
7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 1 of 148

1
2

3

4
5

6

7

8

9

Service Functional Model Specification
Common Terminology Services Release 2 (CTS 2)

Version 2. (Draft Standard for Trial Use)
October 20Th, 2009

Project Leads Russell Hamm (Apelon, Inc.)

Craig Stancl (Mayo Clinic/Foundation)

Principal Contributors Kristi Eckerson (Emory University)

Davera Gabriel (University of California, Davis)

Russell Hamm (Apelon, Inc.)

Alan Honey (APHoney Systems, II4SM)

Dr. Jobst Landgrebe (II4SM)

Lloyd McKenzie (Lloyd McKenzie and Associates)

Grahame Grieve (Kestral Computing)

Contributors John Carter (Apelon, Inc.)

Senthil K. Nachimuthu(3M Health Information Systems, Inc.)

Harold Solbrig (Mayo Clinic/Foundation)

HL7 Vocabulary Co-Chairs Heather Grain (Latrobe University)

Russell Hamm (Apelon, Inc.)

Ted Klein (Klein Consulting)

Beverly Knight (Canada Health Infoway)

 Jobst Landgrebe (II4SM)

mailto:rhamm@apelon.com
mailto:stancl.craig@mayo.edu
mailto:keckers@sph.emory.edu
mailto:davera@ucdavis.edu
mailto:rhamm@apelon.com
mailto:aphoneysys@gmail.com
mailto:jobstlandgrebe@googlemail.com
mailto:lloyd@lmckenzie.com
mailto:grahame@kestral.com.au
mailto:jcarter@apelon.com
mailto:snachimuthu@mmm.com
mailto:solbrig.harold@mayo.edu
mailto:heather@lginformatics.com
mailto:rhamm@apelon.com
mailto:ted@tklein.com
mailto:beverly.knight@procurement.ca
mailto:jobstlandgrebe@googlemail.com

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 2 of 148

1
2

3

4
5
6
7
8
9

10

11
12
13

Preface

Notes to Readers

This document is the Service Functional Model Draft Standard For Trial Use (DSTU) for the Common
Terminology Services 2 specification, which is specified under the Service Development Framework process
under the auspices of the Healthcare Services Specification Project (HSSP). Further context is given in the
overview section below, but one key point to note is that the SFM provides a Service Interface specification,
NOT the specification of a Service implementation. This is a critical distinction in terms of Service Oriented
Architecture. There could be many different ways of implementing all or part of the functionality to support
the behavior described in this specification.

Publication of this draft standard for trial use and comment has been approved by Health Level Seven, Inc.
(HL7). This draft standard is not an accredited American National Standard. The comment period for use of
this draft standard shall end 12 months from the date of publication. Suggestions for revision should be
submitted at: http://www.hl7.org/dstucomments/index.cfm . 14

15
16
17
18
19
20

21
22

23
24
25
26
27

28

29
30

31

32
33
34

Following this 12 month evaluation period, this draft standard, revised as necessary, will be submitted to a
normative ballot in preparation for approval by ANSI as an American National Standard.

Implementations of this draft standard shall be viable throughout the normative ballot process and for up to six
months after publication of the relevant normative standard.

For the purposes of this specification, the terms vocabulary, terminology, and code system are used
interchangeably.

Even in terminology circles, some terms such as Codeset are overloaded; and we have found subtle
differences between very similar (and similarly named) concepts defined in existing standards. In the
preparation of this specification, we found the need to specifically define the terms (such as Value Set,
Coding System, etc.) used. Please see Appendix B for both definition of these terms and in some cases a
discussion of some of the subtle differences encountered.

Changes from Previous Release

This version of the document includes several changes:

 updated conceptual model of terminology
 more generic Detailed Functional Models
 parameters for the Detailed Functional Model have been made consistent

http://www.hl7.org/dstucomments/index.cfm

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 3 of 148

1
2

3
4
5
6

7
8

Acknowledgments

This document is the result of the collaboration of many individuals and organizations. The terminology and
standards community - all involved in the numerous meetings and teleconferences are to be thanked for their
contributions and support. In addition to the listed authors, we would like to thank all the individuals and
organizations who have dedicated effort and resource into furthering the development of this specification.

NOTE: Sections of this document in blue indicate text that is consistent across HSSP specifications.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 4 of 148

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Table of Contents
1 Overview...10

1.1 Introduction and Scope ...10
1.1.1 HL7-OMG Healthcare Services Specification Project (HSSP) ..10
1.1.2 Service Definition Principles ..11

1.2 Overall disclaimers ...11
1.3 Context of this SFM within HSSP Roadmap..12

2 Service Overview and Business case..14
2.1 Service Overview..14

2.1.1 CTS 2 Service Description and Purpose...14
2.1.2 Why terminology as a service? ...14
2.1.3 Scope...15

2.2 The reason why the service is necessary...16
2.3 Structure of the CTS 2 Service ...16

2.3.1 Key concepts of this specification ..18
2.4 Implementation Considerations ..18

2.4.1 Interface Interoperability Considerations ...18
2.4.2 Terminology Structure Considerations ...20

2.4.2.1 CodeSystem ..24
2.4.2.2 CodeSystemVersion..24
2.4.2.3 CodeSystemEntity...25
2.4.2.4 CodeSystemNode..25
2.4.2.5 CodeSystemConcept ...25
2.4.2.6 CodeSystemConceptCode...26
2.4.2.7 CodeSystemSupplement ...26
2.4.2.8 JurisdictionalDomain ..27
2.4.2.9 DefinedEntityProperty ..27
2.4.2.10 EntityPropertyVersion ..28
2.4.2.11 CodeSystemEntityVersionAssociation ...28
2.4.2.12 AssociationType ...29
2.4.2.13 CodeSystemEntityVersion..30
2.4.2.14 CodeSystemNodeVersionMembership...30
2.4.2.15 Designation ...31
2.4.2.16 Designation Type ..31
2.4.2.17 Value Set...31
2.4.2.18 ValueSetVersion ...33
2.4.2.19 ConceptValueSetMembership ..34
2.4.2.20 DesignationValueSetVersionMembership..34
2.4.2.21 Concept Domain ...35
2.4.2.22 Usage Context...35
2.4.2.23 Value Set Context Binding ...36
2.4.2.24 Annotation Attribute ...36
2.4.2.25 Slot ..36

3 Business Scenarios..37
3.1 Scenario Actors...37

3.1.1 CTS 2 Service ...38

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 5 of 148

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

3.1.2 Terminology User ...38
3.1.3 Terminology Administrator ..38
3.1.4 Terminology Enabled Application Developer ..38
3.1.5 Terminology Author / Curator ..38
3.1.6 Terminology Human Language Translator...39
3.1.7 Terminology Mapper ..39
3.1.8 Terminology Provider...39
3.1.9 Terminology Value Set Developer ...39

3.2 Primary Scenarios ...39
3.2.1 Administrative Scenarios ..39

3.2.1.1 Import Content ..39
3.2.1.2 Export Content ..40
3.2.1.3 Decommission Terminology Content ...40
3.2.1.4 Change Content Status..40
3.2.1.5 Update Notification...41
3.2.1.6 Update Notification Management...41
3.2.1.7 Content Dependency Notification...41

3.2.2 Search / Query Scenarios ..41
3.2.2.1 Code System Search / Query ..42

3.2.2.1.1 Retrieve Available Code Systems ...42
3.2.2.1.2 Retrieve Coded Concepts from Code System...42
3.2.2.1.3 Validate Concept in Code System...42
3.2.2.1.4 Identify Concept Language Translations ..42
3.2.2.1.5 Retrieve Concept Representations ..43
3.2.2.1.6 Compare Code System Versions...43

3.2.2.2 Value Set and Concept Domain Search / Query...43
3.2.2.2.1 Retrieve Available Value Sets...43
3.2.2.2.2 Retrieve Coded Concepts from Value Set...43
3.2.2.2.3 Retrieve Available Concept Domains ...44
3.2.2.2.4 Retrieve Coded Concepts for Concept Domain via Value Set Membership44
3.2.2.2.5 Validate Coded Concept in Value Set...44
3.2.2.2.6 Compare Value Set Versions ..44

3.2.3 Authoring / Curation Scenarios ..45
3.2.3.1 Code System Authoring / Curation...45

3.2.3.1.1 Create Code System ..45
3.2.3.1.2 Maintain Code System ..46
3.2.3.1.3 Create Concept ..46
3.2.3.1.4 Maintain Concept ..46

3.2.3.2 Value Set Authoring / Curation ..47
3.2.3.2.1 Create Value Set..47
3.2.3.2.2 Maintain Value Set (meta-data) ..47
3.2.3.2.3 Maintain Value Set..48

3.2.3.3 Concept Domain and Usage Context Authoring / Curation ...48
3.2.3.3.1 Create Concept Domain ..48
3.2.3.3.2 Create Usage Context..48
3.2.3.3.3 Maintain Concept Domain ..48

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 6 of 148

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

3.2.3.3.4 Maintain Usage Context..49
3.2.4 Association Scenarios ...49

3.2.4.1 Association Administrative Scenarios ..49
3.2.4.1.1 Enumerate Association Types...49
3.2.4.1.2 Identify / Retrieve Associations for a Single Concept ..50
3.2.4.1.3 Identify / Retrieve Associations between Two or More Coded Concepts50
3.2.4.1.4 Import Associations...50
3.2.4.1.5 Export Associations...50
3.2.4.1.6 Remove Associations ..51

3.2.4.2 Association Search / Query Scenarios ..51
3.2.4.2.1 Retrieve Available Associations ...51
3.2.4.2.2 Validate Associations..51
3.2.4.2.3 Retrieve Association Metadata..51
3.2.4.2.4 Compare Association Versions ...52
3.2.4.2.5 Request / Retrieve Association Instance ...52
3.2.4.2.6 Compute Transitive Closure..52
3.2.4.2.7 Subsumption..52

3.2.4.3 Association Author / Curation Scenarios..52
3.2.4.3.1 Create / Maintain an Association between Coded Concepts...52
3.2.4.3.2 Create Association Type ...53
3.2.4.3.3 Maintain Association Type ...53
3.2.4.3.4 Create Lexical Association..53
3.2.4.3.5 Create Rules Based Association..53

4 Assumptions and Dependencies ...55
4.1 Dependencies on other Service Frameworks..55
4.2 CTS Backwards Compatibility ...55

4.2.1 Message API Support (MAPI)..55
4.2.2 General CTS API Support ..55
4.2.3 Operations on ISO21090 CD datatype ...55

5 Considerations for Technical Specification ..56
5.1 Functional Overloading ..56
5.2 Metadata Discovery ..57
5.3 Artifact Versioning ...58
5.4 Properties ..58
5.5 Code System Partitions ...59
5.6 Code System Supplement ...60

6 Detailed Functional Model for each Interface ..61
6.1 Administration Operations..61

6.1.1 Import Code System ...61
6.1.2 Import Code System Revision ..63
6.1.3 Import Value Set Version ...65
6.1.4 Import Association Version ..66
6.1.5 Export Association..68
6.1.6 Export Code System Content..69
6.1.7 Change Code System Status ...70
6.1.8 Register for Notification ...71

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 7 of 148

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

6.1.9 Update Notification Registration ..73
6.1.10 Update Notification Registration Status ...75

6.2 Search / Access Operations...75
6.2.1 Code System Search / Access ...76

6.2.1.1 List Code Systems...76
6.2.1.2 Return Code System Details ...77
6.2.1.3 List Code System Concepts ..78
6.2.1.4 Return Concept Details ...79
6.2.1.5 List Association Types..80
6.2.1.6 Return Association Type Details ..81

6.2.2 Value Set Search / Access...82
6.2.2.1 List Value Sets ..82
6.2.2.2 Return Value Set Details...83
6.2.2.3 List Value Set Contents (Expand value set) ...84
6.2.2.4 Check Value Set Subsumption..85
6.2.2.5 Check Concept Value Set Membership ..86

6.2.3 Concept Domain and Usage Context Search / Access..87
6.2.3.1 List Concept Domains...87
6.2.3.2 Return Concept Domain Details ...88
6.2.3.3 List Usage Contexts ..89
6.2.3.4 Return Usage Context Details...90
6.2.3.5 List Concept Domain Bindings...91

6.2.3.5.1 Check Concept to Concept Domain Association ..92
6.2.4 Association related queries ...93

6.2.4.1 List Associations...93
6.2.4.2 Determine Transitive Concept Relationship...94
6.2.4.3 Compute Subsumption Relationship...95
6.2.4.4 Return Association Details ...97

6.3 Authoring/Curation Operations ..98
6.3.1 Code System Authoring/Curation...98

6.3.1.1 Create Code System..98
6.3.1.2 Maintain Code System Version ..100
6.3.1.3 Update Code System Version Status ..101
6.3.1.4 Create Code System Supplement..102
6.3.1.5 Maintain Code System Supplement..103
6.3.1.6 Create Concept..104
6.3.1.7 Maintain Concept..106
6.3.1.8 Update Concept Status..108
6.3.1.9 Create Association Type ...109
6.3.1.10 Maintain Association Type ...110

6.3.2 Value Set Authoring/Curation ..111
6.3.2.1 Create Value Set ...111
6.3.2.2 Maintain Value Set ...113
6.3.2.3 Update Value Set Status..114

6.3.3 Concept Domain and Usage Context Authoring/Curation ...115
6.3.3.1 Create Concept Domain..115

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 8 of 148

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

6.3.3.2 Maintain Concept Domain..116
6.3.3.3 Create Usage Context ...117
6.3.3.4 Maintain Usage Context ...118

6.3.4 Association Authoring Operations..119
6.3.4.1 Update Association Status ..119
6.3.4.2 Create Association ..120
6.3.4.3 Create Lexical Association between Coded Concepts..121
6.3.4.4 Create Rules Based Association between Coded Concepts..123

7 Profiles ..124
7.1 Introduction...124
7.2 CTS 2 Functional Profiles...124

7.2.1 CTS 2 Query Profile ...124
7.2.2 Terminology Administration Profile...127
7.2.3 Terminology Authoring Profile ..128

7.3 CTS 2 Semantic Profiles...131
7.3.1 HL7 Terminology Profile ...131
7.3.2 Mature Terminology Profile ...132
7.3.3 Developing Terminology Profile ..132

7.4 CTS 2 Conformance Profiles ..133
7.4.1 Conformance Interoperability...133
7.4.2 Conformance Assertion ..133

8 The Services Framework Functional Model...135
9 Relationship to Information Content ..136
10 Recommendations for Technical RFP Issuance ...137

10.1 HL7 Support..137
10.2 Metamodels: Disparate Terminologies ...137

10.2.1 Metamodels: HL7 Terminologies ...137
10.3 Conformance Profiles and Service Level Agreements ...138
10.4 Operationalizing CTS 2: Considerations in Implementation..138

10.4.1 Optimization ...138
10.4.2 Versioning...139

10.4.2.1 Versioning Mechanisms..139
10.4.2.2 Versionable Elements ...139

10.4.3 Internationalization ...139
10.5 Service Description and Discovery...139
10.6 Federated Terminology Services ..140
10.7 Terminology Structure Considerations ...140
10.8 Post coordination ..141
10.9 Terminology Maintenance ..141
10.10 Matching Algorithms ..142

11 Appendix A - Relevant Standards...143
11.1 HL7 Common Terminology Services...143

12 Appendix B – Glossary...144
12.1 Terminology Principles...144

12.1.1 Code System ...144
12.1.2 Code System Concept ...144

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 9 of 148

1
2
3
4
5
6
7

8

12.1.3 Concept ...145
12.1.4 Concept Domain ...145
12.1.5 Association..145
12.1.6 Designations..146
12.1.7 Binding Realm ..146
12.1.8 Jurisdictional Domain ...146
12.1.9 Value Set...147

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 10 of 148

3
4
5
6
7

8

1 Overview 1

1.1 Introduction and Scope 2

The Service Specification Development Framework Methodology is the methodology followed to define
HSSP specifications. The methodology sets out an overall process, and also defines the responsibilities of the
Service Functional Model (SFM). Section 2 sets out the business context for this particular specification, but
firstly it is important to understand the overall context within which this specification is written, i.e. its
purpose from a methodology standpoint.

1.1.1 HL7-OMG Healthcare Services Specification Project (HSSP) 9

The Healthcare Services Specification Project (HSSP) [http://hssp.wikispaces.com] is a joint endeavor
between Health Level Seven (HL7) [

10
http://www.hl7.org] and the Object Management Group (OMG)

[
11

http://www.omg.org]. The HSSP was chartered at the January 2005 HL7 meeting under the Electronic Health
Records Technical Committee, and the project was subsequently validated by the Board of Directors of both
organizations.

12
13
14

15

16
17
18
19
20
21

22
23
24
25
26
27

28
29
30
31
32
33
34

35
36

The HSSP has several objectives. These objectives include the following:

 To stimulate the adoption and use of standardized “plug-and-play” services by healthcare software
product vendors

 To facilitate the development of a set of implementable interface standards supporting agreed-upon
services specifications to form the basis for provider purchasing and procurement decisions.

 To complement and not conflict with existing HL7 work products and activities, leveraging content
and lessons learned from elsewhere within the organization.

Within the process, HL7 has primary responsibility for (1) identifying and prioritizing services as candidates
for standardization; (2) specifying the functional requirements and conformance criteria for these services in
the form of Service Functional Model (SFM) specifications such as this document; and (3) adopting these
SFMs as balloted HL7 standards. These activities are coordinated by the HL7 Services Oriented Architecture
SIG in collaboration with other HL7 committees, which currently include the Vocabulary TC and the Clinical
Decision Support TC.

Based on the HL7 SFMs, OMG will develop “Requests for Proposals” (RFPs) that are the basis of the OMG
standardization process. This process allows vendors and other submitters to propose solutions that satisfy the
mandatory and optional requirements expressed in the RFP while leaving design flexibility to the submitters
and implementation flexibility to the users of the standard. The result of this collaboration is an RFP
Submission, which will be referred to in the HSSP process as a Service Technical Model (STM). HL7
members, content, and concerns are integral to this process, and will explicitly included in the RFP creation
and evaluation process.

It is important to note that the HL7 SFMs specify the functional requirements of a service, the OMG RFPs
specify the technical requirements of a service, and the STM represents the resulting technical model, except

http://hssp.wikispaces.com/
http://www.hl7.org/
http://www.omg.org/

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 11 of 148

1
2
3
4
5

6

8
9

10
11
12
13
14
15
16

17

as specified below. In many cases, SFMs describe an overall coherent set of functional capabilities and / or
define a minimum set of behaviors necessary to guarantee a minimal level of service in a deployment scenario.
These capabilities may be specialized or subdivided from both functional and informational (semantic)
perspectives to provide conformance “profiles” that may be used as the basis for the OMG RFP process and/or
implemented.

1.1.2 Service Definition Principles 7

The high level principles regarding service definition that have been adopted by the Services Specification
Project are as follows:

 Service Specifications shall be well defined and clearly scoped and with well understood requirements
and responsibilities.

 Services should have a unity of purpose (e.g., fulfilling one domain or area) but services themselves
may be composable.

 Services will be specified sufficiently to address functional, semantic, and structural interoperability.
 It must be possible to replace one conformant service implementation with another meeting the same

service specification while maintaining functionality of the system.

A Service at the SFM level is regarded as a system component; the meaning of the term “(system) component”
in this context is consistent with UML usage[1].A component is a modular unit with well-defined interfaces
that is replaceable within its environment. A component can always be considered an autonomous unit within
a system or subsystem. It has one or more provided and/or required interfaces, and its internals are hidden and
inaccessible other than as provided by its interfaces.

18
19
20
21

22
23
24
25
26

27
28
29
30
31

32
33

35

Each Service’s Functional Model defines the interfaces that the service exposes to its environment, and the
service’s dependencies on services provided by other components in its environment. Dependencies in the
Functional Model relate to services that have or may in future have a Functional Model at a similar level;
detail dependencies on low-level utility services should not be included, as that level of design is not in scope
for the Functional Model.

The manner in which services and interfaces are deployed, discovered, and so forth is outside the scope of the
Functional Model. However, HSSP Functional Models may reference content from other areas of HSSP work
that deals with architecture, deployment, naming and so forth. Except where explicitly specified, these
references are to be considered informative only. All other interactions within the scope of the scenarios
identified above are in the scope of the Functional Model.

