Mayo Foundation
 Biomedical Statistics and Informatics
LexBigService
 Unit Test Plan 1.1
Release 1.0
1.0 INTRODUCTION…………………………………………………………….1

2.0 TEST SCOPE….……………………………………………………………... 3
2.1 FEATURES TO BE TESTED

3.0 TEST APPROACH……………………………………………………………4
4.0 TRACEABILITY MATRIX WITH QUALITY RISK ANALYSIS………….4
5.0 PROJECT RISK AND ASSUMPTIONS……………………………………..5
6.0 SCHEDULE ………………………………………………………………….5
7.0 TEST ENVIRONMENT………………………………………………………6
7.1 TOOLS

8.0 DEVELOPMENT/ TEST PROCUDEURES………………………………….6
8.1 TEST PROCEDURES.

8.2 INCIDENT TRACKING.
8.3 INTERNAL COMMUNICATION.

9.0 TEST CONTROLS……………………………………………………………7
10.0 TEST PLAN APPROVAL…………………………………………………….8
 Document Revision History
	Version
	Description
	Date
	Author

	1.0
	Initial Version
	7/04/2008
	Shalini Nagaraja

	1.1
	Revised for LexEVS 5.1
	8/5/2009
	Scott Bauer

Test Plan Category and Test Plan Identifier
	 Test Category

	Unit (
	Integration (
	System (
	User Acceptance (
	Other (

1.0 Introduction and Overview
The Test Plan documents the detailed activities and information needed to carry out the approach to testing defined in the Test Strategy. It identifies:

· System End to End validation testing.

· Environments in which testing will occur.

· Identification of teams.(N/A)
· Tools that will be used.

· Resources required for testing.

· The schedule and milestones of testing.

· Test coverage.
2.0 Test Scope

The primary scope of testing LexBigService interface is to ensure and validate the concept of code system. LexBigService interface provides centralized access to all LexBigServices.
2.1 Features to be tested
· Get Coding Scheme Concepts
· Get Filter
· Get Filter Extension

· Get Generic Extension

· Get History Service
· Get Last Update Time
· Get Match Algorithms
· Get Node Graph.
· Get Node Set
· Get Service Manager.
· Get Service Metadata.
· Get Sort Algorithm.
· Get Supported Coding Schemes
· Resolve Coding Scheme.

3.0 Test Approach

Unit testing is testing of the source code for an individual unit (class or method) by the developer who wrote it. A Unit is to be tested after initial development, and again after any change or modification. The developer is responsible for verifying new code before committing the code to change control.
 The goal of Unit Testing for the “LexBIGService” module is to ensure there are no errors in the implementation and the application will also tested to verify it meets the requirement specification. LexBIGService features will be tested using automated unit tests outlined below. The Service Interface is tested at three levels using unit tests. Local testing occurs in an environment where direct method calls in Java take place. Web enabled LexEVS provides a RMI service over an http network protocol. LexEVS Grid services for the analytical LexEVS service provide access to the same interface and are also unit tested.

4.0 Traceability Matrix
 The Traceability Matrix is a mapping between the test cases to system requirements.

	Scenarios

	Test Cases
	Local LexEVS

Unit test

Passed /Failed
	Web

LexEVS

Unit test

Passed /Failed
	Grid

LexEVS

Unit test

Passed /Failed

	1.0 GetCodingSchemeConcepts.

	1. Returns the set of all (or all active) concepts in the specified coding scheme.

2. Returns the set of all concepts identified by the given set of value domain entries, which can be further restricted prior to resolution.
	
	
	

	1.2 Get Filter.

	1. Returns an instance of the filter extension registered with the given name.

	
	
	

	1.3 GetFilterExtension.
	Returns a description of all registered extensions used to provide additional filtering of query results.
	
	
	

	1.4 GetGeneric Extension.
	1. Returns an instance of the application-specific extension registered with the given name.

2. Returns a description of all registered extensions used to implement application-specific behavior that is centrally accessible from a LexBIGService
	
	
	

	1.5 GetHistoryService
	Resolve a reference to the history api servicing the given coding scheme
	
	
	

	1.6 GetLastUpdateTime.
	Return the last time that the content of this service was changed; null if no changes have occurred.
	
