the ability to decompose a single complex concept into distinct conccepts and relationships

	Detail
	User specifies a single complex concept and the server decomposes it into two distinct concepts and the relationship.
Decompose a concept into a post-coordinated expression

	Notes
	

	Trace from User Req
	LexBIG Deferred Requirements 3.2.4.1

Code Refinement

	Req ID
	P2_FNC_06

	Description
	Provide ability to suggest additional concepts based on concept and other expressions or criteria.

	Detail
	Code Refinement - user supplies concept code or ID plus other terms; system returns best match more specific concept.

	Notes
	

	Trace from User Req
	LexBIG Deferred Requirements 3.2.4.1

Subsumption

	Req ID
	P2_FNC_07

	Description
	Provide ability to determine if a concept is a decendant of another based on all or specific relationships.

	Detail
	Allow user to determine whether a concept is a descendent of another concept.

	Notes
	

	Trace from User Req
	LexBIG Deferred Requirements 3.2.4.1

Vocabulary updates and concept history

	Req ID
	P2_FNC_08

	Description
	Provide a mechanism to update vocabulary content and manage a concept history resource

	Detail
	NCI history will not change in the near term. The LexBIG API should be capable of loading and querying the current maintained level of NCI history information.
Future enhancements may include the ability to load patches or deltas to an existing vocabulary version.

	Notes
	Low Priority

	Trace from User Req
	LexBIG Deferred Requirements 3.2.4.4
NCI F2F, October 4-5, 2006

Retrieval of uniquely specified concept

	Req ID
	P2_FNC_09

	Description
	Provide a mechanism to retrieve a concept and neighborhood information based on temporal criteria.

	Detail
	Retrieve any version of a concept stored in a vocabulary, either by version or by date
Given a concept identifier, this returns the concept "neighborhood" as it existed at a particular point in time.
Given a concept identifier, this returns the concept "neighborhood" as it existed in a particular version.

	Notes
	Low priority

	Trace from User Req
	LexBIG Deferred Requirements 3.2.4.9

Thesaurus informed searching

	Req ID
	P2_FNC_10

	Description
	Access synonyms or other lexical features provided by an independent thesaurus to enable improved concept searching.

	Detail
	An independent thesaurus would be useful. For now, the metathesaurus might be used to provide additional entry terms for searching and matching.

	Notes
	Architecturally should be planned for LexBIG 2.0, but additional API development would need to be assessed.
Medium Priority

	Trace from User Req
	NCI F2F, October 4-5, 2006

Performance
Table 4.2.5-1: Performance Requirements
	Req ID
	

	P2_PRF_01
	Robust Architecture for high availability

Robust Architecture for high availability

	Req ID
	P2_PRF_01

	Description
	Provide an architecture that permits high availability

	Detail
	Provide an appropriately high level of system availability - e.g., like a production web or e-mail server critical to an enterprise's operation; but not as high as an air-traffic control system or support for a shuttle mission.

	Notes
	This requires consideration from system architecture from a server, network, and storage configuration perspective.

	Trace from User Req
	LexBIG Deferred Requirements 3.2.2.7

Security

Table 4.2.6-1: Security Requirements
	Req ID
	

	P2_SEC_01
	Secure Services

	P2_SEC_02
	Secure Content

Secure Services

	Req ID
	P2_SEC_01

	Description
	Secure protection of LexGrid services from alteration and restrict access to authorized users.

	Detail
	The tooling will be secure to the extent that the underlying databases, etc. are secure. As the tooling provides no direct modification API's besides the import functions in the first release.

	Notes
	

	Trace from User Req
	NCI LexBIG_requirements_2005-08-17.xls – security

Secure Content

	Req ID
	P2_SEC_02

	Description
	Provide credentialed access to vocabulary content.

	Detail
	The API will need to provide a mechanism to consume a user or security token to be validated against a vocabulary provider authorization service before allow the session to access content.
On load, accept access keys for vocabulary (possibly at the sub-tree level, or specific attribute level) on requested access, handshake to verify authority before providing access.

	Notes
	MedDRA is a good example requiring this security.

	Trace from User Req
	NCI LexBIG_requirements_2005-08-17.xls – security
NCI F2F, October 4-5, 2006

Serviceability

Table 4.2.7-1: Serviceability Requirements
	Req ID
	

	P2_SVC_01
	Universal coverage program

Universal coverage program

	Req ID
	P2_SVC_01

	Description
	Provide a sample program that exercises every method in the API against a vocabulary of the user's choice.

	Detail
	This is somewhat covered by the automated test suite for the LexBIG package.
Code coverage programs may provide better detail for determining code utilization.
http://cobertura.sourceforge.net/

	Notes
	

	Trace from User Req
	NCI LexBIG_requirements_2005-08-17.xls – testing

Appendix A – Acronym List

	Term/
Abbreviation
	Description

	caTIES
	Cancer Text Information Extraction System

	CRCH
	Cancer Research Center Hawaii

	DAG
	Directed Acyclic Graph

	DBA
	Database Administrator

	EVS
	Enterprise Vocabulary Services

	LSI
	LexBIG Service Index

	NCICB
	NCI Center for Bioinformatics

	OBO
	Open Biomedical Ontologies

	OWL
	Ontology Web Language

	PM
	Project Manager

	RM
	Requirements Manager

	RRF
	Rich Release Format

	RTM
	Requirements Traceability Matrix

	SCM
	Software Configuration Management

	SDLC
	Software Development Lifecycle

	SDP
	Software Development Plan

	SE
	Software Engineering

	SEPG
	Software Engineering Process Group

	SM
	Software Manager

	SOP
	Standard Operating Procedure

	SPI
	Software Process Improvement

	SQA
	Software Quality Assurance

	SW
	Software

	TBD
	To Be Determined

	TM
	Test Manager

	UMLS
	Unified Medical Language System

	UPMC
	University of Pittsburgh Medical Center

_1279710880.vsd
LexEVS 5.0

Lucene Index Files

Distributed LexBIG
API

_1279710881.ppt

Staged Deployment

Editors

Browsers

Query

Tools

EVS

Clients

LexGrid

repositories

(MySQL)

Promote

NCI Server

caCORE / Java Runtime

NCI Server

caCORE / Java Runtime

Production Servers

caCORE/LexBIG/Java Runtime

NCI Server

caCORE / Java Runtime

NCI Server

caCORE / Java Runtime

Integration Servers

caCORE/LexBIG/Java Runtime

NCI Server

caCORE / Java Runtime

NCI Server

caCORE / Java Runtime

Development & Test Servers

caCORE/LexBIG/Java Runtime

_1279710878.doc
[image: image1.png]Java —{

SOAP—{

REST_{

Java—

3.2
EVS
API

spoueiN
sousIUBAUOD

LexWrapper