Reference may be made to other specifications for interface descriptions, for example where an interface is
governed by an existing standard.

1.2 Overall disclaimers 34

 Examples are illustrative and not normative unless otherwise specified

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#_note-ftn1

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 12 of 148

2
3

5
6
7
8
9

10

11
12
13
14

15
16
17
18
19

20

 The scope of information content of HSSP service specifications is not limited to HL7 content models. 1
At a minimum, however, specifications should provide a semantic profile as part of its conformance
profile to provide support for HL7 content models where applicable.

1.3 Context of this SFM within HSSP Roadmap 4

As described above, the purpose of an HL7 SFM is to identify and document the functional requirements of
services deemed important to healthcare. Accordingly, the CTS 2 service provides a critical component within
the larger context of service specifications in that it defines both the expected behaviors of a terminology
service and a standardized method of accessing terminology content. This consistent approach to terminology
interaction will benefit other business context services by providing a level of terminology interoperability that
currently only exists in a limited form.

Once adopted as an HL7 standard, it is anticipated that the CTS 2 service will serve as the basis for one or
more OMG technical specifications. It is expected that CTS 2 will effectively leverage other HSSP
specifications to enhance overall functionality in integration environments. In particular, the CTS 2 service is
expected to interact with one or more infrastructure services as outlined below.

At a minimum, it is expected that CTS 2 will make use of an Entity Identification Service, which in turn
references a set of Security Services. CTS 2 itself will make use of the Security Services to implement its own
functional profile restrictions. Additionally, services such as a Decision Support Service, Clinical Research
Functional Query, and Resource Locate and Update Service may find the use of the CTS 2 service a key
resource in improving content disambiguation.

 21

22

23
24
25

Figure 1 - HSSP Service Architecture

This specification will provide an important foundation component for many healthcare interoperability
scenarios, both within and across organizations. Although in many business scenarios CTS 2 may be used in

http://216.47.173.10/apelcore/index.php/Image:CTS2_HSSP_Service_Architecture_20-Mar-2009.jpg�

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 13 of 148

1
2

conjunction with other services, it has been specified to provide stand alone capabilities when referenced
solely for terminology access and management purposes.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 14 of 148

4
5
6
7
8
9

10
11
12
13

14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36
37
38
39
40

2 Service Overview and Business case 1

2.1 Service Overview 2
2.1.1 CTS 2 Service Description and Purpose 3

The goal of the Common Terminology Services 2 (CTS 2) specification stack is to provide a standardized
interface for the usage and management of terminologies. Terminologies provide the atomic building blocks
of shared semantics, concepts. In a shared semantics environment, CTS2 provides a modular, common and
universally deployable set of behaviors which can be used to deal with a set of terminologies chosen by the
users of the service in their deployment environment. The service will contribute to interoperability by
supporting an easy access to the foundational elements of shared semantics. It will also foster the authoring of
high-quality terminologies via its authoring profile. This goal is realized via the expansion of the original
functionality outlined in HL7’s Common Terminology Service (CTS) Specification. CTS 2 defines the
functional requirements of a set of service interfaces to allow the representation, access, and maintenance of
terminology content either locally, or across a federation of terminology service nodes.

The CTS 2 specification strives to expand on the original functionality outlined in HL7’s Common
Terminology Service specification, specifically looking to:

1. Establish the minimal common structural model for terminology behavior independent from any
specific terminology implementation or interchange model, and how it is related to meta-data
(information about data) and data (the information itself)

2. Integrate into CTS 2 the functional coverage outlined in the existing CTS specification.
3. Specify both an information and functional model that addresses the relationships and use of

terminology, e.g. how value sets are built and queried, and how terminological information is
validated.

4. Specify the interactions between terminology providers and consumers – how terminology users can
submit unambiguous requests for corrections and extensions and how revisions to content are
identified, distributed and integrated into running systems.

5. Specify how mapping between compatible terminologies and data models is defined, exchanged and
revised.

6. Specify how logic-based terminologies can be queried about subsumption and inferred relationships.
7. Engage broad community participation to describe the dimensions of use and purpose for vocabularies

and value sets. This aim will attempt to harmonize these efforts in terms of models, use cases, and
requirements for creating a functional model for CTS 2.

2.1.2 Why terminology as a service? 32

As stated above, the aim of this conceptual service specification is to describe the requirements for the
representation, access, and maintenance of terminology content. A frequently asked question in this context is
whether the problems around terminology should not be resolved using a common data repository.
Historically, this approach has been tried, and with some success. However, experience shows that in order to
share functionality and content, a hub and spokes model forcing terminology consumers to use a common hub
is more intrusive for users and introduces adoption barriers, especially in distributed environments. This
service specification has the aim to overcome such barriers by a separation of behavior (software
functionality) from content (the deployed terminologies). This way, in an implementation, adopters can chose

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 15 of 148

1
2
3

5

6
7
8
9

10

11
12
13
14

15
16
17
18
19
20

21
22
23
24

25
26
27

28
29
30
31
32
33

34
35
36
37

the terminology contents they want and use the service functionality to provide the system behavior which is
specific to their needs.

2.1.3 Scope 4

To address the above stated purpose of CTS2, the scope of functionality addresses several broad categories.

Terminology services represent functions necessary to manage, search, and access terminology content.
Terminology services provide a consistent specification for accessing and managing terminology content,
independent of the terminology content and underlying technology stack. Terminology content represents
various resources including lists, value sets, taxonomies, and formal description logic based ontologies. The
following thematic areas are considered in scope for CTS 2.

 Administration: This is a set of functionality that provides the ability to manage content as part of a
terminology service. Administration functions include the ability to load terminologies, export
terminologies, as well as the management of notifications. These functions are generally protected and
accessible by service administrators with appropriate authorization.

 Search / Query: This is a set of functionality that provides the ability to find concepts based on some
search criteria. This includes restrictions to specific associations or other attributes of the terminology,
including navigation of associations for result sets. This represents the primary utility for using
terminology content in a number of application contexts. The CTS 2 Query Profile includes
capabilities for searching and querying terminology content as well as representing terminology
content in the appropriate formats.

 Authoring / Maintenance: This is a set of functionality that provides the ability to create and maintain
content. From a terminology service perspective, this would include the appropriate APIs to add,
change, or delete concepts and associations. This would also include the processing of change events
from various terminology providers.

 Associations: This is a set of functionality that provides the ability to map concepts and the concept's
associated attributes from a source terminology to a concept in a target terminology, or create
relationships between concepts within a single code system.

CTS 2 is intended to allow the look up and management of a wide variety of terminology components,
including, but not limited to, Concepts, Associations, and Value Sets. This includes the ability to resolve
content bound to a specific Concept Domain and/or Jurisdictional Domain (Binding Realm). At the functional
level, the service interface will explicitly allow the query, definition, publication, and modification of the
different terminology components that are required of terminologies and terminology services.

Conformance profiles are defined within this specification, and are intended to focus specific implementations
of CTS 2 to address a specific class of functionality and pre-define minimum trait sets for each specified
functional class. This will also allow for performance optimizations to be defined for terminology searches
and queries (which are implementation considerations which will be considered in the technical specification

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 16 of 148

1
2

4
5
6

7
8
9

10
11

12
13
14
15
16

17
18
19
20
21
22

23
24

26
27
28

29

30
31
32
33
34

arising from the OMG RFP process). The scope of this functional specification covers support for multiple
terminology sources and a federated terminology environment.

2.2 The reason why the service is necessary 3

The original HL7 CTS specification deliberately avoided issues related to terminology distribution, versioning
and authoring; focused on static value sets and didn’t fully address the definition or resolution of value sets
that define post-coordinated expressions – issues that are now in scope.

Adopting organizations have recognized the existing HL7 CTS standard serves an important role in defining
the common functional characteristics that a terminology service (either internal or external) must be able to
provide. However, these organizations are also realizing that CTS fails to address many of the maintenance,
versioning and representation requirements necessary for a truly interoperable terminology service.

In addition, CTS was deliberately silent on how the vocabulary content should be structured. However,
vocabularies vary widely in their underlying metamodels and structures from simple lists, hierarchies, multi-
axial systems to description logic. This silence resulted in CTS implementations that are inconsistent in their
representations of vocabularies. CTS2 includes a conceptual information model that is conceived as a superset
of the metamodels of the supported terminologies.

As a commonly accepted standard for terminology services, CTS 2 will enhance the capabilities of the original
CTS specification for sub-setting and mapping, and extend the specification into domains such as terminology
distribution, authoring, and versioning. Standardizing the functionality at this level will allow applications
using terminology services to build on a common infrastructure, and improve interoperability at the
terminology layer across applications.

CTS2 provides the terminology community with a defined set of standards interfaces that can be used to
evaluate terminology source structure, terminology source content, and terminology tools.

2.3 Structure of the CTS 2 Service 25

In order to provide for the maximum implementation flexibility, this functional model defines several
enumerated functional profiles for CTS 2. These profiles serve to subset and focus the functionality of a CTS
2 implementation to accomplish a targeted set of tasks. The functional profiles include:

 CTS 2 Query Profile - The CTS 2 Query profile outlines functional coverage necessary for a service
to declare itself as being a conformant CTS 2 service. The CTS 2 Query Profile includes capabilities
for searching and query terminology content, representing terminology content in the appropriate HL7
Datatypes, and structuring terminology content appropriately when HL7 Datatypes are not available
for representing the necessary terminology content being queried (i.e. value sets.)

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 17 of 148

2
3
4
5

7

8
9

10
11

12
13
14
15

16
17
18
19

20
21

22

 Terminology Administration Profile - The functional operations necessary for terminology 1
administrators to be able to access and make available terminology content obtained from a
Terminology Provider. Terminology Administrators are required to interface with Terminology
Provider systems in order to obtain the terminology content, and then load that terminology content on
local Terminology Servers.

 Terminology Authoring Profile - The functional operations necessary for terminology authors to 6
analyze the existing terminology content, as well as directly edit terminology content.

The above three functional profiles can be implemented against three distinct semantic profiles. The semantic
profiles are intended to group together terminologies with similar designs or purposes. The semantic profiles
include:

 HL7 Profile - The functional coverage and specificity necessary for a service to declare itself as being
an HL7 conformant CTS 2 service. The HL7 Profile includes capabilities for searching terminology
content, representing terminology content in the appropriate HL7 Datatypes, and being able to
interchange terminology content in HL7's Model Interchange Format (MIF).

 Mature Terminology Profile - Terminologies in the Mature Terminology Profile make an attempt to
conform to many of terminology best practices that are, for example outlined in “Desiderata for
Controlled Medical Vocabularies in the Twenty-First Century”, James J. Cimino, MethInfoMed 1998,
37: 394-403 .

 Developing Terminology Profile - Terminologies in the Developing Terminology Profile are either
developed using ad hoc techniques, or have degraded over time.

Additional details on profiles is outlined in [Section 7] 23

24
25
26
27
28
29
30

31
32
33
34
35
36
37
38

The degree to which an organization’s interoperability deployment supports a conformance profile is directly
related to agreements implemented with a business partner. A single CTS 2 service may respond to different
real-world business partners depending on the underlying agreements and needs. For example, an organization
may implement a CTS 2 (Authoring) compliant service with a trusted partner (i.e., a Terminology Provider). A
separate partner may only be allowed CTS 2 (Minimal) access to the content from that Terminology Provider
as dictated by other factors.

Additionally, CTS 2 explicitly makes no distinctions at the functional level regarding semantics of the
underlying systems. Instead, it provides for a semantic profile as part of CTS 2 conformance profiles. This
allows definition, publication, and discovery of vital semantic artifacts between sharing partners through CTS
2 interfaces without requiring strict, tightly coupled integration. Thus, CTS 2 does not preclude a strategy for
semantic interoperability to be realized, though it would likely depend on other factors (for example, a security
service and / or an entity identification service). This improves CTS 2 as an interoperability mechanism by
delegating the issue of semantic interoperability to any group that defines and maintains CTS 2 profiles,
allowing semantic transformations to be performed at the least cost for the most derived value.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 18 of 148

1

3
4
5
6
7
8
9

10
11
12
13

14

15

18
19
20
21
22

23

2.3.1 Key concepts of this specification 2

The CTS2 service deals with three major concepts, which are: concept, code system and value set. A concept
is a unitary mental representation of a real or abstract thing; an atomic unit of thought. A concept is the
representation-independent meaning which we associate with objects and their designations. A code system is
a set of concepts pertaining to a semantic domain. A minimal code system provides a flat list of at least two
concepts and may not differentiate concept and concept designation. Large code systems may contain hundred
thousands of concepts, concept definitions, concept symbols (codes or other designations) and concept
relationships. A value set is a set of concepts taken from one or more code systems. Value sets are defined to
restrict the set of values which are allowed to instantiate a data element.CTS2 provides functionality to
systems dealing with these concepts. This specification also comprises the HL7 specific notion of a concept
domain. A concept domain is a semantic space which is bound to a class property, i.e. instances of the
property have to be chosen from this semantic space (e.g. “diseases of the hematopoetic system”).

Further details on these concepts are to be found in section 2.4.2.

2.4 Implementation Considerations 16
2.4.1 Interface Interoperability Considerations 17

CTS 2 is an interface specification, not an implementation specification. As such, it is intended to facilitate the
development of an implementable interoperability mechanism for terminology resources. There is nothing
inherent in the CTS 2 specification that restricts its use to be within a single organization. To the contrary,
CTS 2 is intended to expose a single or multiple terminology sources for use by various applications that may
or may not be within the same organization, providing a standardized method for terminology access.

 24

25 Figure 2 - CTS 2 Service Accessed by a Single Organization

http://216.47.173.10/apelcore/index.php/Image:Single-org.jpg�

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 19 of 148

1
2
3
4

5
6
7
8

9

CTS2 provides for terminology interoperability between organizations. While coded concepts from structured
terminology can unambiguously identify the concept(s) being communicated, a standard way of structuring
and communicating those coded entries is required.

CTS 2 can be used in an inter-organizational setting where each organization maintains its own security and
application specific provisions. CTS 2 will enable consistent access to a high availability or international
standard terminology resource, made available to subscribers via a CTS 2 interface.

 10

11

12
13
14
15
16
17
18
19

Figure 3 - Multi Organizational access to a CTS 2 Service

Since terminology content is not static, CTS 2 will also provide functionality to maintain and update
terminology content. Updates and update requests to terminology sources need to be reviewable and traceable
over time. Often, a terminology source provider will want to maintain the “gold standard” or master release of
a code system, as to maintain a consistent standard terminology that can be used across multiple organizations
and realms. Notwithstanding, users of any given source terminology may wish to extend that terminology for
their own use, and may even wish to recommend the addition of those “local” extensions to the terminology
provider to be included as part of the release.

http://216.47.173.10/apelcore/index.php/Image:Multi-org.jpg�

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 20 of 148

1
2
3
4
5
6
7

8

CTS2 provides a mechanism to allow for terminology users to extend a given terminology, share those
extensions with others, or feed those extensions back to the source provider in a structured format to be
reviewed, modified as necessary, and fed into a CTS 2 server as input to update the source terminology with
the content contained in the change request. As depicted in Figure 2.4-3, Organization A is applying its own
local extensions to a terminology resource being served by a CTS 2 service. In addition to applying its own
local extensions, Organization B is feeding some of those local extensions back to the terminology provider as
suggestions to be included in the next release of the code system.

 9

10

12
13
14
15
16

Figure 4 - Multi Organization Access with Write Permissions by One Organization

2.4.2 Terminology Structure Considerations 11

Controlled terminologies are developed with specific purposes and use cases in mind, and as such are
structured very differently. The format of any given terminology may range from a simple flat list of concepts,
to more complex poly-hierarchies. The variety of attributes of the entities of code systems vary as well. Even
the formats of the identifiers are different, with some concept identifiers being meaningless identifiers, to
others which have explicit or implied meaning.

http://216.47.173.10/apelcore/index.php/Image:Multi-org-update.jpg�

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 21 of 148

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29
30
31

The functional components of CTS 2 must be able to operate on this broad spectrum of terminology sources.
At a minimum, CTS 2 must specify a concept based terminology model that is capable of representing most
varieties of structured terminologies. The basic requirements of the CTS 2 terminology model are illustrated in
the CTS 2 Conceptual Model below. This model outlines the various components of terminologies and the
usual cardinality between them, but does not dictate particular levels of data normalization or other technical
details of implementation. The CTS 2 Conceptual Model describes a logical (analysis level) model with the
intent that most - if not all - key attributes that affect terminology behavior have been described. It is the intent
of this model to support both well behaved and more arbitrarily defined code systems. Code Systems,
Concepts and Value Sets have specific version classes. Additionally curation has been supported explicitly by
inclusion of a number of classes that permit the versioning of key terminology entities. Specific concerns of
audit trail / history have not been explicitly represented.

In a typical implementation, it is likely that more than one status value may be needed on certain classes, to
cover different purposes (e.g. curation vs. actual business state of the class) This level of detail can be fully
resolved in the detailed design specification (Platform Independent Model, PIM), as will the actual values of
the various state related attributes. Also a note on the use of "identifiers". In general, identifiers have been
included to ensure uniqueness and would be more for system generation, especially on some of the lower level
classes.

The purpose of this model is to represent the semantics of the key requirements of CTS 2. It is intended to
assist with understanding the expected behaviors and interactions of terminology components supporting a
CTS 2 terminology service. It is a conceptual model derived from business requirements, and as such is rather
meant to reflect these requirements and not intended to explicitly provide implementation level detail. For
example, the presence of identifier or version identifier attributes in classes in the Conceptual Model is not
intended to indicate that a unique identifier property will be assigned by the code system author or that
identifiers are persisted across versions of a code system. The intent of this model is NOT to serve as an
implementation blueprint. Implementation guidance will subsequently be provided in Platform Independent
Models (PIMs) and Platform Specific Models (PSMs).

The model must support HL7 vocabulary requirements, however it should not constrain the CTS 2
specification to solely HL7 usage, but promote acceptance in the user and standards community beyond HL7
(e.g. openEHR, IHTSDO). Recommended constraints on the physical implementation based on the
requirements are included in Section 10 of this SFM. 32

33
34
35
36

37
38
39
40

NOTE: As is being expressed in the current HL7 SAEAF, the cost for interoperability between
implementations based on the SFM alone will be higher than if a PIM level specification is used and again
higher than if they both build based on the same PSM.

Also, the Status code sets for the model classes are undefined in this specification. It is explicitly intended that
these are left to the technical specification. The values need to be determined by the requirements for
maintaining metadata. The primary reason is that this Service is designed for handling of many different kinds
of code systems, and these may have different state models.

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Recommendations_for_Technical_RFP_Issuance

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 22 of 148

1
2
3
4
5
6

7
8
9

10
11

Technical specifications must define minimum explicit state models for the purposes of interoperability. The
basic “default” minimum assumption is that the concept of “active” and “inactive” states is covered, whereby
inactive instances would not show up in normal searches. However, these restrictions are seen as realm or
organization specific configuration settings. Individual deployments may also use an additional separate
curation state (e.g. pending, approved etc.). This is not explicitly covered in this specification since this would
be organization specific and often handled by separate workflow tools.

Several classes in the model include an attribute for provenance information, named "provenanceDetails".
This should be more concretely defined in Technical Specifications, but should include such information as:
author, copyright, generation type, source and source type, approval information, whether it is modifiable, and
so on. This may vary to some degree by the class to which it applies, but a consistent structure should be
defined where possible.

7 January 2010

 1

2 Figure 5 - CTS 2 Conceptual Model

HL7 Common Terminology Services 2 Service Functional Model

Page 23 of 148

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 24 of 148

1

2
3
4
5
6
7

8

10
11
12
13
14
15

16
17

18

20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37

2.4.2.1 CodeSystem

A code system is a resource that makes assertions about a collection of terminological entities. They are often
described by a collection of uniquely identifiable concepts with associated, representations, designations,
associations, and meanings. Examples of code systems include ICD-9 CM, SNOMED CT, LOINC, and CPT.
To meet the requirements of a code system as defined by HL7, a given concept representation must resolve to
one and only one meaning within the code system. In the terminology model, a code system is represented by
the Code System class.

At a minimum, Code Systems have the following attributes:

 An identifier (id) that uniquely identified the Code System. In HL7, this ID is in the form of an ISO 9
OID.

 A description (description) that describes the Code System. This may include the code system uses and
intent.