	
	

	1.7 GetMatchAlgorithms.
	Returns the full description of all supported match algorithms.
	
	
	

	1.8 GetNodeGraph.
	Returns the node graph as represented in the particular relationship set in the coding scheme.
	
	
	

	1.9 GetServiceManager.
	Validate the credentials and return an interface to the LexBig service manager.
	
	
	

	1.10 GetServiceMetadata.
	Return an interface to perform system-wide query over metadata for loaded code systems and providers
	
	
	

	1.11 GetSortAlgorithm
	1. Returns an instance of the sort extension registered with the given name.

2. Returns a description of all registered extensions used to provide additional sorting of query results in the given context.
	
	
	

	1.12 GetSupported coding scheme.
	Return a list of coding schemes and versions that are supported by this service, along with their status.
	
	
	

	1.13 GetSupportedValuedomains.
	Return a list of value domains and versions that are supported by this service, along with their status.
	
	
	

	1.14 GetValuedomain Entries

	Returns a set representing all entries for the given set of value domains, which can be further restricted prior to resolution
	
	
	

	1.15 Get Valuedomain.
	Returns a set representing all (or all active) value domains, which can be further restricted prior to resolution
	
	
	

	1.16 ResolveCodingScheme.

	Return detailed coding scheme information given a specific tag or version identifier.
	
	
	

	1.17 ResolveValueDomain.
	Return detailed value domain information given a specific tag or version identifier.
	
	
	

5.0 Quality Risk Analysis

The following is a list of the possible risks to the successful outcome of testing.
	Identified Risk
	Impact on Project
(High, Medium, Low)

	Requirement changes
	High

	Code changes
	High

6.0 Schedule

	Task
	Dependency

	Duration
	Responsible Role

	JUnit Testing
	
	
	

	Progression Testing (Manually)
	
	
	

	Regression testing

(Automation)
	
	
	

The test cases which we test with JUnit testing can also be automated for Regression testing.
7.0 Test Environment.
7.1 Tools

	Software Name
	Version
	URL

	Java Software Development Kit
	1.5.0
	http://java.sun.com/javaee/downloads/index.jsp

	MySQL Database
	5.0
	http://dev.mysql.com/downloads/mysql/4.1.html

	Oracle
	9.0
	Mayo Tools

	Eclipse
	3.2
	http://www.eclipse.org/downloads/

	Operating System
	Windows XP Professional
	Mayo

	
	Red Hat Enterprise 5
	

	JUnit
	3.8.2
	http://sourceforge.net/project/showfiles.php?group_id=15278

8.0 Development / Test Procedures.

8.1 Test Procedures.
Preconditions: Data loads of test terminologies when appropriate. Test case descriptions will be created including test inputs and expected outcome. Results will be maintained in a test matrix.

A test report will be auto generated or written by the Test Administrator. The test matrix will contain the test specification, the expected test values and the output values produced during the test.

 8.2 Incident Tracking
Initial incident tracking will be recorded in the test matrix and JUnit generated test reports.

Incidents (errors and failures) will be recorded in the LexEVS Gforge tracker located here:

https://gforge.nci.nih.gov/tracker/?atid=1850&group_id=491&func=browse
The following fields should be adjusted in the tracker web form upon submission:

	Product
	LexBIG API

	Status
	bug

	Importance to end user
	1 to 5 with “5” designated as a “must have” and “1” designated as a “Not a Priority”

	Component
	client

	Assigned to
	Craig Stancl (Technical Lead)

Additionally, The Test administrator will provide:

· Summary title of the error

· Conditions for causing the error or failure

· Operating System

· Technical Software Stack

· Input value(s)

· Sample code (If appropriate)

· Expected results

· Stack trace or other error or failure description (i.e. freeze up of web page or gui, application crash, web server error message)

8.3 Internal Communication

A Testing status update will be done during the weekly project meeting.

Additional meetings will be scheduled with the developers and the team if necessary.
9.0 Test Controls.
The testing will be done on Unit Test Cases. The Unit test cases that will be used must have passed required functionality before the data can be pulled.
 Entrance Criteria:
· All Unit test cases have been reviewed and approved

· Test environment has been properly set

· All data has been identified

 Exit Criteria:

· Unit test cases have passed.
10.0 Acceptance:

	Test Plan Prepared by
	Scott Bauer
	Date
	8/05/2009

	
	
	
	

	Test Plan Accepted by
	Traci St. Martin
	Date
	8/31/02009

	
	Project Manager
	
	

Approval of the Test Plan indicates that the Project Manager is satisfied that the planned approach to validate the interface is functioning appropriately; and that it will satisfy the requirement to confirm that the interface will not adversely impact core functionality / operations of the system.

PAGE
7