 Administrative information (administrativeInfo) which is a placeholder to allow for additional
information relating to the overall Code System, that is separate from any specific version of the Code
System.

NOTE: Throughout this specification, code systems may also be referred to as terminologies, vocabularies or
coding schemes.

2.4.2.2 CodeSystemVersion 19

Code systems are generally not static entities and change over time. A CodeSystemVersion is a static snapshot
of a CodeSystem at a given point of time and in force for a period until the subsequent version supersedes it. It
and enables identification of the versions of the code system in which any given concept can be found. A
CodeSystemVersion is represented by attributes including:

 A version identifier (versionId) that uniquely identifies each version of a Code System
 The start date (effectiveDate) when the version is deemed to be valid for use. This is specific to the

usage context in which the service is used (e.g. for a particular terminology server instance), so can be
used for historical date based queries to establish when a version was in use.

 Identification of the previous version (previousVersionId) of the code system, which enables tracking
of sequencing of versions, and identification of missing versions on a server instance.

 A set of dates (releaseDates) that represent the date when the version of the Code System became
available within a particular domain (could be universal, realm specific or for an organization)

 The formats (releaseFormats) in which the version of the Code System is available in.
 The official location (releaseLocation) at which the version of the code system is made available
 The different languages (supportedLanguages) supported by the Code System in this version
 A status (status) to identify the state of the Code System Version (mainly for curation)
 A status date (statusDate) to identify the date the status was set to its current value (for curation)
 A description (description) that describes the Code System Version.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 25 of 148

3

7

8

10
11

12
13

14

15

16
17

18

20
21
22
23
24

25
26
27

28
29
30

31

 Provenance information (provenanceDetails) relating to the release (version) of the Code System 1
 A name (fullName) that is the official name of the code system as assigned by the terminology 2

provider at the time of the version being issued.
 A name (localName) to which the Code system is normally referred to for the life of this version. 4
 Copyright information (copyright) pertaining to the release (version) of the Code System 5
 An attribute (source) that identifies the authority or source of the code system in this version. i.e. 6

IHTSDO

2.4.2.3 CodeSystemEntity 9

A Code System Entity is an abstract class that represents either a node (CodeSystemNode) or an association
(CodeSystemEntityVersionAssociation) within an overall ontology for a Code System.

This allows for property and version information to be defined for any of the subclasses of code system entity
using a consistent structure.

CodeSystemEntity is represented by attributes including:

 An optional unique identifier (id) for the code system entity

Note that most of the "interesting" information and relationships relating to the Code System Entity (and its
subclasses) is versioned, and as such is identified at the level of the Code System Entity Version.

2.4.2.4 CodeSystemNode 19

A Code System Node represents an individual "node" within a Code System, which is either a Code System
Concept or a Code System Concept Code. Some code systems apply relationships, properties and designations
at the overall "concept" level, while others apply these at the level of each individual code, for which there
may be more than one for a single Concept. The CodeSystemNode provides the flexibility to handle each
approach. It also allows definition of membership of Value Sets at either level.

In most code systems, the concept and its associated code are 1 to 1, so during technical specification and
implementation, ways to simplify this structure may be found, but some systems do use multiple codes for the
same concept, so this structure provides for those cases.

NOTE: The functions identified in this SFM are stated in terms of dealing with "Concepts". Unless explicitly
stated otherwise, this should be read as "Concept Node" (i.e. Concept and/or Concept Code, depending on
how the containing code system is actually set up and populated.)

2.4.2.5 CodeSystemConcept 32

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 26 of 148

1
2
3
4
5
6
7
8
9

10
11
12

13

15
16
17
18
19
20

21

22
23

24
25
26

27

29
30
31
32
33
34

35
36

A Code System Concept defines a unitary mental representation of a real or abstract thing within the context
of a specific Code System; an atomic unit of thought. Generic representations of concepts outside of the
bounds of a code system are not included in the model. Concepts embody the meaning we attribute to a
symbol (a concept code) of an entity. When concept code associations (maps) across code systems are set up,
the equivalent codes refer to the same concept, i.e. the same meaning. Concepts should be unique within a
given code system, but may have synonyms in terms of both the codes used and in textual representation (as
Designations). An example for a medical concept is “femur”, an example for a concept from cell biology is
“mitochondrium”. Concepts may be simple or compositional in nature. A compositional concept is one that
contains more than one concept concatenated within it – for example “severe hypertension” – a combination
of “hypertension” and a qualifier for severity. Each CodeSystem contains a set of at least one Concepts.
Terminology best practices dictate that concepts are not deleted from code systems, but are instead deprecated
or retired from use, although nothing in the model prevents this.

2.4.2.6 CodeSystemConceptCode 14

A Code System Concept Code defines a single "code value" that is used to represent (symbolize) a Code
System Concept. A Code System Concept Code is the representation of a concept published by the author of a
code system as part of the code system. It is intended to be used as the preferred unique identifier for that
concept in that code system (though there are code systems which use homonyms). There may be more than
one Code for a single concept in a single code system, e.g. for ISO Country Codes which uses two and three
character codes for the same countries.

CodeSystemConceptCodes are represented by attributes including:

 A concept code (conceptCode)that according to terminology best practices is unique within the context
of the Code System, although some code systems do allow reuse of codes over time.

Note on the difference between a "code" and a "designation". In many code systems the actual code value is
also the identifier of the concept and is unique and definitional in nature within the context of a code system.
Designations have no such restriction or intent and are merely alternate display formats

2.4.2.7 CodeSystemSupplement 28

A Code System Supplement can be appended to a code system to add additional concepts, their properties and
designations to the code system. The supplement can then be referenced in value set definitions. A code
system supplement is related to one JurisdictionalDomain. CodeSytemSupplement has the following
attributes:

 An identifier (id) that uniquely identified the CodeSytemSupplement
 A name (name) that the CodeSytemSupplement is normally referred to

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 27 of 148

3

6

8
9

10
11
12
13
14
15

16
17
18

19
20
21

22

24
25
26
27
28
29
30
31

32
33
34
35
36

 A description (description) that describes the CodeSytemSupplement. 1
 Provenance information (provenanceDetails) relating to the release (version) of the 2

CodeSytemSupplement

 effectiveDate: The start date (effectiveDate) when the version is deemed to be valid for use. 4
 TargetCodeSystemId: the identifier of the code system to which the supplement is appended 5

2.4.2.8 JurisdictionalDomain 7

A JurisdictionalDomain identifies a country, region, organization or other domain that may define and manage
its own code systems or concepts, including localization of a broader code system. Its presence in this model is
specifically to allow for localization of certain concept elements. HL7 rules prohibit new codes being added to
a code system locally, but does allow for additional concept relationships, concept properties and designations
as a supplementation of an existing code system. (However, any organization could use the same model,
interfaces etc. to define its own code systems for internal use.) The JurisdictionalDomain class provides the
link to classes required to enable the localization to be recorded. The Jurisdictional Domain has the following
attributes:

 An identifier (id) that uniquely identified the Jurisdictional Domain
 A name (name) that the Jurisdictional Domain is normally referred to
 A description (description) that describes the Jurisdictional Domain.

NOTE: This encompasses the HL7 concept of "Binding Realm", but is broader (a hyperonym to realm),
allowing finer grained control of code system and value set management as appropriate. When defined as HL7
Binding Realms, they would abide by any rules applied to HL7 Realms.

2.4.2.9 DefinedEntityProperty 23

A defined entity property is a named characteristic of a code system. An example might be “atomic”
indicating that there are no composite entities in the code system. Such properties apply to all entities of the
code system and can be assigned a value at the code system entity level via the entity property version class.
This explicitly defines the allowable properties for any given CodeSystem and not individual changes or
versions or what is supported by a specific version of a code set. Each Code System may have zero to many
properties. Each Code System allows a set of the properties for the concepts it contains supported in a specific
version using the EntityPropertyVersion class, where the actual values of the properties are defined. Defined
Entity Properties are represented with attributes including:

 An identifier (id) that uniquely identifies the property
 A name (name) for the property
 A description (description) of the property
 A status (status) to identify the state (mainly for curation)
 A status date (statusDate) to identify the date the status was set to its current value (for curation)

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 28 of 148

4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19

20

21
22
23

25
26
27
28
29

30
31
32
33

34
35
36
37

 The language (language) in which the property is expressed 1
 Provenance information (provenanceDetails) relating to the entity property. 2

2.4.2.10 EntityPropertyVersion 3

This explicitly defines the supported properties for any given Version of a Code System Entity. Such
properties may themselves be concepts or associations of the code system. For example, the concept of
Hematocrit with a LOINC code of 11271-4 has a specimen property with the value of “blood” and a method
property with the value of “automated count.” The specimen and method properties are part of how LOINC
assigns the code and, when these properties change, a different LOINC code will be assigned. This implies
that properties do not change over time. However, exceptions may be possible when the addition of a new
property or change in property value does not change the concept and code (however it would result in a new
“CodeSystemEntityVersion” as represented in this model, where the effective date is held). For example, if
LOINC decides to add “analyte chemical structure” as a new property via the DefinedEntityProperty class,
there may not be a need to change the existing LOINC codes since the new information can apply to all of the
LOINC concepts. As a result, each Code System may have its own unique set of properties associated with its
Concepts for any specific Code System Version (note that the relationship to the CodeSystemVersion is not in
the model explicitly but can be derived, and may be explicit in implementation models).

But the properties may also be “metaproperties” which are not themselves concepts or associations of the
terminology, e.g. a product license number for a medicinal product in a terminology that does not have the
former as a concept (but the latter).

Entity Property Versions are represented with attributes including:

 A value (value) of the property.
 A status (status) to identify the state (mainly for curation)
 A status date (statusDate) to identify the date the status was set to its current value (for curation)

2.4.2.11 CodeSystemEntityVersionAssociation 24

Associations define the relationships or linkages between concepts or associations. For example, in SNOMED
CT, the concept of “pneumonia” has an “is-a” relationship to the concept of “lung consolidation,” and “lung
consolidation” has an “is-a” relationship to the concept of “disorder of lung.” This represents the logical
conclusion that “pneumonia” is a “disorder of lung.” An example for an association between associations is ‘is
grandfather of’ “is a subtype of” ‘is ancestor of’.

Associations are defined as directed semantic relationship triples involving the association and the two
concepts. Because the CTS2 model only allows binary associations, they can also be seen as binary predicate
relations predicating over two arguments (concepts), however, this more linguistic view is not shown in the
model.

It is not mandatory for concepts to have associations to other concepts. However, when associations exist, the
cardinality and the explicit declaration of source and target would indicate the directionality that restricts the
designation of the association. For example, from the concept relationship (an association between concepts
within a single code system) in the above example, we can infer that “pneumonia” is a “disorder of lung,” but

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 29 of 148

1
2
3
4
5
6
7
8
9

10

11
12
13
14

15

17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38

39

the inverse concept relationship of “disorder of lung” is-a “pneumonia” cannot be inferred. If we want the
inverse concept relationship, it must be explicitly stated, that is, there has to be a specific relation of “disorder
of lung” “is-a” “pneumonia. In the case of Concept Maps (where the source and target concepts are from
different code systems) the direction and designation of the relationship have similar restrictions, except in the
case where the Concept Map indicates semantic equivalence. The equal association in this case obviates the
requirement for interpreting the association direction. An association links a source Concept to a target
Concept. The CodeSystemEntityVersionAssociation class identifies the instances of AssociationTypes
supported within a specific version of a Code System. The same considerations of variability apply as for the
EntityPropertyVersion described above). Code System Entity Version Associations are minimally defined by
attributes including:

 A type (associationKind) that describes the nature of the association (e.g. ConceptMap vs. Hierarchic
relationship within a code system).

 A status (status) to identify the state (mainly for curation)
 A status date (statusDate) to identify the date the status was set to its current value (for curation)

2.4.2.12 AssociationType 16

In the terminology model, allowable relationship types are represented by the AssociationType class. The
class provides information about the types of the association class related to it. It is not a part of a code
system, but a separate entity which is used to further characterize associations. An example for an association
type is “subsumption association”. Association types are minimally defined by attributes including:

 A type (associationKind) that describes the nature of the association (e.g. ConceptMap vs. Hierarchic
relationship within a code system) - see also note below.

 A name (forwardName) that represents how the association should be represented when reading from
source concept to target concept.

 A name (reverseName) that represents how the association should be represented when reading from
target concept to source concept.

 A flag (isDirected) indicating whether the association is one-way or can be interpreted as semantic
equivalence.

 A rule set Identifier (ruleSetId) which provides further constraints on the nature of the relationship (see
CreateConceptAssociation operation definition for details). The default assumption is that changes to
the rules that define artifacts generally cause a version change on the artifact to which they apply, and
if the maintenance is done by reference, appropriate curation responsibilities will need to be in place to
ensure that the rules do not change without an appropriate change to the artifact version.

A further note on associationKind. This is intended to distinguish between lexical, rules based and explicitly
enumerated relationships. Further relationship types can be explicitly defined using the operations that
manipulate relationship types explicitly. Further investigation will determine whether we actually need two
levels of this attribute to distinguish between these purposes. This will be investigated further during
production of the detailed specification (PIM).

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 30 of 148

2
3
4
5
6
7
8
9

10

11

12
13
14
15
16
17
18
19
20
21

22
23
24

25

27
28

29
30

31
32
33

34

35

2.4.2.13 CodeSystemEntityVersion 1

Although there are no changes in a code value and its explicit identification of a specific concept (in well
behaved code systems), associated information may, e.g. associations, designations and concept properties.
The Code System Entity Version provides a means to organize and manage variations to these elements over
time. Typically, (but not always) these variations will coincide with new versions of the owning code system.
There may be some kinds of changes at the lower "entity" level that do not require release of a new overall
Code System Version, so potentially there may be several versions at the CodeSystemEntity level associated
with a single CodeSystemVersion. Note that the model does NOT include an explicit association between
Code System Version and CodeSystemEntityVersion, however this could be derived using the appropriate
effectiveDates. (Technical specification and implementation may choose to make this association explicit).

Code System Entity Versions are represented by attributes including:

 A version identifier (versionId) that uniquely identifies each version of a Code System Entity Version.
 The start date (effectiveDate) when the version is deemed to be valid for use.
 Identification of the previous version (previousVersionId) of the code system entity, which enables

tracking of sequencing of versions, and identification of missing versions on a server instance.
 A status to identify the state (mainly for curation)
 A status date to identify the date the status was set to its current value (for curation)
 Provenance information (provenanceDetails) relating to the version of to the Code System Entity

Version
 A textual description (description) of the code system entity


NOTE: This representation is intended to indicate that a new code system entity version would be created for
any change to designations, properties or associations, so individual history is not depicted for each of these
items. This can be considered further when the detailed technical design is carried out.

2.4.2.14 CodeSystemNodeVersionMembership 26

This class represents the use (or membership) of a specific Node (Concept or ConceptCode) within a specific
Version of a Code System. This has the following attributes:

 A (derivable but useful) indicator (isConceptInitiator) that identifies which Code System Version
initiated the definition of the Concept or Code.

(The absence of date attributes on this class deliberately imposes the restriction that a new concept being
added would require a new code system version. In the case of code systems defined and maintained within an
organization, they could lift that restriction by adding date information here)

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 31 of 148

2
3
4
5
6
7
8
9

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

30
31
32

33

35
36
37

2.4.2.15 Designation 1

Concept designations are representations of concepts. The designation identifier must uniquely map to a given
text string, bitmap, etc. within the context of the containing concept. In some terminologies, every unique text
string will have exactly one identifier, meaning that the identifier is unique to the designation. In other
terminologies, there may be more than one identifier for a given designation, which means that the same
identifier may occur under more than designation. Service software must not assume either model. For
example, in SNOMED CT, the concept of “fever” has the fully specified name of “fever (finding),” a
preferred name of “fever,” and synonyms of “febrile” and “pyrexia.” These are all designations for the concept
of “fever.” In the terminology model, designations are represented by the Designation class. Each Designation
is a representation of the Concept and is assigned a unique designation identifier. In most instances, concept
designations are human readable forms, but machine readable forms may also be present.

The Designation class is minimally defined by the following attributes:

 A unique identifier (id) for the designation
 A name (name) for the designation
 An optional graphical representation (rendering) that allows for the use of an icon as the designation

rather than text.
 A description (description) for the designation
 An optional (isPreferred) attribute that identifies whether an attribute has a type of usage preference.
 A repeatable preferences structure (preferredUsageType) which works in combination with isPreferred

to outline they type of usage that a designation is preferred for. This allows identification of whether
the designation is preferred for combinations of language, UI, e-prescribing, patient friendliness, etc.

 The language (language) in which the designation is expressed
 A format (format) for the designation
 A status (status) to identify the state (mainly for curation)
 A status date (statusDate) to identify the date the status was set to its current value (for curation)
 A type (designationKind) that describes the nature of the designation (e.g. human readable text vs.

BLOB, etc.).

2.4.2.16 Designation Type 29

Concept designations are a specific type of property that may be defined for a CodeSystemEntity. This class
allows for identification of the "type" of a designation, i.e. a designation category. The set of designation types
contains designation categories like “term”, “picture”, “symbol”.

2.4.2.17 Value Set 34

A value set represents a uniquely identifiable set of concept codes grouped for a specific purpose. It consists
of persisted information that, at a given point in time, may be resolved to a uniquely identifiable set of valid
concept representations (codes) called the expansion of the value set which, in addition to the definition, may

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 32 of 148

1
2
3
4
5

10
11
12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38

39
40

or may not be persisted depending on system deployment considerations and non functional requirements.
Value set complexity may range from a simple flat list of concept codes drawn from a single code system, to
an unbounded hierarchical set of possibly post-coordinated expressions drawn from multiple code systems. In
the terminology model, a value set is represented by the ValueSet class. Value Set has the following
properties:

 An identifier (id) that uniquely identifies the value set. 6
 A name (name) for the value set 7
 A description (description) for the value set. 8
 An optional expression (ruleSetId) that defines (by value or reference) the algorithm to determine the 9

members for intensionally defined value sets. The default assumption is that changes to the rules that
define artifacts generally cause a version change on the artifact to which they apply, and if the
maintenance is done by reference, appropriate curation responsibilities will need to be in place to
ensure that the rules do not change without an appropriate change to the artifact version.

 A status (status) to identify the state (mainly for curation)
 A status date (statusDate) to identify the date the status was set to its current value (for curation)

Notes on use of Value Sets (and Value Set Versions):

1. Representation of “Intensional” Value Sets. These are defined by sets of rules which can be executed to
generated a value set expansion. One approach may be to define a superordinate concept, either immediately
above or at a higher level, followed by the characteristic(s) that distinguish the concept from other concepts,
i.e. using an algorithm (set of rules) that describe how to derive the actual concepts that belong in the Value
Set. Other approaches use concept properties or set theory operators on branches of a terminology to define
value sets. Since these rules can be arbitrarily complex, they are represented in the model in the form of an
identifier of a rules set. This identifier has been included at both the Value Set and Value Set Version levels to
allow for change of rules to be applied at whichever level is required. It is intended that the “owner” of the
value set would define rules for when changes to a rule would result in a new value set vs. a new version of a
value set. By default, Intensional value sets contain the full set of designations defined by the intensional
statement. Examples : a) codes symbolizing concept lymphozyte - a subtype of the cell type leukocyte with a
function in the humoral or cytotoxic immune system, b) codes symbolizing medicinal products - any
compound with a marketing authorization number granted by a national competent authority, c) all concept
codes symbolizing concepts with properties “cell”, “anaplastic”, “carcinoma forming”.

2. Hierarchic and nested Value Sets. The model includes a “recursive” aggregation relationship on Value Set
Version. This allows (as a convenience mechanism) for definition of Value Sets that “include” other Value
Sets. This is explicitly restricted to inclusion of complete Value Sets (and not partial ones). Anything more
complex would need to be described using the rule sets mentioned above. However this would allow for a
Value Set to be defined that consists of a number of other complete Value Sets together with additional
concepts intensionally or extensionally defined concepts. In all cases, at any given point in time, the definition
of the Value Set Version MUST be able to resolve to an exact set of individual Concepts (together with their
Designations where appropriate). This set might be hierarchical or a flat list.

3. Implementers should consider the workflow processes which are necessary to maintain and curate content
in a distributed environment. Implementers should discuss how they would implement the workflow

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 33 of 148

1
2

3

4

6
7

9
10

11
12
13
14
15
16
17
18

19

21
22
23
24
25

26
27
28
29

30
31
32
33

management and the coordination across nodes as a part of the implementation process, including how to bind
functional components to workflow.

4. Clarification on value set requirements1

With regard to value sets, maximally scoped implementations of this service should:

 Be able to specify the contents of a value set by referencing multiple different code systems in scope of 5
a given service instance deployment with different semantics and internal structures (explicit in
conceptual class model)

 Be able to build a value set by enumerating codes from code systems (explicit in conceptual class 8
model)

 Be able to define a value set using rules by:

 specifying a query on a code system
 pattern matching on the code (for example regex)
 queries on the properties or relationships defined by a code system if the code system provides

appropriate properties (for example, is-a, leaf vs. container, defined attributes, SNOMED
qualifiers)

 by union, intersection or exclusion of two or more other value sets
 specify rules with regard to how composite expressions can be constructed in the case that code

systems define composite expressions

2.4.2.18 ValueSetVersion 20

A Value Set Version represents a point in time view of a Value Set definition. The Value Set Version
identifies the set of concepts that are available in the value set for any specific version of the value set
definition. The versioning of the value set reflects the fact that the value set definition may change over time.
Note that Value Set Version can be created by aggregation of other value set versions. The expansion of two
different versions of one value set definition may (but must not) yield different sets of concept codes.

Note that the "resolution" of a value set version is not explicitly represented in the model. For value sets with
intesional definitions (i.e. those defined using rules rather than an explicit listing of concepts like in
extensionally defined value sets) the resulting "resolved" value set would depend on the point in time in which
the resolution takes place because the targets of the rules can change over time.

For "extensional" value sets, where membership is explicitly defined, the membership may be defined in terms
of Nodes (Concepts or Codes) and/or Designations. The latter may also be defined with respect to specific
Usage Contexts and Concept Domains (see Value Set Context Binding). Where the definition is made in terms
of both Concepts/Codes and Designations, processing should ensure that they are compatible. In general, this

1 These are not minimum requirements of the implementations for implementations of the spec. (proposed
minimum: enumerating codes)

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 34 of 148

1
2

3
4

5

8

10
11
12
13
14
15
16
17
18
19
20

21

23
24
25
26
27
28

29
30
31
32
33

34

would only occur where Designations are being defined on an exception basis, e.g. where a "non-preferred"
designation is being identified for use in a Value Set for one of the Concepts.

Value set versions may be identified by several different means, such as a serially increasing version number,
an effective date or a semantics-free UID.

A Value Set Version has the following attributes:

 An identifier (ValueSetVersion.id) that uniquely identifies the value set version. 6
 An effective date (ValueSetVersion.effectiveDate) that identifies when the value set version became 7

effective, i.e. is able to be used (bound to from information models).
 A date (ValueSetVersion.releaseDate) when the version of the value set was released (which allows for 9

value set versions to be released in advance of their becoming "effective" or usable.
 An optional order (ValueSetVersion.versionOrder) that identifies the order in which the version should

be applied
 An optional expression (ValueSetVersion.ruleSetVersionId) that defines (by value or reference) the

algorithm to determine the members for “intensionally defined” value sets
 The different languages (ValueSetVersion.supportedLanguages) supported by the Value Set Version
 A status (ValueSetVersion.status) to identify the state (mainly for curation)
 A status date (ValueSetVersion.statusDate) to identify the date the status was set to its current value

(for curation)
 Provenance information (ValueSetVersion.provenanceDetails) relating to the version of to the Value

Set

2.4.2.19 ConceptValueSetMembership 22

This provides the means to link a Value Set Version to the concepts and/or codes which it includes. In
“extensionally” defined value sets, this would be created manually, in “intensionally” defined Value Sets, this
could optionally be used to record expansion of the value set definition, i.e. the result of applying the rule set
at a given point in time (i.e. the date of the Value Set Version where this was required). The absence of date
attributes on this class deliberately imposes the restriction that a new concept being added would require a
new value set version for extensionally defined value sets. This includes the following attribute:

 A date (effectiveDate) which is required for “intensionally” defined Value Sets where the resulting
concepts from applying the algorithm at a specific point in time were being explicitly instantiated and
recorded (maybe to meet non functional requirements or because of deployment considerations).

 An override value (valueOverride) which allows for a local code value (specific to the value set) to be
used to replace the default one defined in the code system itself.

2.4.2.20 DesignationValueSetVersionMembership 35

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 35 of 148

1
2
3

5

7
8

10

11

13
14
15
16
17
18
19
20
21

22
23
24
25
26

28
29
30
31
32
33

34
35
36
37
38

This identifies which Designations for Concepts may be used within a specific Value Set Version for a
specific combination of concept domain and usage context. This provides an additional level of flexibility for
constraining the use of specific designations in specific circumstances. This includes the following attributes:

 An optional indicator (isDefault) which identifies whether the designation is the default designation 4
representation for the concept in the value set.

 An optional date (effectiveDate) which would only be needed in “intensionally” defined Value Sets 6
where the resulting concept designations from applying the algorithm at a specific point in time were
being explicitly instantiated and recorded.

 An override value (designationOverride) which allows for the designation to be overridden with a local 9
value for a specific value set version/context/concept domain.

2.4.2.21 Concept Domain 12

Concept domains describe a semantic space. They are a named category of like concepts (a semantic type) that
will be bound to one or more attributes in a static model. Concept Domains exist to specify the intent of the
coded element while deferring the association of the element to a specific coded terminology until later in the
model development process. Concept domains are intended to allow “late binding” of vocabulary to a specific
value set or value set version. At design time, rather than referencing a specific value set, a given attribute (or
datatype property) may reference a concept domain to provide an abstract description of “this is the type of
stuff that goes here”. The same concept domain may be referenced in multiple designs, effectively saying “the
same set of codes – whatever it is – that is used in place A should also be used here”. The Concept Domain
has the following attributes:

 An identifier (id) that uniquely identified the Concept Domain.
 A name (name) that the Concept Domain is normally referred to.
 A description (description) that describes the Concept Domain.
 A status (status) to identify the state (mainly for curation)
 A status date (statusDate) to identify the date the status was set to its current value (for curation)

2.4.2.22 Usage Context 27

A Usage Context identifies an environment or set of conditions in which a Value Set may be used. This can be
at various levels of specificity, e.g. "Canadian pediatric psychiatry", "psychiatry", "disease codes" and so on.
This is used in conjunction with Concept Domain to allow realms to bind to specific Value Sets in specific
circumstances. These may be "universal" or owned by a specific Jurisdictional Domain (Realm). (From a
modeling perspective, we have classed universal as the highest level Jurisdictional Domain). The Usage
Context has the following attributes:

 An identifier (id) that uniquely identified the Usage Context.
 A name (name) that the Usage Context is normally referred to.
 A description (description) that describes the Usage Context.
 A status (status) to identify the state (mainly for curation)
 A status date (statusDate) to identify the date the status was set to its current value (for curation)

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 36 of 148

1

3
4
5
6
7

10
11
12
13
14
15
16
17

18
19
20
21
22
23

25
26
27
28
29
30

32
33
34
35

2.4.2.23 Value Set Context Binding 2

This provides a mechanism to bind a concept domain and a particular value set version in a defined usage
context. Note that the broader the context, the higher the potential of the binding to support interoperability. At
runtime, the operating context is identified and then used together with the concept domain referenced in the
specification to resolve to the particular value set used. The Value Set Context Binding has the following
attributes:

 A date for evaluating the value set expansion for the binding 8
 A rule set (ruleSetId) that defines (by value or reference) an algorithm used to constrain and/or 9

determine the designations covered or the conditions in which the binding is applied. The default
assumption is that changes to the rules that define artifacts generally cause a version change on the
artifact to which they apply, and if the maintenance is done by reference, appropriate curation
responsibilities will need to be in place to ensure that the rules do not change without an appropriate
change to the artifact version.

 ProvenanceDetails to identify which of the potentially more than one bindings to evaluate.
 A qualifier (bindingQualifier) which indicates whether the binding is "overall", "minimum" or

"maximum".

NOTE : The binding is explicitly modeled at the Value Set Version level, in order to enable flexibility.
However, in HL7, a dynamic binding is done by relating to a value set (not a value set version). If a timestamp
for a binding is provided, the binding is static. If a timestamp for the binding is not provided, the binding is
dynamic, and the time point of the function may be used as the timestamp for the binding. At the
implementation level, there would be several choices if the intent was to bind to the Value Set independent of
Version, which should be addressed in the technical specification.

2.4.2.24 Annotation Attribute 24

This type class provides a type for an "annotation attribute" within the classes which needs additional
annotations beyond basic annotation like the one provided with the attribute “provenanceDetails” present in
many classes. This may be used for HL7 semantic profiles (requirements defined at
http://wiki.hl7.org/index.php?title=Requirements-Annotations). This class has no attributes in the conceptual
model, its attributes are provided using the slot class depending on the needs of the semantic profile a given
service instance is supposed to support.

2.4.2.25 Slot 31

This class allows defining attributes for the annotation attribute class depending on the information
modeling/semantics requirements of a given semantic profile using this class (e.g. the HL7 semantic profile).
This flexibility is introduced on purpose to support various annotation approaches. Classes “Annotation
Attribute” and “Slot” are not normative and require further elaboration for the HL7 profile.

http://wiki.hl7.org/index.php?title=Requirements-Annotations

7 January 2010

3 Business Scenarios 1

3.1 Scenario Actors 2

HL7 Common Terminology Services 2 Service Functional Model
Page 37 of 148

3
4
5
6
7
8
9

10
11
12
13

Actors will use the CTS 2 service for different purposes. These different actors can be generalized into a basic
Terminology User an Actor that is simply an individual, organization, or application that requires access to
terminology content for some purpose. Specializations of the Terminology User actor participate in additional
operational specific scenarios that are defined by this Service Functional Model to address the Scope that is
outlined in section 2.1.2. Actors described in this section are not necessarily human actors, but also include
organizations and systems Figure3.1-2 outlines the specializations and composition of the different actors used
in this specification. These actors are described below. NOTE: The below list of actors is not intended to be
exhaustive. Additional roles (such as Terminology Quality Reviewers) can be added to this enumeration;
however, analysis should be performed to ensure that the addition of a new Actor results in a corresponding
addition of terminology service functionality that is not already present. The translator actor is intended to be
a human being or translation software, but automated translation is not deemed in scope of CTS2.

 14

15 Figure 6 - Scenario Actors

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 38 of 148

1

3

4

6
7
8

9

11
12
13
14

15

17
18

19

21
22
23
24
25

26

27

28

The following actors take a role in the CTS 2 scenarios.

3.1.1 CTS 2 Service 2

The CTS 2 Service is a specific implementation of the CTS 2 Terminology Server.

3.1.2 Terminology User 5

A Terminology User is an actor such as a subject matter expert, terminologist or terminology enabled
application. Terminology User activities include, but are not limited to, querying for specific concept codes
and browsing or comparing value sets. Specializations of the Terminology User actor follow below.

3.1.3 Terminology Administrator 10

The Terminology Administrator is an actor responsible for ensuring the availability and overall maintenance of
the terminology server. This includes, but is not limited to loading content into the terminology server, and
making available the required functionality to address the specific conformance profiles implemented by the
Terminology Server instance.

3.1.4 Terminology Enabled Application Developer 16

A Terminology Enabled Application Developer is an actor who is responsible for the development of software
applications that make explicit use of controlled terminologies.

3.1.5 Terminology Author / Curator 20

A Terminology Author / Curator is an actor who is responsible maintaining terminology content, including but
not limited to, the development of new concepts and associations that may be submitted to the Terminology
Provider or the extension of an existing terminology with local concepts. This may also determine who can
validate and perform quality control of terminology content. Terminology Authors / Curators may not
necessarily belong to the Terminology Provider's organization.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 39 of 148

2
3

4

6
7

8

10
11

12

14
15

16

18
19
20

22
23
24
25

27
28

3.1.6 Terminology Human Language Translator 1

A Terminology Human Language Translator is an actor with domain knowledge who is also familiar with the
languages and dialects which they are responsible for translating.

3.1.7 Terminology Mapper 5

A Terminology Mapper is an actor (human or system) that is responsible for creating or maintaining
specialized associations, or "mappings" between concepts from different code systems.

3.1.8 Terminology Provider 9

The Terminology Provider is the actor the individuals or organization that is responsible for the development
of Terminology Content.

3.1.9 Terminology Value Set Developer 13

A Terminology Value Set Developer is an actor with specific domain knowledge, as well as expertise in
controlled terminologies who develop s and maintains domain-or application-specific terminology value sets.

3.2 Primary Scenarios 17

Primary scenarios are tied to one or more conformance profiles. Note, that as an aid to reading this
specification, Actors that are identified in the text are italicized. In addition, when a scenario references
another scenario, that referenced scenario is in bold italics.

3.2.1 Administrative Scenarios 21

The administration scenarios are intended to provide the functional operations necessary for terminology
administrators to be able to access and make available terminology content obtained from a Terminology
Provider. Terminology Administrators are required to interface with Terminology Provider systems in order to
obtain the terminology content, then load that terminology content on local Terminology Servers.

3.2.1.1 Import Content 26

A Terminology Administrator is required to make available terminology content from a Terminology Provider
available to Terminology Users through a Terminology Server. This may or may not include the removal of a

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 40 of 148

1
2
3
4
5

9
10
11

previously loaded terminology content from the terminology server. To accomplish this, the Terminology
Administrator may be required to convert the content from the format provided by the Terminology Provider
to a format that the Terminology Server is capable of importing (the conversion being out of scope of this
service). Example of terminology content that may be available for loading into the Terminology Server
include but is not limited to:

 Source terminologies (complete sources and deltas) 6
 Value Sets 7
 Mappings 8

These content sources may either be new sources, or updated versions of an previously existing content
sources.

Associated Functional Models: Import Code System, Import Code System Revision, Import Association 12
Version, Import Value Set Version 13

14

16
17
18
19

3.2.1.2 Export Content 15

A Terminology Administrator is required to export a terminology or terminology value set from the
Terminology Server. This may require filtering of the exported content. In cases where standard or common
terminology interchange formats are available (such as HL7 Vocabulary MIF or LexGrid), conversion of
content on the CTS 2 server into said standard would be considered.

Associated Functional Models: Export Code System Content, Export Association 20

21

23
24

25

26

28
29

3.2.1.3 Decommission Terminology Content 22

A Terminology Administrator is required to decommission a terminology or terminology version from the
terminology service, rendering it unavailable for subsequent access by other service functions.

Associated Functional Models: Change Code System Status

3.2.1.4 Change Content Status 27

A Terminology Administrator is required to activate or inactivate a given terminology, thus changing its
availability for access by other terminology service functions.

Associated Functional Models: Change Code System Status 30

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 41 of 148

1

3
4
5

3.2.1.5 Update Notification 2

A Terminology User has a dependency on a specific terminology element that is available to a Terminology
Server. The Terminology User is interested in knowing when this terminology element is modified in any way,
and would like to receive an electronic notification in the event of that change to that terminology element

Associated Functional Models: Register for Notification 6

7

9

3.2.1.6 Update Notification Management 8

A Terminology User is required to update the notification information pertinent to their notification account.

Associated Functional Models: Update Notification Registration, Update Notification Registration Status 10

11

13
14
15
16

3.2.1.7 Content Dependency Notification 12

A Terminology Administrator is required to run a dependency check to compare updated content for a given
code system, against the version of that code system currently used by the Terminology Administrator’s
organization. For example, to provide a list of all terminology elements which are somehow affected by
upgrading to a newer version of a terminology.

Associated Functional Models: Register for Notification, Update Notification Registration, Update 17
Notification Registration Status 18

19

21
22
23

24

25
26

27
28
29

3.2.2 Search / Query Scenarios 20

The scenarios in this section describe the ability to query code system and value set. These scenarios attempt
to outline the information requirements for querying. The detailed function models in section 5.2 call out the
distinct functional requirements.

A given CTS 2 implementation will be required to advertise the specific search algorithms that it supports.

In each scenario below, the Terminology User may need to specify additional information pertaining to the
query. This information may include:

 The ability to determine the status of metadata or contents of a code system, value set as it existed in a
specified version, where version represents a meta-data component used to filter the result set of the
query.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 42 of 148

1
2

3

5

6

8
9

10

NOTE: Details of the available meta-data requirements will be identified as part of the Binding Document
and Model harmonization activity.

3.2.2.1 Code System Search / Query 4

This section outlines Search / Query operations pertaining to Code Systems.

3.2.2.1.1 Retrieve Available Code Systems 7

A Terminology User wants to determine what code systems are available through a specific instance of a
Terminology Service. The Terminology User is interested in seeing a listing of the available code systems, as
well as the details pertaining to each code systems available through a specific Terminology Service instance.

Associated Functional Models: List Code Systems, Return Code System Details 11

12

14
15
16
17

3.2.2.1.2 Retrieve Coded Concepts from Code System 13

A Terminology User wants to browse or query the content of a specific code system. The Terminology User is
interested in seeing a listing of specific coded concepts, associated attributes, as well as the metadata
pertaining to each coded concept that meets some search criteria. For example, after a retrieval of concepts has
been performed, the result set could be fed to a terminology browsing GUI

Associated Functional Models: List Code System Concepts, Return Concept Details 18

19

21

3.2.2.1.3 Validate Concept in Code System 20

A Terminology User wants to validate that a given concept exists in a given code system.

Associated Functional Models: List Code System Concepts 22

23

25
26

3.2.2.1.4 Identify Concept Language Translations 24

A Terminology User wants to determine what (if any) alternate language representations exist for a given
Concept.

Associated Functional Models: Return Concept Details 27

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 43 of 148

2
3

3.2.2.1.5 Retrieve Concept Representations 1

A Terminology User wants to determine what (if any) alternate representations (designations) exist for a given
Coded Concept. Examples of alternate representations for a concept may include abbreviations, or synonyms.

Associated Functional Models: Return Concept Details, List Value Set Contents (Expand value set) 4

5

7
8

9
10

3.2.2.1.6 Compare Code System Versions 6

A Terminology User wants to determine what differences exist between different versions or instances of a
code system.

Note that the Service calls just return the required Code systems and concept information. Carrying out the
side by side comparison would be a client function.

Associated Functional Models: Return Code System Details, List Code System Concepts 11

12

14

15

17
18
19
20

3.2.2.2 Value Set and Concept Domain Search / Query 13

This section outlines Search / Query operations pertaining to Value Sets and Concept Domains.

3.2.2.2.1 Retrieve Available Value Sets 16

A Terminology User wants to determine what value sets are available through a specific instance of a
Terminology Service. The Terminology User is interested in seeing a listing of the available value sets that
match some search criteria, as well as the details pertaining to each value set available through a specific CTS
2 Service instance.

Associated Functional Models: List Value Sets, Return Value Set Details 21

22

24
25
26
27

3.2.2.2.2 Retrieve Coded Concepts from Value Set 23

A Terminology User wants to browse or query the content of one or more value sets. The Terminology User is
interested in seeing a listing of specific coded concepts, as well as the details pertaining to each coded concept
in any of the given value sets. For example, the Terminology User may want to search for some criteria over a
set of value sets.

Associated Functional Models: List Value Set Contents (Expand value set), Return Concept Details 28

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 44 of 148

1

3
4
5

3.2.2.2.3 Retrieve Available Concept Domains 2

A Terminology User wants to determine what Concept Domains and Usage Contexts are available through a
specific instance of a Terminology Service. The Terminology User is interested in seeing a listing of the
available concept domains that match some search criteria.

Associated Functional Models: List Concept Domains, Return Concept Domain Details, List Usage Contexts, 6
Return Usage Context Details 7

8

9

11
12
13
14
15
16

3.2.2.2.4 Retrieve Coded Concepts for Concept Domain via Value Set Membership 10

A Terminology User wants to browse or query the content of one or more value sets and contained concept
codes that are related to a specific Concept Domain (and optionally Usage Context) via a value set
membership. The Terminology User is interested in seeing a listing of specific coded concepts, as well as the
details pertaining to each coded concept in any of the given Concept Domains. (Note that this involves finding
the value set bindings and then querying the value sets, although the service should hide that from the user to
some degree).

Associated Functional Models: List Concept Domain Bindings, Return Concept Details, Return Usage 17
Context Details, List Value Set Contents (Expand value set) 18

19

21
22

3.2.2.2.5 Validate Coded Concept in Value Set 20

A Terminology User wants to validate that a given concept exists in a given value set. The value set may
optionally be bound to a Concept Domain and Usage Context.

Associated Functional Models: Check Concept Value Set Membership, Check Concept to Concept Domain 23
Association 24

25

27

28
29

3.2.2.2.6 Compare Value Set Versions 26

A Terminology User wants to determine what differences exist between different versions of a value set.

Value Sets can be defined as either enumerations of concepts (extensional value set), or by expression syntax
that defines the content of the Value Set.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 45 of 148

1
2
3
4

5
6

In the case of an Enumerated Value Set, the specific Value Set version identifier can be used as a compare
point for the two value sets. For Intensionally defined Value Sets, the compare point is the set of concepts that
are resolved at the point in time that is specified, or the current time the function is called. The time that may
be specified is usually the time used in a specific STATIC binding of interest.

NOTE : Service calls just return the required Value Set information. Carrying out the side by side comparison
would be a client function.

Associated Functional Models: Return Value Set Details, List Value Set Contents (Expand value set)

7
8

10
11
12
13

14
15
16
17
18
19

20
21
22
23

24

26
27
28

29

31
32

3.2.3 Authoring / Curation Scenarios 9

This section outlines the requirements of terminology systems that provide the capability of making changes
to terminology elements such as code system or value sets. This includes both the direct modification of
terminology content for use by individuals responsible for terminology authoring and curation. Such
functionality includes:

 adding new concepts into a code system
 adding new relationships into a code system
 extending a code system with local terms
 creating or modifying value sets
 modifying other code system content and attributes
 Capability for validation of authoring requests without commit

In addition to direct modification of terminology content, this section also specifies functionality with the
capability of creating structured change requests for consideration by terminology maintainers. This
functionality is key in allowing Terminology Providers to solicit feedback pertaining to terminology structure
and content from Terminology Users in a controlled and structured manner.

3.2.3.1 Code System Authoring / Curation 25

This section outlines the business scenarios specific to terminology systems that provide the capability of
making changes to code system components which include coded concepts, representations (textual),
Associations or Relationships, and value sets.

3.2.3.1.1 Create Code System 30

A Terminology Author is required to create a new Code System to contain a set of new coded concepts. The
Code System is created by defining the set of meta-data properties that describe it.

Associated Functional Models: Create Code System 33

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 46 of 148

1

3
4

3.2.3.1.2 Maintain Code System 2

As part of ongoing terminology maintenance, a Terminology Author is required to perform maintenance to the
defining characteristics of an existing code system.

Associated Functional Models: Maintain Code System Version, Update Code System Version Status, 5
Maintain Code System Supplement 6

7

9

10
11
12

13
14

3.2.3.1.3 Create Concept 8

A Terminology Author is required to create a concept to be included in a Code System.

For example, as part of providing Terminology Service infrastructure to another department, a Terminology
Author is required to add additional concept codes to a code system to represent the domain concepts that are
important to the new department.

The new concept is defined by the set of meta-data properties that describe it, which may include its proper
placement via association binding within the hierarchy of the Code System.

Associated Functional Models: Create Concept 15

16

18
19

20
21
22
23
24
25
26
27

28
29

3.2.3.1.4 Maintain Concept 17

A Terminology Author is required to maintain a concept. This includes but is not limited to functionality such
as:

 making updates to the associated concept attributes,
 changing the presentation,
 changing preferred name,
 changing synonymy,
 technical corrections to the concept
 modifying the associations bound to concepts
 deprecating a concept
 deprecating a concept and superseding it with another concept

These types of changes may result in a new version of the code system being modified depending on the
versioning policy of the terminology publisher.

Associated Functional Models: Maintain Concept, Update Concept Status 30

31

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 47 of 148

2
3
4

5

7
8
9

10

11
12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31

3.2.3.2 Value Set Authoring / Curation 1

This section outlines the business scenarios specific to terminology systems that provide the capability of
creating and maintaining sub-sets of codes residing in code systems on CTS 2 servers, otherwise known as
value sets.

3.2.3.2.1 Create Value Set 6

A Terminology User is required to create a value set by intension or extension. Both of them can be defined by
a computable expression that can be resolved to an exact list of coded concepts at any given point in time. For
example, an intensional value set might be expressed as, SNOMED CT concepts that are children of the
SNOMED CT concept “Diabetes Mellitus.” An extensionally defined value set is an enumerating rule.

NOTE : When creating a value set, the Terminology User may or may not bind the value set definition to a
specific version of the Code System(s) from which the concepts are being drawn. If the value set expression is
bound to a specific version of the Code System(s), the value set will always resolve the same set of concept
codes for any given version of the value set (see static binding in Core Principles). If the value set expression
is not bound to a specific version of the Code System(s), the value set will resolve a different set of concept
codes as the version (and presumably contents) of the Code System changes (see dynamic binding in Core
Principles).

Examples of expressions (or Examples of Rule Sets):

 All active unique identifiers from a given coding system.
 All unique identifiers that participate in a specified relationship with a given local code in a coding

system, which may or may not include the specified code itself.
 The transitive closure of a specified transitive relationship with a given code, including or excluding

the code itself.
 A reference to another value set
 Other mechanisms that have to have external human or computational resolution.
 Nested value set definition is a rulein which a value set entry references another value set (a child

value set). There is no preset limit to the level of nesting allowed within value sets. Value sets cannot
contain themselves, or any of their ancestors (i.e., they cannot be defined recursively).

 Unions, intersections and exclusions of any of the above
 A list of concept identifiers from one or more code systems
 Additional details and examples can be found at:

http://wiki.hl7.org/index.php?title=Category:V3_Methodology_Requirements 32

Associated Functional Models: Create Value Set 33

34

3.2.3.2.2 Maintain Value Set (meta-data) 35

http://wiki.hl7.org/index.php?title=Category:V3_Methodology_Requirements

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 48 of 148

1
2

As part of ongoing value set maintenance, a Terminology Author is required to perform maintenance to the
descriptive characteristics of an existing value set.

Associated Functional Models: Maintain Value Set 3

5
6

7
8

3.2.3.2.3 Maintain Value Set 4

A Terminology User is required to maintain (i.e. remove or update) a value set which will create a new value
set version.

For example, a Terminology User identifies an error in how a value set is defined. A Terminology Author
corrects the error in the value set to be accurate to the understanding of the Terminology User.

Associated Functional Models: Maintain Value Set, Update Value Set Status 9

10

12
13
14

15

17

3.2.3.3 Concept Domain and Usage Context Authoring / Curation 11

This section outlines the business scenarios specific to terminology systems that provide the capability of
creating and maintaining Concept Domains and associated Usage Contexts, which provide a further level of
reusability for Value Sets.

3.2.3.3.1 Create Concept Domain 16

A Terminology Author is required to create a Concept Domain.

Associated Functional Models: Create Concept Domain 18

19

21
22

3.2.3.3.2 Create Usage Context 20

A Terminology User is required to create a Usage Context within a Jurisdictional Domain. (It is assumed that
Jurisdictional Domains themselves would be created as part of system configuration.

Associated Functional Models: Create Usage Context 23

24

26
27

3.2.3.3.3 Maintain Concept Domain 25

A Terminology Author is required to maintain a concept domain, including the ability for a Terminology User
to identify the value set bindings for specific usage contexts.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 49 of 148

Associated Functional Models: Maintain Concept Domain 1

2

4

3.2.3.3.4 Maintain Usage Context 3

A Terminology User is required to maintain a Usage Context.

Associated Functional Models: Maintain Usage Context

5
6
7

9
10
11

12
13
14
15
16

17
18
19
20
21
22

23

24
25
26
27
28

29

31

3.2.4 Association Scenarios 8

The scenarios in this section describe the ability to create, query and maintain associations between coded
concepts. These coded concepts may or may not come from the same code system, and as such can describe
intra-code system associations as well as inter-code system associations (mappings) across different systems.

These scenarios attempt to outline the information requirements for associations. Since the behavior is similar
for both types of association, a single set of operations are defined. Where an information model distinction
exists, specific semantic profiles could be defined. In each scenario below, the Terminology Mapper may need
to specify additional information pertaining to the source / target association of interest. This information may
include:

 The version of the source and target code systems being used to create the association, or,
 The code system of interest, whether that pertains to a single code system or more than one code

system
 The version of the source and target code systems being used to create the association, or,
 The cardinality of the association, i.e.: if the association is one-to-one, one-to-many, many-to-one, or

many-to-many.

Additionally, the type of associations may include, but are not limited to:

 if the source concept is an exact match to the target concept,
 if the source concept is equivalent to the target concept,
 if the source concept is broader than the target concept,
 if the source concept is narrower than the target concept
 Other examples are generic-to-brand name, ingredient-variant-of, etc.

3.2.4.1 Association Administrative Scenarios 30

3.2.4.1.1 Enumerate Association Types 32

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 50 of 148

A Terminology User wants to determine the set of association types (AssociationType) that are available on a
terminology server.

1
2

Associated Functional Models: List Association Types, Return Association Type Details 3

4

5

7
8
9

10
11

3.2.4.1.2 Identify / Retrieve Associations for a Single Concept 6

A Terminology User wants to identify all the associations that exist for a given concept. This includes both
direct and indirect relationships, and may be depth limited where appropriate. This includes concept
relationships (associations for the concept that are within its native code system) or concept maps
(associations between the specified concept code system and another code system) or both. Returns a set of
triples: the source, the target and the association

Associated Functional Models: List Concept Associations, Return Association Details 12

13

15
16

17
18
19

3.2.4.1.3 Identify / Retrieve Associations between Two or More Coded Concepts 14

A Terminology User is required to provide a listing of the associations that exist between coded concepts. For
example, these associations may be required as part of a government regulatory compliance review or audit.

This includes concept relationships (associations for the concept that are within its native code system) or
concept maps (associations between the specified concept code system and another code system) or both.
Returns a set of triples: the source, the target and the association.

Associated Functional Models: List Concept Associations, Return Association Details 20

22
23
24

3.2.4.1.4 Import Associations 21

A Terminology User is required to make new associations available through a Terminology Server. This may
or may not include the removal of previously loaded associations from the terminology server. This may
include importing a set of mappings between or within code systems.

Associated Functional Models: Import Association Version 25

26

28
29

3.2.4.1.5 Export Associations 27

A Terminology User wants to export association type instances from the Terminology Server. This may
require filtering of the content and converting the format of the export.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 51 of 148

1

2

4
5

Associated Functional Models: Export Association

3.2.4.1.6 Remove Associations 3

A Terminology User is required to remove (deprecate) associations or association versions from the
terminology service, rendering them unavailable for subsequent access by other service functions.

Associated Functional Models: Update Association Status 6

7

9

10

12
13
14

3.2.4.2 Association Search / Query Scenarios 8

This section outlines Search / Query operations specific to associations and association content.

3.2.4.2.1 Retrieve Available Associations 11

A Terminology User wants to determine what associations are available on the terminology service by
browsing a list of available associations on the CTS 2 instance. The service differentiates between coded
concept relationships and coded concept maps available for any specified concept.

Associated Functional Models: List Concept Associations 15

16

18
19

3.2.4.2.2 Validate Associations 17

A Terminology User wants to validate that a given association or set of associations are available on the CTS
2 service instance based upon specific search criteria.

Associated Functional Models: List Concept Associations 20

21

23
24
25
26

3.2.4.2.3 Retrieve Association Metadata 22

A Terminology User wants to retrieve metadata on available associations in the CTS 2 service instance. This
may include metadata regarding the code system(s) employed, versions, authoring / curation content or
additional data hosted on the CTS server designated to be used by external systems (i.e.: XML encoded or
OWL formatted mapping rule content).

Associated Functional Models: Return Association Details 27

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 52 of 148

1

3
4
5

3.2.4.2.4 Compare Association Versions 2

A Terminology User wants to compare two or more versions of an association on a CTS 2 service instance by
viewing each association version’s identifying information or metadata. Retrieval is provided by the service,
the actual comparison will be the responsibility of the service client application.

Associated Functional Models: Return Association Details 6

7

9

3.2.4.2.5 Request / Retrieve Association Instance 8

A Terminology User would like to request or retrieve metadata about an association from a CTS2 instance.

Associated Functional Models: Return Association Details 10

11

13
14

3.2.4.2.6 Compute Transitive Closure 12

A Terminology User want to compute the transitive closure of a binary relation such that whenever (a,b) and
(b,c) are in the extension, (a,c) is also in the extension.

Associated Functional Models: Determine Transitive Closure Relationship 15

16

18
19

20

22

24
25
26

27
28
29

3.2.4.2.7 Subsumption 17

A Terminology User wants to determine if a concept is incorporated under a more general category. Examples
of subsumption relationships are: A is-a B, A is-part-of B, A is-specialization-of B.

Associated Functional Models: Compute subsumption relationship

3.2.4.3 Association Author / Curation Scenarios 21

3.2.4.3.1 Create / Maintain an Association between Coded Concepts 23

A Terminology User wants to create or maintain (i.e. remove or update) an association between coded
concepts. For example, these associations may be required to map a local Code System to standard Code
Systems in order to be compliant with regulatory reporting policies.

NOTE: Only "create" operations have been identified since it is viewed that any changes to a relationship
definition (other than state changes, which are included in a separate operation) are in fact definitions of new
relationships (i.e. the rules for the relationship define the relationship, and are not something separate or

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 53 of 148

1
2

3
4

5

merely properties. It is possible that the technical specification may introduce update operations, but at this
level would not add meaning).

Search criteria may be accompanied by a "match algorithm code" that determines how the search text will be
applied. The table below (from CTS) provides an example set of match algorithms.

NOTE: Refer to section 10.10 for details on the matching algorithm.

Associated Functional Models: Create Concept Association 6

7

9

3.2.4.3.2 Create Association Type 8

A Terminology Author is required to create a new association type that may be used to link two concepts.

Associated Functional Models: Create Concept Association Type 10

11

13
14

3.2.4.3.3 Maintain Association Type 12

A Terminology Author is required to modify or deprecate an association type that may be used to link two
concepts.

Associated Functional Models: Maintain Concept Association Type 15

16

18
19

20
21
22
23

3.2.4.3.4 Create Lexical Association 17

A Terminology User wants to instantiate an association between two sets of coded concepts using a set of
lexical rules (matching algorithms) to generate the associations.

NOTE: This operation is likely not an automated process, as many terminologies do not possess the
ontological structures necessary to instantiate additional associations automatically. This however should not
preclude the automated creation of associations for terminologies with the ontological infrastructure necessary
to enable reasoning engines to effectively instantiate new associations.

Associated Functional Models: Create Lexical Association Between Coded Concepts 24

25

27
28

3.2.4.3.5 Create Rules Based Association 26

A Terminology User wants to instantiate an association between two sets of coded concepts using a set of
description logic or inference rules that either assert or infer mappings between two Code Systems.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 54 of 148

1
2
3
4
5

NOTE: This operation is likely not an automated process, as many terminologies do not possess the
ontological structures necessary to instantiate additional associations automatically. This however should not
preclude the automated creation of associations for terminologies with the ontological infrastructure necessary
to enable reasoning engines to effectively instantiate new associations. These associations may be subject to
human review to verify validity.

Associated Functional Models: Create Rules Based Association Between Coded Concepts 6

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 55 of 148

3
4
5
6
7

8
9

10
11

14
15
16
17

4 Assumptions and Dependencies 1

4.1 Dependencies on other Service Frameworks 2

As a service specification, the original CTS specified service discovery APIs. We assume that for CTS 2 a
service discovery framework (e.g. using the Universal Description, Discovery and Integration [UDDI]
registry) is available to aid with discovery and query of the CTS 2 service, and that the service is queriable by
the common service metadata attributes outlined in the Service Discovery framework, in addition to
terminology service specific metadata outlined in section 7.

CTS 2 offers a robust set of API requirements, many of which should be restricted to specific user classes.
This specification outlines a set of functional profiles that specify the types of operations users may perform as
part of a profile. CTS 2 assumes that security, identity management, and auditing services are available that
can implement the necessary user role based access requirements outlined in section 6.

4.2 CTS Backwards Compatibility 12
4.2.1 Message API Support (MAPI) 13

In the original CTS, the Message API component is specific to HL7. Its primary purpose is to allow a wide
variety of message processing applications to create, validate and translate CD (concept descriptor)-derived
data types in a consistent and reproducible fashion. It is assumed that this level of functionality will remain
specific to HL7, and as such will be managed through the development of a profile specific to HL7 outlined in
[Section 7]. 18

19

21
22
23

24
25
26

4.2.2 General CTS API Support 20

Unless otherwise indicated, it is assumed that CTS 2 provides the functional coverage required for backwards
compatibility to CTS. It is assumed that areas where CTS 2 compatibility with CTS will vary include areas
such as:

 HL7 Datatypes - Where the version of the datatypes has been updated since CTS was developed.
 Service Discovery - The CTS service discovery APIs are no longer needed assuming the existence of

Service Discovery infrastructure.
 Separating MAPI APIs into a HL7 specific terminology profile as outlined in [Section 7]. 27

29
30
31
32
33
34

4.2.3 Operations on ISO21090 CD datatype 28

The ISO21090 datatype Concept Descriptor is a reference to a concept defined in an external code system,
terminology, or ontology. From an HL7 perspective, at the tooling/application level, high level operations
dealing with the relationships between CDs are needed. Such operations include subsumption relationship of
two CDs, CD translation equivalence as well as CD clusters related operations. Because CTS2 is a utility
service, it will not provide these operations. However, these operations can be obtained be combining lower
level CTS2 operations.

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Profiles
http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Profiles

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 56 of 148

1

4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20

21
22
23
24

25
26
27
28
29
30

31
32
33

34
35
36
37
38

5 Considerations for Technical Specification 2

5.1 Functional Overloading 3

CTS 2 services are required to support access to terminologies with very different designs and purposes. Some
terminologies support concept uniqueness, concept permanence, unique identifiers, formal definitions, and
track history to support 'graceful evolution'. Other terminologies lack one or more of these design practices,
and may require additional modifications in the functional definitions of CTS 2 functions to be supported by a
CTS 2 service. For example, terminologies that reuse concept identifiers among different domains (e.g. 'M'
may mean male, million or meter) need the domain identifier in addition to the concept identifier to uniquely
identify a concept. Additionally, the separation of codes, concept references and representations as different
entities is not reflected in all terminology sources. For example, it is not possible to deprecate 'F' as a code
without deprecating 'F' as a display value.

The objective of CTS 2 is to support these various terminologies within a single terminology service, and not
to directly influence terminology design. To support terminologies with varying designs, different semantic
profiles may need to be used to cope with these variations. In some cases, the CTS2 functions have to include
additional optional input parameters (for the terminologies with non-standard designs) to return the expected
results. Thus, some input parameters for any given CTS 2 function may vary based on the design of the
terminology that is being queried. The CTS 2 function will contain both required and optional input
parameters, but the optional parameters apply only to terminologies with designs where those parameters are
necessary.

However, specifying input parameters as just required or optional can lead to confusion in implementation,
which may lead to difficulty for the user to understand which combinations of optional parameters are to be
used for a specific terminology. As the number of optional parameters for a function increases linearly, the
number of combinations of input parameters can increase exponentially.

For a function with n optional input parameters, up to 2n combinations of input parameters are possible. It then
becomes hard for the implementer or user to decipher which combinations are valid and which combinations
should be used for different terminologies. In reality, most of these combinations are invalid and cannot be
used. In addition, such a function is hard to automate, and requires human intervention to specify the
parameters that are applicable to each terminology. Thus, specifying required and optional parameters alone
can lead to unnecessary and confusing combinatorial explosion and may lend poorly to automation.

There are several solutions that are possible to this problem. One is the use of different semantic profiles for
different terminologies (or classes of terminologies - see further discussion below), as long as the behavior of
the operations is not affected (other than validation of mandatory and optional inputs).

Another is 'function overloading'. This is similar to overloading a method in Object Oriented Programming
(OOP). A given method in OOP may have many overloaded variants - each with different inputs, but all
performing the same basic function and returning the same output. When the technical specification is
produced, the resolution to this issue must be defined explicitly. Functional overloading requires more effort
to create the functional variants, but this reduces the combinatorial explosion of optional input parameters,

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 57 of 148

1
2
3
4
5

6

8
9

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24

25
26
27
28
29

30
31
32

33
34
35

36

37

avoids creation of invalid combinations of input parameters, and provides a solution to tie a specific
terminology to a specific variant for each function. This also lends better to automation than specifying the
input parameters as just optional or required. Functional overloading still cannot be automated at runtime,
because we need a way to tie a specific variant of a function to a specific terminology. This is achieved
through a metadata discovery service.

5.2 Metadata Discovery 7

The metadata discovery service helps the calling program to discover the available variants of a CTS 2
function, the input parameters required for each function, and the terminologies that each variant applies to.
For example, a function that returns the descriptions of a given concept will require the concept identifier as a
coded datatype (ConceptCode, CodeSystemId) as the input. However, if a given terminology reuses the same
concept code to represent what are effectively different concepts, a way to disambiguate them is needed. The
conceptual model provides a separate unique identifier, however an additional user friendly mechanism is
needed. At the level of the code system itself, as well as the identifier, the code name/description will allow a
human user to differentiate them, e.g. if "m" is used for "male" and "meter" in the same code system. Over and
above that, when using value sets and binding information model instances to them, the "concept domain"
may be used to enable clear distinction in these cases. The metadata discovery service will cover all of these
variants.

However, creating a relationship between a given terminology and a functional variant can be daunting given
the number of CTS 2 functions and the number of terminologies supported. This can be overcome by grouping
the terminologies together based on common design and structural characteristics. This is achieved by using
semantic profiles. A given semantic profile groups together terminologies with similar designs. Many such
semantic profiles are thus possible. The metadata discovery function will list the variants applicable to
different semantic profiles, rather than different terminologies.

The CTS 2 authors define the semantic profiles as a set of design characteristics, and assign the better known
terminologies into these profiles. At the technical specification/implementation level, the CTS 2 functions will
then have overloaded variants based on common design characteristics, rather than those based on individual
terminologies. The metadata discovery service will provide the available variants of each CTS 2 function and
the different semantic profiles they apply to (rather than the different terminologies).

Functions that do not have overloaded variants will just have the single (default) variant returned by the
metadata discovery service. Terminologies that are not yet classified need to be classified into a semantic
profile. This is discussed in detail under the Semantic Profiles section.

By using functional overloading, metadata discovery and semantic profiles together, the combinatorial
explosion and invalid combinations are avoided, the ambiguity and the amount of effort required are reduced,
and automation is made easier.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 58 of 148

2
3
4
5

6
7
8

9

10

11
12

13
14

15

16
17

18
19
20
21
22

23
24
25
26

27

29
30
31
32

5.3 Artifact Versioning 1

CTS 2 exists to allow authoring and editing functionality for many different terminologies with very different
designs and purposes. These different terminologies will each have their own approach to version
management. For instance, if the definition of a concept changes, does the version of the concept change, or
even the version of the code system? Terminologies may define their own rules that must be followed.

The CTS specification needs to describe how artifact versions are maintained with regard to the functioning of
the service, and how these changes are implemented in different terminologies. At a minimum, the
specification should describe or consider

• The impact of the operations described here on artifact versions as represented on the service interface

• The effect of transactional scope on this behavior

• The implications of this for different terminologies (including particularly those terminologies identified in
the mandatory requirements section of the OMG RFP)

• That artifacts may have multiple cycles on various levels (existence, availability, curation related) and may
transit between different states repeatedly

• How the versioning approach relates to the various date attributes expressed on the service interface

• How the service describes – perhaps through metadata discovery – the versioning policy of the artifacts the
service expresses

Note that the default assumption is that changes to the rules that define artifacts (referred to through the
ruleSetId property on several artifacts in the conceptual model) generally cause a version change on the
artifact to which they apply, and if the maintenance is done by reference, appropriate curation responsibilities
will need to be in place to ensure that the rules do not change without an appropriate change to the artifact
version.

This specification assumes that versioning and state management are duties of the authors (often SDOs) and
managers of specific terminologies. CTS 2 only seeks to outline functional capabilities (operations and
semantics) to support versioning and state updates, but does not seek to define the policy by which any given
terminology handles versioning and state updates.

5.4 Properties 28

Code systems use named properties to define, describe, and identify the entities (classes, properties and
individuals) within the code system. Some of these properties will have semantic significance to the services
described in this document, including "description", "designation", "association", and possibly others (e.g.
comment", "editorial note", etc.) that may be identified as significant by respondents to this document. There

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 59 of 148

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

may also be properties that have no direct significance to the services themselves, beyond being used to sort or
search code system entities.

In the remainder of this discussion, we will explicitly differentiate between a property type and a property
instance. Every property instance is associated with a property type, where the instance describes a code
system entity and the type describes the meaning of the instance. As an example, the property type dc:title
might be used to identify a particular type of designation. Instances of dc:title would then be associated with
entities in the code system,

(e.g. <rdf:Descriptionrdf:ID="C0002940"><dc:title>Aneurysm</dc:title></rdf:Description>)

Property instances may, themselves, have associated properties that describe or refine how the property is
used. As an example, a property instance might identify the language of the property value, the mime type of
the value, information about when the property applies, etc.

 Respondents to the RFP shall identify which property types are semantically significant to the service
itself and will describe how they are identified.

 Respondents to the RFP shall address both property types and property instances. They should address
how properties types are assigned meaning, how they can be identified as representing designations,
associations, descriptions, etc. Respondents should describe how property types might be used to
validate property instances through the association of data types, mandatory characteristics such as
language, etc.

 Respondents to the RFP shall discuss how to support terminologies that are expressed in and make full
usage of OWL-DL 2.0 like syntax, semantics and features (OWL classes, properties, restrictions and
individuals)

5.5 Code System Partitions 29

Some larger code systems include the notion of “partitions” and/or “extensions”, whereby distinct subsets of the
code system may be separately maintained and published independently.

For example, SNOMED CT has 19 “partitions” (or “pipes”), which are the 19 top level concepts under the one
primary concept of “SNOMED CT concept”. Although it has not yet happened, it is believed that these individual
pipes may be published in future at different frequencies. National extensions are concepts that are attached to
the core, and are in core format, but are only applicable to a particular realm or realms. They are maintained
separately and may be released separately. These include “branded” medicinal products, administrative concepts
and other realm only concepts. These may also be versioned separately from the main core. They may be
distributed separately or with the core. For example, in the UK extension of SNOMED CT, the “pharmaceutical
and biological hierarchy concepts” are about to be published separately on a different release cycle (monthly
rather than six monthly), in the TRUD (the Terminology Release, Update and Distribution service).

RFP responders must indicate how they will support such partitions and/or extensions.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 60 of 148

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

5.6 Code System Supplement 1

Often implementer groups will find it necessary to "supplement" the metadata maintained about a code system
beyond that provided by the code system author. This may include the creation of localized display names,
translated display names, concept relationships to some local code system or creation of additional concept
properties. These supplements are not code systems in and of themselves because they do not define any new
codes or concepts. The codes and code system ids used when identifying a concept in an instance would
remain the code and code system id of the base terminology same whether a supplement was being used or
not. They are also not a "part" of the base code system as they are developed and maintained by a completely
different group, potentially without the knowledge of the author of the base code system.

While these supplements do not change the codes that can be referenced, they do provide additional
information that can be used in the construction of value sets and may impact how codes from those value sets
are exposed to the user. Respondents must indicate how they will handle the creation and maintenance of
"Code System Supplements" (including managing dependencies between code system supplement versions
and versions of the underlying code system). They must also show how these supplements will be supported
in value set definition.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 61 of 148

6 Detailed Functional Model for each Interface2 1

6.1 Administration Operations 2
6.1.1 Import Code System 3

Description

Installs a code system (aka terminology) into the terminology service for subsequent
access by other service functions. This operation is used for the initial install of the
overall terminology structure itself. This may include the full set of concepts,
relationships and so on, or some of these elements may be loaded using the Import Code
System Revision operation. The actual contents may be supplied by value or reference,
i.e. as a complete set of explicit content or as a reference to a location where the content
can be separately obtained for loading.

Inputs

1. Code System ID
2. Code System Description (optional)
3. Code System Administrative Info (optional)
4. Code System Version (see model for class description)
5. Code System Contents (i.e. either:

Source Location (URI) OR Code System Contents (Concepts, Concept Properties,
ConceptAssociations, Designations etc.)

Outputs
1. An acknowledgment indicating whether the terminology has been successfully

loaded or not.

Precondition

1.
2. Code System source is available in a format directly consumable by CTS 2

import tools.

Postconditions
1. The code system is available for access via the CTS 2 service functions.

Exception
Conditions

1. Code system not found at source location
2. Supplied contents cannot be processed (may be a number of specific errors)

(Information pertaining to all failures is logged and reported for analysis and
serviceability.)

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Administration

2 All version input parameters are optional, if not provided, the latest version is used by the operation.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 62 of 148

Miscellaneous
Notes

Other Relevant
Content

Associated
Scenario

Import Content, Import Associations

 1

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 63 of 148

1

6.1.2 Import Code System Revision 2

Description

Installs either an entire new version or the necessary revision updates for an already
loaded code system (terminology) into the terminology server repository (content
included by value or by reference to a location).

Includes indicator as to whether intent is to replace whole code system or just replace
some elements (codes, associations etc), cf. Maintain Concept

Inputs

1. Code System Revision Source ID
2. Code System ID
3. Current Code System Version ID (optional)
4. New Code System Version (class)
5. Scope of Replacement (encoded and description)
6. Code System Location (URI) .. OR ..
7. Updated Contents (Concepts, Concept Properties, ConceptAssociations,

Designations etc.)

Outputs

1. An acknowledgment indicating whether the terminology revision has been
successfully loaded or not.

Precondition

1.
2. Code System revision source is available in a format directly consumable by

CTS 2 import tools

Postconditions
1. The code system revision is available for access via the CTS 2 service

functions.

Exception Conditions

1. Code System does not exist.
2. Code System source is not consumable by CTS 2 import tools.
3. Code System not found at source location
4. Supplied contents cannot be processed (may be many different error

conditions)

(Information pertaining to the failures is logged and reported for analysis and
serviceability.)

Aspects left to
Technical
Specification

Detailed specification of the mechanism to recognize the specific information
structures that may be imported.

Relationship to Levels
of Conformance

Administration

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Terminology_Administration_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 64 of 148

Miscellaneous Notes

Code System revisions may be available as either:

1. complete code systems
2. set of deltas to be applied sequentially to the previous version.

In either case, all previous versions/iterations should be available until specifically
removed.

Other Relevant
Content

Depending on the scope of the actual import, many different information structures
may be included. One particular area (Associations) is expanded in more detail
below. This could include elements such as:

1. Association Identifier (if known)
2. Association Description
3. Association Source Code System Id and Concept Code
4. Association Target Code System Id and Concept Code
5. Association Type
6. Association Restrictions
7. Association Cardinality
8. Association Group
9. Association Order
10. Association is Reciprocal
11. Association is Refinable
12. Association is Transitive
13. Association is Cyclic
14. Association is Inheritable
15. Association Curation / Authoring Information
16. External systems association data hosted on the CTS server (e.g. XML

encoded or OWL formatted mapping rule content).

NOTE: This level of detail is not reflected in the conceptual model at this stage.

Associated Scenario Import Content , Import Associations

 1

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 65 of 148

1

6.1.3 Import Value Set Version 2

Description

Installs a value set version into the terminology service for subsequent access by other
service functions. This operation may also be used for the initial installation of the value
set. The value set contents may be explicitly provided, or may be resolved at run time in
the case of intensional value sets (where the value set is defined as a computable
expression).

Inputs

1. Value Set ID
2. Value Set Description (optional)
3. Value Set Administrative Info (optional)
4. Value Set Version (see model for class description)
5. Value Set Contents (ruleSetID)

OR Value Set Contents)

Outputs
1. An acknowledgment indicating whether the value set has been successfully

loaded or not.

Precondition

1.
2. Value set source is available in a format directly consumable by CTS 2 import

tools.

Postconditions
1. The value set is available for access via the CTS 2 service functions.

Exception
Conditions

1. Value set not found at source location
2. Supplied contents cannot be processed (may be a number of specific errors)

(Information pertaining to all failures is logged and reported for analysis and
serviceability.)

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Administration

Miscellaneous
Notes

Other Relevant
Content

Associated Scenario Import Content

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 66 of 148

1

6.1.4 Import Association Version 2

Description

Installs a set of code system associations (mappings) into the terminology service for
subsequent access by other service functions. This operation may be used for the initial
installation of a set of associations. This may include the full set of associations between
concepts from different code systems. The actual associations may be supplied by value
or reference, i.e. as a complete set of explicit association or as a reference to a location
where the associations can be separately obtained for loading.

Inputs

1. Association (set) Identifier
2. Association Description (optional)
3. Association Administrative Info (optional)
4. Association Version (optional)
5. Association Location (URI)

OR

1. Association Contents (Concepts, ConceptAssociationType, ConceptAssociations
(maps) etc.)

Outputs
1. An acknowledgment indicating whether the associations have been successfully

loaded or not.

Precondition

1. Associations are available in a format directly consumable by CTS 2 import
tools.

Postconditions
1. Association are available for access via the CTS 2 service functions.

Exception
Conditions

1. Association not found at source location
2. Supplied contents cannot be processed (may be a number of specific errors)

(Information pertaining to all failures is logged and reported for analysis and
serviceability.)

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Administration

Miscellaneous

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 67 of 148

Notes

Other Relevant
Content

Associated
Scenario

Import Content, Import Associations

 1

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 68 of 148

1

6.1.5 Export Association 2

Description
Exports association type instances from a code system applying filter
criteria

Inputs

1. Code System ID
2. Code System Version ID
3. Association Type(s)
4. Filter criteria (optional)
5. Export Format

Outputs
1. Requested association type instances of the code system

Precondition
1. CTS 2 Service installed and running
2. Code System source is available for querying

Postconditions
1. The association instances are exported

Exception Conditions

1. Invalid criteria/format input
2. Unrecognized location input
3. Association source is not exportable by CTS 2 export tools.

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Administration

Miscellaneous Notes

Other Relevant Content

Associated Scenario Export Content , Export Associations

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 69 of 148

1

6.1.6 Export Code System Content 2

Description

Exports a code system (terminology), subset criteria (specific set of concepts and/or
associations/maps from the Terminology Server by filtering the content and converting
to the requested format for export (according to the semantic profile of the deployment
jurisdiction).

Inputs

1. Code System ID
2. Code System Version ID
3. Code System filter criteria
4. Export Format
5. Target Location (URI)

Outputs

1. Code System Location

2. Code System Content

(Depending on whether the return will be the actual content or a location in which the
associations (maps) are placed for subsequent retrieval.)

Precondition
1. CTS 2 Service installed and running
2. Code System source is available for export

Postconditions The code system is exported to the required location or is returned to the requestor

Exception
Conditions

1. Invalid criteria/format input
2. Unrecognized location input
3. Association source is not exportable by CTS 2 export tools.

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Administration

Miscellaneous Notes

Other Relevant
Content

Associated Scenario Export Content

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 70 of 148

1

6.1.7 Change Code System Status 2

Description
Changes the state of a code system. (Includes inactivation, activation etc.) This allows
a Terminology Administrator to manage the state of a given code system, thus
managing the level of availability for access by other terminology service functions.

Inputs

1. Code system identifier
2. Code system version
3. Code system status

Outputs

1. An acknowledgment indicating whether the state of the code system has been
successfully changed.

Precondition
1.
2. Code system available on the CTS 2 service

Postconditions
1. The code system source state is changed to the requested value.

Exception Conditions
1. Code System state transition not allowed
2. Input parameter does not match

Aspects left to
Technical
Specification

1. Definition of actual state values / model

Relationship to
Levels of
Conformance

Administration

Miscellaneous Notes

Other relevant
content

Associated Scenario
Change Content Status,

Decommission Terminology Content

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 71 of 148

1

6.1.8 Register for Notification 2

Description

Register to be notified whenever a vocabulary element (code system, value set, concept
or relationship) is modified in any way. The Notification Directions parameter is a
placeholder for allowing specific directions to be given for the notification (e.g.
whether it is required immediately or may be delayed)

Inputs

1. URL or other electronic address which to send the terminology element
modification notification to.

2. Notification Target Type (Code System, Value Set, Concept, Concept
Relationship)

3. Notification Target Identifier
4. Notification Target Version
5. Notification Directions

Outputs

1. An acknowledgment indicating whether the terminology element notification
request was successfully created.

2. Notification Identifier

Precondition

1.
2. User or appropriate proxy (system administrator, etc) are authorized to access

registry

Postconditions
1. Notification records are updated appropriately

Exception
Conditions

1. Identified element / version does not exist
2. Notification Directions not recognized

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Administration

Miscellaneous Notes

Subsequent notifications do not require a confirmation. Where appropriate, however,
negative feedback on the channel (unable to deliver message, unable to connect),
should result in attempts to retransmit and/or the placement of a temporary hold on
notifications until connection problem is corrected.

Other relevant
content

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 72 of 148

Associated Scenario Update Notification, Content Dependency Notification

 1

2

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 73 of 148

1

6.1.9 Update Notification Registration 2

Description Revises a notification entry for a particular vocabulary element.

Inputs

1. Notification Entry Identifier
2. URL or other electronic address which to send the terminology element

modification notification to.
3. Notification Target Type (Code System, Value Set, Concept, Concept

Relationship)
4. Notification Target Identifier
5. Notification Target Version
6. Notification Directions

Outputs
1. An acknowledgment indicating whether the terminology element notification

revision request was successfully processed.

Precondition

1.
2. User or appropriate proxy (system administrator, etc) are authorized to access

registry

Postconditions
1. Notification records are updated appropriately.

Exception
Conditions

1. Notification Entry Identifier does not exist.
2. Identified element / version does not exist
3. Notification Directions not recognized

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Administration

Miscellaneous Notes

Subsequent notifications do not require a confirmation. Where appropriate, however,
negative feedback on the channel (unable to deliver message, unable to connect),
should result in attempts to retransmit and/or the placement of a temporary hold on
notifications until connection problem is corrected.

Other Relevant
Content

Associated Scenario Update Notification Management, Content Dependency Notification

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 74 of 148

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 75 of 148

1

6.1.10 Update Notification Registration Status 2

Description
Changes the status of a notification entry for a particular vocabulary element
(suspend, reinstate, cancel, remove).

Inputs
1. Notification Entry Identifier
2. Notification Status

Outputs

1. An acknowledgment indicating whether the notification status revision
request was successfully processed.

Precondition

1.
2. User or appropriate proxy (system administrator, etc) are authorized to

access registry

Postconditions
1. Notification status is updated appropriately.

Exception Conditions
1. Notification Entry Identifier does not exist.
2. Invalid state change

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Administration

Miscellaneous Notes

Other Relevant Content

Associated Scenario Update Notification Management, Content Dependency Notification

6.2 Search / Access Operations 3

The following detailed functional models outline functionality supporting the business scenarios in Section
3.2.2 of this document. Input parameters specified here are intended to correlate with the attributes outlined in
the

4
5

Terminology Structure Considerations. There are however, notable exceptions: 6

7
8
9

10
11

Filter Criteria - Filter Criteria is intended to specify the types of filtering mechanisms specific to the Code
System Entities being queried. It is understood that the identification attributes for code system elements such
as concepts and value sets are different, and as such different filter criteria may be applied to appropriately
identify and filter code system entity information being queried. As part of the technical specification, Filter
Criteria will be specified explicitly in accordance with the developed Platform Independent Model.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 76 of 148

1
2
3
4

5

7

Query Control - Query Control defines a placeholder for parameters that have the capacity of constraining
the query results returned from a query for code system elements. This allows a user to restrict the amount of
data returned, or the order in which the data is sorted. This is different from Filter Criteria, which specifies
restriction on the business data being returned.

6.2.1 Code System Search / Access 6

6.2.1.1 List Code Systems 8

Description
List the code systems available on this instance of the CTS 2 Service that match
entered filter criteria.

Inputs
1. Filter Criteria
2. Query Control

Outputs
1. A listing of zero or more code systems, together with metadata

properties available on the instance of the terminology service.

Precondition
1.

Postconditions None.

Exception Conditions
1. Invalid filter criteria
2. Invalid query control

Aspects left to Technical
Specification

Definition of filter criteria. Should include name for a simple means of
retrieving ID where not known.

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Other relevant content

Associated Scenario Retrieve Available Code Systems

 9

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 77 of 148

1

6.2.1.2 Return Code System Details 2

Description
Returns the details (metadata) for a given code system available on the
terminology service

Inputs
1. Code System Identifier
2. Code System Version

Outputs
1. Details pertaining to a specific code system (metadata or attributes for

the code system, e.g. description)

Precondition
1.

Postconditions None.

Exception Conditions
1. Code System Identifier not found.
2. Code System version not found.

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Other relevant content

Associated Scenario Retrieve Available Code Systems, Compare Code System Versions

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 78 of 148

1

6.2.1.3 List Code System Concepts 2

Description
Returns the set of all concepts (and concept codes) in the specified code system,
optionally filtered by input criteria, such as state or specific concept property, e.g.
values.

Inputs

1. Code System Identifier
2. Code System Version
3. Filter Criteria
4. Query Control

Outputs
1. The set of zero or more concepts and concept codes in the specified code system

matching the filter criteria.

Precondition

Postconditions None.

Exception
Conditions

1. Code System Identifier not found.
2. Code System version not found.
3. Invalid filter criteria
4. Invalid query control

Aspects left to
Technical
Specification

Definition of filter criteria and the state model.

Relationship to
Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Returning all concepts and concept codes in a code system is generally impractical for
large code sets. Indexing, query optimization is necessary.

As noted earlier in the conceptual model description, all functions dealing with
"Concepts" (this being the first)identified in this SFM are stated in terms of dealing
with "Concepts". Unless explicitly stated otherwise, this should be read as "Concept
Node" (i.e. Concept and/or its associated Concept Code(s), depending upon how the
actual containing code system is actually set up and populated.)

Other Relevant
Content

Associated Scenario Retrieve Coded Concepts from Code System, Compare Code System Versions

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 79 of 148

1

6.2.1.4 Return Concept Details 2

Description Returns the details for the known attributes (metadata) of a coded concept

Inputs

1. Code System Identifier
2. Code System Version Id
3. Concept Identifier
4. Concept Version Id

Outputs
1. The details of the attributes (metadata) of the coded concept

Precondition
1.

Postconditions None.

Exception
Conditions

1. Code System Identifier not found.
2. Code System Version not found.
3. Concept Identifier not found.
4. Concept Version not found.

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

CTS 2 Query

Miscellaneous Notes For versions, an acceptable input should be "current" or "latest"

Other Relevant
Content

Associated Scenario

Retrieve Coded Concepts from Code System, Retrieve Coded Concepts from Value Set,
Retrieve Concept Representations, Retrieve Coded Concepts from Code System,
Validate Concept in Code System, Identify Concept Language Translations, Retrieve
Coded Concepts for Concept Domain via Value Set Membership

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile
http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Retrieve_Coded_Concepts_from_Code_System
http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Validate_Concept_in_Code_System

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 80 of 148

1

6.2.1.5 List Association Types 2

Description
List association types that are available on a terminology server that match
entered filter criteria (e.g. code system, code system version).

Inputs
1. Filter Criteria
2. Query Control

Outputs
1. Returns a list of zero or more association types, together with associated

metadata

Precondition

Postconditions None.

Exception Conditions
1. Invalid filter criteria
2. Invalid query control

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Other Relevant Content

Associated Scenario Enumerate Association Types

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 81 of 148

1

6.2.1.6 Return Association Type Details 2

Description
Returns the details for the known attributes (metadata) of a
relationship type.

Inputs
1. Association Type Id

Outputs
1. Full metadata for the Relationship type

Precondition
1.

Postconditions None.

Exception Conditions
1. Association Type Id not found

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Other Relevant Content

Associated Scenario Enumerate Association Types

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 82 of 148

1

6.2.2 Value Set Search / Access 2
6.2.2.1 List Value Sets 3

Description Lists the value sets that are available to the CTS 2 service.

Inputs
1. Value Set Filter Criteria
2. Query Control

Outputs

1. Listing of zero or more value sets on this instance of the terminology
server that match the input filter criteria, together with associated
metadata.

Precondition
1.

Postconditions None.

Exception Conditions
1. Invalid filter criteria
2. Invalid query control

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

When search attributes are applied, the result set is restricted to the value sets that
match the search filter criteria. Examples include:

1. restricting to matching properties such as:
1. Value Set Name
2. Value Set version
3. Code Systems that comprise the values of the value set
4. Metadata attributes/properties of the value set

Other relevant content

Associated Scenario Retrieve Available Value Sets

 4

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 83 of 148

1

6.2.2.2 Return Value Set Details 2

Description Look up detailed information (metadata) for a given value set.

Inputs
1. Value Set Identifier
2. Value Set version

Outputs
1. Details (metadata) pertaining to the specified value set (resolved meta

data or attributes for the value set.)

Precondition
1.

Postconditions None.

Exception Conditions
1. Value Set Identifier not found.
2. Value Set version not found.

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes For version, an acceptable input should be "current" or "latest".

Other relevant content

Associated Scenario Retrieve Available Value Sets, Compare Value Set Versions

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 84 of 148

1

6.2.2.3 List Value Set Contents (Expand value set) 2

Description
Lists out the contents (entries) of a given value set, filtering based on input criteria.
This function is to be used to create the value set expansion.

Inputs

1. Value Set Identifier
2. Value Set version (Optional)
3. Value Set time stamp (optional)
4. Filter criteria
5. Query Control

Outputs
1. A list of zero or more code system nodes for the given value set. Output

truncated if value set not finite.

Precondition
1.

Postconditions None.

Exception Conditions

1. Value Set Identifier not found.
2. Value Set version not found.
3. Invalid filter criteria
4. Invalid query control

Aspects left to Technical
Specification

Relationship to Levels
of Conformance

CTS 2 Query

Miscellaneous Notes
Value sets may not be finite (e.g. the set of all real numbers between 1 and 10)
Obviously we don't want to list them all.

Other relevant content

Associated Scenario
Retrieve Coded Concepts from Value Set, Compare Value Set Versions, Retrieve
Concept Representations, Retrieve Coded Concepts for Concept Domain via Value
Set Membership

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile
http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Compare_Value_Set_Versions

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 85 of 148

1

6.2.2.4 Check Value Set Subsumption 2

Description Determine whether one of the two supplied value sets subsumes the other

Inputs
1. Pair of two <Value Set Identifier, Value Set Version > conjunctions

Outputs
1. Return True if value set A subsumes Value set B
2. Return False if not

Precondition
1.

Postconditions Boolean returned.

Exception Conditions
1. At least one conjunction of <Value Set Identifier , Value Set

version> not found., indicate which

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Other Relevant Content

Associated Scenario

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 86 of 148

1

6.2.2.5 Check Concept Value Set Membership 2

Description
Determine whether the supplied coded concept exists in the supplied
value set

Inputs

2. Code System Identifier
3. Code System Version (optional)
4. Concept Identifier or Concept Code
5. Value Set Identifier
6. Value Set Version

Outputs
3. Return True if coded concept exists in value set
4. Return False if coded concept does not exist in value set

Precondition

Postconditions None.

Exception Conditions

2. Code System Identifier not found.
3. Concept code not found.
4. Value Set Identifier not found.
5. Value Set version not found.

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Other Relevant Content

Associated Scenario Validate Coded Concept in Value Set

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 87 of 148

1

6.2.3 Concept Domain and Usage Context Search / Access 2
6.2.3.1 List Concept Domains 3

Description Lists the concept domains that are available to the CTS 2 service.

Inputs
1. Concept Domain Filter Criteria
2. Query Control

Outputs

1. Listing of zero or more concept domains on this instance of the
terminology server that match the input filter criteria, together with
associated metadata.

Precondition

Postconditions None.

Exception Conditions
1. Invalid filter criteria
2. Invalid query criteria

Aspects Left to
Technical Specification

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

When search attributes are applied, the result set is restricted to the concept
domains that match the search filter criteria. Examples include:

1. restricting to matching properties such as:
1. Concept Domain Name
2. Value Sets that are bound to the Concept Domain
3. Usage Contexts in which the Concept Domain is bound to value

sets
4. Metadata attributes/properties of the Concept Domain

Other relevant content

Associated Scenario Retrieve Available Concept Domains

 4

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 88 of 148

1

6.2.3.2 Return Concept Domain Details 2

Description Look up detailed information (metadata) for a given concept domain.

Inputs
1. Concept Domain Identifier

Outputs
1. Concept Domain details (resolved meta data or attributes for the

concept domain)

Precondition

Postconditions None.

Exception Conditions
1. Concept Domain Identifier not found.

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Other relevant content

Associated Scenario Retrieve Available Concept Domains

 3

4

5

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 89 of 148

1

6.2.3.3 List Usage Contexts 2

Description Lists the usage contexts that are available to the CTS 2 service.

Inputs
1. Usage Context Filter Criteria
2. Query Control

Outputs
1. Listing of zero or more usage contexts on this instance of the terminology

server that match the input filter criteria, together with associated metadata.

Precondition

Postconditions None.

Exception Conditions
1. Invalid filter criteria
2. Invalid query control

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS2 Query

Miscellaneous Notes

When search attributes are applied, the result set is restricted to the usage contexts
that match the search filter criteria. Examples include:

1. restricting to matching properties such as:
1. Usage Context Name
2. Concept Domains that are bound to value sets in the Usage Context
3. Metadata attributes/properties of the Concept Domain

Other relevant content

Associated Scenario Retrieve Available Concept Domains

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Resolve_Available_Concept_Domains

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 90 of 148

1

6.2.3.4 Return Usage Context Details 2

Description Look up detailed information (metadata) for a given usage context.

Inputs
1. Usage Context Identifier

Outputs
1. Detailed Usage Context description (resolved meta data or attributes

for the usage context)

Precondition

Postconditions None.

Exception Conditions
1. Usage Context Identifier not found.

Aspects Left to Technical
Specification

Relationship to Levels of
Conformance

CTS2 Query

Miscellaneous Notes

Other Relevant Content

Associated Scenario
Retrieve Available Concept Domains, Retrieve Coded Concepts for Concept
Domain via Value Set Membership

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Resolve_Available_Concept_Domains

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 91 of 148

1

6.2.3.5 List Concept Domain Bindings 2

Description
List the value set identifier and metadata for the specified domain bindings.
This does not include returning the value set expansion.

Inputs

1. Concept Domain Identifier
2. Filter criteria
3. Query Control

Outputs
1. A list of zero or more value set bindings.

Precondition

Postconditions None.

Exception Conditions

1. Concept Domain Identifier not found.
2. Invalid filter criteria
3. Invalid query criteria

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS2 Query

Miscellaneous Notes

Other relevant content

Associated Scenario Retrieve Coded Concepts for Concept Domain via Value Set Membership

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Resolve_Available_Concept_Domains

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 92 of 148

1

6.2.3.5.1 Check Concept to Concept Domain Association 2

Description

Determine whether the supplied coded concept exists in a code system in use for
the specified concept domain, optionally within specific usage contexts.
 Returns true if a coded concept is an element of a value set expansion bound to
the provided concept domain, or bound to both concept domain and usage context.

Inputs

1. Code System Identifier
2. Concept Identifier or Concept Code
3. Concept Domain Identifier
4. List of Usage Context Identifiers (optional)

Outputs

1. Return True if coded concept exists in specified concept domain and usage
contexts

2. Return False if coded concept does not exist in specified concept domain
and usage contexts

Precondition

Postconditions None.

Exception Conditions

1. Code System Identifier not found.
2. Concept code not found.
3. Concept Domain Identifier not found.
4. Usage Context Identifier not found.

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

CTS2 Query

Miscellaneous Notes

Other relevant content

Associated Scenario
Validate Coded Concept in Concept Domain via Value Set Membership , Validate
Coded Concept in Value Set

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Resolve_Available_Concept_Domains

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 93 of 148

1

6.2.4 Association related queries 2
6.2.4.1 List Associations 3

Description
List the Association available on an instance of the CTS 2 Service that match a set of
input filter criteria

Inputs

1. Filter Criteria
2. Query Control

Outputs A listing of zero or more associations that match the input filter criteria

Precondition

Postconditions none

Exception
Conditions

1. Invalid filter criteria
2. Invalid query control

Aspects left to
Technical
Specification

Definition of filter criteria. This is expected to include: Code System Ids and/or Code
System Version Ids, Concept Codes / Ids, Association Types, whether only direct
associations are considered or whether the transitive closure of the relation are used.

There are potentially many different types of Associations that can be defined. In some
cases, the relationships are explicitly defined, persisted and managed, in other cases,
queries can be made based on algorithms (such as those defined in the descriptions of
the Create Lexical and Rules Based Associations). To some degree, these are also both
more targeted "query" operations in that they return a list of associations based on the
input rules, as well as allowing for persisting of the Associations if so required.

For the purposes of the SFM, this operation will allow retrieval of any type of
Association, including lexical and rules based, but the technical specification may
define a number of more explicit operations.

Relationship to
Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Other relevant
content

Associated Scenario
Identify / Retrieve Associations for a Single Concept, Validate Associations, Identify /
Retrieve Associations Between Two or More Coded Concepts

 4

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile
http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Validate_Associations

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 94 of 148

1

6.2.4.2 Determine Transitive Concept Relationship 2

Description

Determine whether there exists a transitive relationship between two concepts, if it
exists, provide the association path.

Determine Transitive Concept Relationship determines if it is possible to get from a
given ParentCodeSystemNode into a given ChildCodeSystemNode in one or more
association transitions.

Inputs

1. ParentCodeSystemNodeID (support for compositional expression optional)
2. ChildCodeSystemNodeID (support for compositional expressions optional)
3. ConceptAssociationType

Outputs

1. Determine Transitive Concept Relationship will return the edge graph necessary
to traverse from ParentCodeSystemNode to ChildCodeSystemNode using the
given ConceptAssociationType, or null if the transitive closure does not exist.

Precondition

1. At least one code system is available in the CTS 2 service.

Postconditions None.

Exception
Conditions

1. Invalid ParentCodeSystemNode
2. Invalid ChildCodeSystemNode
3. Invalid ConceptAssociationType
4. Compositional concepts not supported (if input is compositional and not

supported)

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

CTS 2 Query

Miscellaneous Notes

Other relevant
content

Associated Scenario Compute Transitive Closure

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 95 of 148

1

6.2.4.3 Compute Subsumption Relationship 2

Description

Subsumes tests whether the parent coded attribute subsumes (is implied by) the child. If
ParentCodeSystemNode nor ChildCodeSystemNode are non compositional and are both
drawn from the same code system, subsumes returns true if and only if
ChildCodeSystemNode can be determined to belong to the transitive closure of the
hasSubtype relationship graph headed by ParentCodeSystemNode. No further assertions
of the semantics of subsumption beyond this one case. If the service supports
subsumption involving qualifiers (compositional expressions) and/or subsumption tests
across multiple code systems, it must define the appropriate translation semantics. If the
service doesn’t support subsumption on concepts defined using compositional
expression, it should raise the QualifiersNotSupported exception if presented with a
parentCode or childCode containing qualifiers. Similarly, if the service doesn’t support
cross-code system subsumption testing, it should raise SubsumptionNotSupported when
supplied with codes with different code systems.

Inputs

1. ParentCodeSystemNodeID, compositional expressions optional (depending on
service realization, no need to support for full compliance)

2. ChildCodeSystemNodeID, compositional expressions optional (depending on
service realization, no need to support for full compliance)

Outputs

1. Subsumes will return true if the child code can be determined to be a subtype of
the parent. Subsumes will also return true if the child and parent codes are
equivalent.

Precondition
1.
2. At least one code system is available in the CTS 2 service.

Postconditions None.

Exception
Conditions

1. Invalid ParentCodeSystemNode
2. Invalid ChildCodeSystemNode
3. Compositional expression non supported

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

[CTS 2 Query]

Miscellaneous
Notes

Other relevant

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#CTS_2_Query_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 96 of 148

content

Associated
Scenario

Subsumption

 1

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 97 of 148

1

6.2.4.4 Return Association Details 2

Description Look up detailed information (metadata) for a given association

Inputs
1. Association identifier

Outputs

All available Association information (resolved meta data or attributes for the
association.) Including:

1. Code system identifier(s)
2. Code system version(s)
3. Code system name(s) and description(s)
4. Concept codes / identifiers / names
5. Authoring / curation information
6. External systems association data hosted on the CTS server (i.e.: XML

encoded or OWL formatted Association rule content).

Precondition
1.

Postconditions None.

Exception Conditions
1. Association does not exist.

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Associations

Miscellaneous Notes

Other relevant
content

Associated Scenario
Retrieve Association Metadata, Identify / Identify / Retrieve Associations for a Single
Concept, Identify / Retrieve Associations Between Two or More Coded Concepts ,
Compare Association Versions, Request / Retrieve Association Instance

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Retrieve_Association_Metadata
http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Request_.2F_Retrieve_Association_Instance

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 98 of 148

1

6.3 Authoring/Curation Operations 2
6.3.1 Code System Authoring/Curation 3
6.3.1.1 Create Code System 4

Description
Create a new Code System to contain a set of new coded concepts. The Code System is
created by defining the set of meta-data properties that describe it.

Inputs

1. Code System Name
2. Code System Version
3. Code System properties

Outputs
1. An acknowledgment indicating whether the code system was created or not.
2. Code System Id, if the code system was successfully created.

Precondition
1.

Postconditions
1. The code system is available for access via the CTS 2 service functions.

Exception
Conditions

1. Code System already exists.

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Authoring

Miscellaneous Notes

1. If the user wants to specify the Code System Id manually, it can be specified as
a "Code System Property".

2. The service will denote that the code system exists when applicable. We will let
the individual service administrator treat this exception as an error (refuse to
create the code system) or a warning (create code system anyway).

3. Since there is a separate "import" operation for loading code sets, the semantics
of the "create" should be to just create the code system and then create the
Concepts. This implies the need for a "release" or "publish" capability, which
will be handled by an "Update Code System Version Status" operation.

Other relevant
content

Associated Scenario Create Code System

 5

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 99 of 148

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 100 of 148

1

6.3.1.2 Maintain Code System Version 2

Description Update Code System meta-data properties.

Inputs

1. Code System Id
2. Code System Name
3. Code System Version
4. Code System properties
5. Set of zero or more Concepts (Ids, Properties, Designations)
6. Set of zero or more Concept Associations

Outputs
1. An acknowledgment indicating whether the code system was updated or not.

Precondition
1.

Postconditions
1. The updated code system is available for access via the CTS 2 service functions.

Exception
Conditions

1. Code System does not exist.
2. Code System version does not exist.
3. Concept not found
4. Invalid Concept Properties
5. Invalid Concept Details
6. Invalid Associations

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Authoring

Miscellaneous
Notes

This allows for maintenance of a Code Systems properties, including creation and
updating of Code System Versions, and assignment of Concepts to a Version.

Note that the set of concept IDs could either be a complete new full set or deltas only,
which needs to be identified explicitly. Entering as new Version Id causes creation of a
new version (assuming the state model allows it at the time) Concepts can be assigned
and/or unassigned from Code System Versions, as can Concept Properties, Designations
and Concept Relationships.

Other Relevant
Content

Associated Scenario Maintain Code System

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 101 of 148

1

6.3.1.3 Update Code System Version Status 2

Description
Changes the status of a code system version (suspended, reinstated,
canceled, removed).

Inputs

1. Code System Identifier
2. Code System Version
3. Status

Outputs
1. An acknowledgment indicating whether the status revision request

was successfully processed.

Precondition

Postconditions
1. Code System Version status is updated appropriately.

Exception Conditions
1. Code System Version Identifier does not exist.
2. Invalid state change

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Authoring

Miscellaneous Notes

Other relevant content

Associated Scenario Maintain Code System

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 102 of 148

1

6.3.1.4 Create Code System Supplement 2

Description
Create a new Code System Supplement as a container of a set of concepts and
concept properties to be appended to a target code system. Does not add the
concepts and properties.

Inputs

1. Target Code System Id
2. Code System Supplement Name
3. Code System Supplement description
4. Code System Supplement provenance details
5. Code System Supplement effective date

Outputs

1. An acknowledgment indicating whether the code system supplement was
created or not.

2. Code System Supplement Id, if the code system was successfully created.

Precondition

Postconditions Supplement created.

Exception Conditions
2. Code System Supplement already exists.

Aspects left to Technical
Specification

Relationship to Levels
of Conformance

Authoring

Miscellaneous Notes

Other relevant content

Associated Scenario

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 103 of 148

1

6.3.1.5 Maintain Code System Supplement 2

Description
Update Code System Supplement meta-data properties and add concepts and
properties to code system.

Inputs

1. Code System Property Id
2. Code System Supplement Name
3. Code System Supplement description
4. Code System Supplement provenance details
5. Code System Supplement effective date
6. Set of zero or more Concepts
7. Set of zero or more concept properties

Outputs
1. An acknowledgment indicating whether the code system supplement was

updated or not.

Precondition

Postconditions Supplement updated.

Exception Conditions

1. Code System Supplement not found.
2. Code System version does not exist.
3. Concept not found
4. Invalid Concept Properties

Aspects left to
Technical Specification

Relationship to Levels
of Conformance

Authoring

Miscellaneous Notes

This allows for maintenance of a Code Systems Supplement properties, including
creation and updating of Code System Versions, and assignment of Concepts and
their properties to a Supplement .

Other Relevant
Content

Associated Scenario

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 104 of 148

1

6.3.1.6 Create Concept 2

Description
Create concept to be included in a Code System. The new concept is defined by the set
of meta-data properties that describe it, which may include its proper placement via
association binding within the hierarchy of the Code System.

Inputs

1. Code System ID
2. Code System Version
3. Concept Code
4. Concept Identifier or Concept Code (optional)
5. Concept Properties
6. (Allowable) Concept Relationships
7. Concept Designations

Outputs
1. An acknowledgment indicating whether the concept was created or not.
2. Concept Identifier or Concept Code

Precondition

1. A sequencer that provides Concept Identifiers must be available if the Concept
Identifier is not provided as an input.

Postconditions
1. The concept is available in the code system and is available for access via the

CTS 2 service functions.

Exception
Conditions

1. Code System does not exist.
2. Code System version does not exist.
3. Concept already exists.

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Authoring

Miscellaneous
Notes

1. The service will denote that the concept exists when applicable. We will let the
individual service administrator treat this exception as an error (refuse to create
the concept) or a warning (create concept anyway).

Generated ID can be used for disambiguation in code sets where codes are reused. The
input Code System Version is the version of the code system in which the concept code
is first created Entered Concept Properties and Relationships become the "allowable" or

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 105 of 148

"Defined Concept Properties / Relationships" in the model and also associated with the
Code System Version in which they were created.

Other relevant
content

Associated Scenario Create Concept

 1

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 106 of 148

1

6.3.1.7 Maintain Concept 2

Description Update Concept meta-data properties.

Inputs

1. Code System Id
2. Concept Code
3. Concept Id
4. Concept VersionId
5. Jurisdictional Domain Id (optional)
6. Concept Properties
7. (allowable) associations
8. Concept Designations

Outputs
1. An acknowledgment indicating whether the concept was updated or not.

Precondition

Postconditions
1. The concept is updated appropriately.

Exception
Conditions

1. Code System does not exist.
2. Concept does not exist.
3. Unrecognized Jurisdictional Domain
4. Invalid Concept Properties
5. Invalid Concept Designation

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Authoring

Miscellaneous
Notes

Updates include but is not limited to functionality such as:

1. making updates to the associated concept attributes,
2. changing the presentation
3. changing preferred name
4. changing synonymy
5. technical corrections to the concept
6. modifying the associations bound to concepts
7. in keeping with good vocabulary practice, codes or identifiers for concepts

cannot be reused. Additionally, in hierarchical Code Systems, it may be
necessary to re-associate any concepts related to the concept being deprecated to

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 107 of 148

prevent a part of the code system hierarchy from being orphaned

Code System Version not input here. A set of Concept changes can be made then
assigned as a new Code System Version before it is published (using Maintain Code
System Version and then Update Code System Version Status) Note that Concept
Version is NOT explicitly separately created and maintained. This would be automatic
by the system. JurisdictionalDomain allows for localization. Entered Concept Properties
and Relationships become the "Defined Concept Properties / Relationships" in the
model and also associated with the Code System Version in which they were created.
They can also be deprecated through use of status codes.

Other relevant
content

Associated
Scenario

Maintain Concept

 1

2

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 108 of 148

1

6.3.1.8 Update Concept Status 2

Description
Changes the status of a code system concept (suspend, reinstate, cancel,
remove).

Inputs

1. Code System Identifier
2. Concept Code
3. 3. Concept VersionId 4. Status

Outputs
1. An acknowledgment indicating whether the status revision request

was successfully processed.

Precondition

Postconditions
1. Code System Concept status is updated appropriately.

Exception Conditions

1. Code System Identifier does not exist.
2. Concept Code does not exist
3. Invalid state change

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Authoring

Miscellaneous Notes

Other relevant content

Associated Scenario Maintain Concept

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 109 of 148

1

6.3.1.9 Create Association Type 2

Description

Create a new relationship type (as intended by the association type class of the
conceptual model), an instance of which may be used to link two concepts. A list of
code system IDs can be supplied if the intent is to restrict use to specific code systems.
The default is availability to all code systems present on the server.

Inputs

1. Association Type ID (optional)
2. Association Type Name
3. Association Type Properties
4. List of zero or more Code System IDs

Outputs
1. An acknowledgment indicating whether the relationship type was created or not.

The ID will be generated if not supplied.

Precondition

Postconditions
1. The relationship type is available for use via the CTS 2 service functions.

Exception
Conditions

1. Association Type already exists.
2. Invalid Association Type properties
3. Unrecognized Code System ID

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Authoring

Miscellaneous
Notes

1. Creating Associations types which can span across two different code systems is
permitted by the interface, but should be used with care. It is not certain if
semantic Associations can be reliably created/maintained at present even when a
reference terminology (to which the queried terminologies are mapped) is
available. Note that given that there will often be complex business rules
associated at this level, this may also be handled by configuration rather than
explicit interface operation.

Other relevant
content

Associated
Scenario

Create Association Type

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Create_Association_Type

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 110 of 148

6.3.1.10 Maintain Association Type 1

Description
Update or deprecate an Association type that may be used to link two
concepts.

Inputs

1. Association Type ID
2. Association Type Name
3. Association Type Properties
4. List of zero or more Code System IDs
5. Association Type Status

Outputs
1. An acknowledgment indicating whether the Association type was

modified or not.

Precondition

Postconditions
1. The updated Association type is available for access via the CTS 2

service functions.

Exception Conditions

1. Association Type does not exist.
2. Invalid Association Type properties
3. Invalid Status
4. Unrecognized Code System ID

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Authoring

Miscellaneous Notes
Status change could be a separate operation, but seems unnecessary at this
"meta" level.

Other Relevant Content

Associated Scenario Maintain Association Type

 2

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Maintain_Association_Type

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 111 of 148

1

6.3.2 Value Set Authoring/Curation 2
6.3.2.1 Create Value Set 3

Description
Create a Value Set (extensional or intensional) that is defined by a computable
expression that can be resolved to an exact list of coded concepts at any given point in
time.

Inputs

1. Value Set Name (optional)
2. Value Set Id (mandatory)
3. Value Set Version
4. Value Set Properties
5. Value Set Rule Set (which may be an enumeration, i.e. an extensional value set)
6. Value Set Date Lock (boolean)
7. valueOverride (optional, for extensional definitions)

Outputs
1. An acknowledgment indicating whether the value set was created or not.
2. Generated Value Set Id, if not input

Precondition

1. A sequencer to provide the value set id, if not provided in the input.

Postconditions
1. The value set is available for access via the CTS 2 service functions.

Exception
Conditions

1. Value Set already exists.
2. Invalid Value Set properties
3. Unrecognized/invalid rule set

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Authoring

Miscellaneous
Notes

1. Example rule set expression: an intensional value set might be expressed as,
“SNOMED CT concepts that are children of the SNOMED CT concept
“Diabetes Mellitus”. Note that identification of the target code set(s) is part of the
rule set.

2. When creating an intensionally defined value set, the Terminology User may or
may not lock the date of the evaluation (effectively binding the value set
definition to a specific version of the Code System(s) from which the concepts

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 112 of 148

are being drawn). This would ensure that the value set would always resolve to
the same set of concept codes for any given version of the value set. If the value
set expression is not locked in time, then it will resolve to a different set of
concept codes as the version of the Code System changes.

3. Note that the model allows for the rule set to be defined at the overall Value Set
level or at the Version level, to allow for flexibility. The Service consumer needs
to be able to indicate which one is appropriate. Entering a new Version Id causes
creation of a new version (assuming the state model allows it at the time)

The extent to which the rule set allows selection of specific designations would need to
be defined (but is an implementation issue), e.g. could specify the language.

Other Relevant
Content

Associated
Scenario

Create Value Set

 1

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 113 of 148

1

6.3.2.2 Maintain Value Set 2

Description
Update properties or expression of a value set definition (extensional and
intensional value sets).

Inputs

1. Value Set Id (mandatory)
2. Value Set Name (optional)
3. Value Set Version
4. Value Set Properties
5. Value Set Rule Set (which may be an enumeration, i.e. an

extensional value set)
6. Value Set Date Lock (boolean)

Outputs
1. An acknowledgment indicating whether the value set was updated

or not.

Precondition

Postconditions

1. The updated value set is available for access via the CTS 2 service
functions.

2. A new value set version is created.

Exception Conditions

1. Value Set does not exists.

1. Value Set does not exist.

2. Concept not found. Invalid Value Set properties
3. Unrecognized/invalid rule set

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Authoring

Miscellaneous Notes See notes on Create operation

Other relevant content

Associated Scenario Maintain Value Set, Maintain Value Set (meta-data)

 3

4

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 114 of 148

1

6.3.2.3 Update Value Set Status 2

Description
Changes the status of a value set version (suspend, reinstate, cancel,
remove).

Inputs

1. Value Set Identifier
2. Value Set Version
3. Status

Outputs
1. An acknowledgment indicating whether the status revision request

was successfully processed.

Precondition

Postconditions
1. Value Set Version status is updated appropriately.

Exception Conditions
1. Value Set Version Identifier does not exist.
2. Invalid state change

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Authoring

Miscellaneous Notes

Other relevant content

Associated Scenario Maintain Value Set

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 115 of 148

1

6.3.3 Concept Domain and Usage Context Authoring/Curation 2
6.3.3.1 Create Concept Domain 3

Description Create a Concept Domain.

Inputs

1. Concept Domain Name
2. Concept Domain Id (optional)
3. Concept Domain Properties

Outputs

1. An acknowledgment indicating whether the concept domain was
created or not.

2. Generated Concept Domain Id, if not input

Precondition

1. A sequencer to provide the concept domain id, if not provided in
the input.

Postconditions
1. The concept domain is available for access via the CTS 2 service

functions.

Exception Conditions
1. Concept Domain already exists.
2. Invalid Concept Domain properties

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Authoring

Miscellaneous Notes

Other relevant content

Associated Scenario Create Concept Domain

 4

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 116 of 148

1

6.3.3.2 Maintain Concept Domain 2

Description
Update properties of a Concept Domain, including bindings to value sets within
usage contexts

Inputs

1. Concept Domain Id
2. Concept Domain Name
3. Concept Domain Properties
4. Concept Domain Status
5. Set of zero or more pairs of Value Set Id and Usage Context Id

Outputs
1. An acknowledgment indicating whether the concept domain was updated

or not.

Precondition

Postconditions
1. The updated concept domain is available for access via the CTS 2 service

functions.

Exception Conditions

1. Concept Domain does not exists.
2. Invalid Concept Domain properties
3. Invalid state transition
4. Unrecognized/invalid value set
5. Unrecognized/invalid usage context

Aspects left to Technical
Specification

Support for action code required for conformance with future HL7 behavioral
profile, more specification in normative edition of this spec.

Relationship to Levels of
Conformance

Authoring

Miscellaneous Notes
A binding of a value set to a concept domain or usage context is a function
relating a Value Set to ConceptDomains and/or Usage Contexts.

Other Relevant Content

Associated Scenario Maintain Concept Domain

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 117 of 148

1

6.3.3.3 Create Usage Context 2

Description Create a Usage Context.

Inputs

1. Usage Context Name
2. Usage Context Id (optional)
3. Usage Context Properties

Outputs

1. An acknowledgment indicating whether the usage context was
created or not.

2. Generated Usage Context Id, if not input

Precondition
1. A sequencer to provide the usage context id, if not provided in

the input.

Postconditions
1. The usage context is available for access via the CTS 2 service

functions.

Exception Conditions
1. Usage Context already exists.
2. Invalid Usage Context properties

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Authoring

Miscellaneous Notes

Other relevant content

Associated Scenario Create Usage Context

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 118 of 148

1

6.3.3.4 Maintain Usage Context 2

Description Update properties of a Usage Context

Inputs

1. Usage Context Id
2. Usage Context Name
3. Usage Context Properties
4. Usage Context Status

Outputs
1. An acknowledgment indicating whether the usage context was

updated or not.

Precondition

Postconditions
1. The updated usage context is available for access via the CTS 2

service functions.

Exception Conditions

1. Usage Context does not exists.
2. Invalid Usage Context properties
3. Invalid State transition

Aspects left to Technical
Specification

Relationship to Levels of
Conformance

Authoring

Miscellaneous Notes

Other relevant content

Associated Scenario Maintain Usage Context

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 119 of 148

1

3

6.3.4 Association Authoring Operations 2

6.3.4.1 Update Association Status 4

Description
Update the status of a association (active, inactive, cancelled etc). This allows a
Terminology User to activate or inactivate a given ssociation, thus changing its
availability for access by other terminology service functions

Inputs

1. Association identifier.
2. Association version Id
3. Status

Outputs
An acknowledgment indicating whether the association status has been successfully
updated.

Precondition

Postconditions

Exception Conditions
1. Association ID invalid or non existent
2. Status invalid or non existent

Aspects left to
Technical
Specification

Relationship to Levels
of Conformance

Terminology Authoring

Miscellaneous Notes

Other relevant
content

Associated Scenario Create / Maintain an Association between Coded Concepts, Remove Associations

 5

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Terminology_Authoring_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 120 of 148

1

6.3.4.2 Create Association 2

Description
Relates a single specific coded concept within a specified code system (source) to a
corresponding single specific coded concept (target) within the same or another code
system, including identification of a specified Association type.

Inputs

1. Source code system identifier.
2. Target Code system identifier.
3. Source Concept code/identifier.
4. Target Concept code/identifier.
5. Association Type
6. Association Properties

Outputs Association Id

Precondition

Postconditions A concept relationship of the specified type is created between two coded concepts

Exception Conditions

1. Source Code System does not exist.
2. Target Code System does not exist.
3. Source Coded concept not found.
4. Target Coded concept not found.
5. Unrecognized Association Type
6. Invalid Association properties
7. Info: the following association(s) already exist on the supplied concepts (list

associations)

Aspects left to
Technical
Specification

Relationship to
Levels of
Conformance

Terminology Authoring

Miscellaneous Notes
See notes under "Import Terminology Revision" for a list of sample properties for
Association

Other relevant
content

Associated Scenario Create/Maintain an Association between Coded Concepts

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Terminology_Authoring_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 121 of 148

1

6.3.4.3 Create Lexical Association between Coded Concepts 2

Description

Relates a set of one or more coded concepts within a specified code system (source)to a
corresponding set of one or more coded concepts (target) within that system or another
code system using a set of lexical rules (matching algorithms) to generate the Association.
The "Source Search Criteria" allows for identification of a subset of the Source Code
System to apply the matching algorithm to, if required (this may include limiting the
version of the code system).

Inputs

1. Source Code System Identifier
2. Target Code System Identifier
3. Source Search Criteria (optional)
4. Match Algorithm Code

Outputs
List of zero or more Association Ids (together with identification of each pair of Concepts
that were linked as a result of the matching.

Precondition

Postconditions
A set of zero or more Associations are created, each between a coded concept from the
source code system and a coded concept in the target code system.

Exception
Conditions

1. Source Code System does not exist.
2. Target Code System does not exist.
3. Unrecognized / Invalid algorithm.
4. Unrecognized / Invalid search criteria.
5. (Warning) No Associations matched the input algorithm.

Aspects left to
Technical
Specification

This may be a very time consuming operation across large code sets, and may potentially
produce large result sets. Management of result set size is envisaged to require further
consideration and probably additional input parameters.

Relationship to
Levels of
Conformance

Terminology Authoring

Miscellaneous
Notes

Even though this is expressed as a "create" operation, it is essentially also a "return"
operation in that it identifies which concepts are related by the input rules.

Other relevant
content

Match Algorithm Code Description

IdenticalIgnoreCase
The lower case representation of the target text must match
the lower case representation matchText exactly.

Identical The target text must match the matchText exactly.

StartsWithIgnoreCase
The lower case representation of target text must begin
with the lower case representation of matchText.

StartsWith The target text must begin with the matchText.

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Terminology_Authoring_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 122 of 148

EndsWithIgnoreCase
The lower case representation of the target text must end
with the lower case representation of matchText.

EndsWith The target text must end with the matchText.

ContainsPhraseIgnoreCase
The lower case representation of the target text must
contain the lower case representation of the matchText.

ContainsPhrase The target text must contain the matchText.

WordsAnyOrderIgnoreCase
The target text must contain all of the words in the match
text, but in any order.

WildCardsIgnoreCase

The match text may contain zero or more 'wild cards',
designated by an asterisk (*). Wild cards match 0 of more
characters in the target string. The escape character is a
backslash('\') meaning that the matchText "a*b*' would
match any string that begins with the string "a*b".

RegularExpression
The match text may contain regular expressions, as defined
in XML Schema Part 2: Datatypes.

NYSIIS
New York State Identification and Intelligence System
phonetic encoding

Associated
Scenario

Create Lexical Association

 1

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 123 of 148

1

6.3.4.4 Create Rules Based Association between Coded Concepts 2

Description

Relates a set of zero or more coded concepts within a specified code system (source)to a
corresponding set of zero or more coded concepts (target) within that system or another
code system using a set of description logic or inference rules that either assert or infer
Associations. The "Source Search Criteria" allows for identification of a subset of the
Source Code System to apply the matching algorithm too, if required (this may include
limiting the version of the code system).

Inputs

1. Source Code System Identifier
2. Target Code System Identifier
3. Source Search Criteria (optional)
4. Description Logic
5. Inference Rules

Outputs
List of zero or more Association Ids (together with identification of each pair of
Concepts that were linked as a result of the matching.

Precondition

Postconditions
A set of zero or more Associations are created, each between a coded concept from the
source code system and a coded concept in the target code system.

Exception
Conditions

1. Source Code System does not exist.
2. Target Code System does not exist.
3. Unrecognized / Invalid description logic.
4. Unrecognized / invalid inference rules.
5. Unrecognized / Invalid search criteria.
6. (Warning) No coded concepts satisfy the description logic or inference rules.

Aspects left to
Technical
Specification

This may be a very time consuming operation across large code sets, and may
potentially produce large result sets. Management of result set size is envisaged to
require further consideration and probably additional input parameters.

Relationship to
Levels of
Conformance

Terminology Authoring

Miscellaneous
Notes

Even though this is expressed as a "create" operation, it is essentially also a "return"
operation in that it identifies which concepts are related by the input rules.

Other relevant
content

These Associations are subject to human review to verify validity.

Associated Scenario Create Rules Based Association

 3

http://216.47.173.10/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Terminology_Authoring_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 124 of 148

3
4
5
6
7

8
9

10

11
12

13

14
15

16
17

18
19
20

21

24
25
26
27
28

7 Profiles 1

7.1 Introduction 2

A profile is a named set of cohesive capabilities. A profile enables a service to be used at different levels and
allows implementers to provide different levels of capabilities in differing contexts. Service-to-service
interoperability will be judged at the profile level and not the service level. Note that through the use of
profiles, there are no “optional” interfaces. Conditions that might otherwise merit this optionality should be
addressed via a dedicated profile.

NOTE : These profiles provide the "units of conformance", (see conformance profile below), and as such
implementers should claim conformance to specific profiles in addition to, or rather than, the overall
specification.

A set of profiles may be defined that cover specific functions, semantic information and overall conformance.
The SSF explains in detail the meaning of each of these types of profile. In brief, they are as follows:

 Functional Profile: a named list of a subset of the operations defined within this specification which
must be supported in order to claim conformance to the profile.

 Semantic Profile: identification of a named set of information descriptions (e.g. metamodels) that are
supported by one or more operations.

 Conformance Profile: this is a combination of a set of functional and semantic profiles taken together
to give a complete coherent set of capabilities against which conformance can be claimed. This may
optionally include additional constraints where relevant.

7.2 CTS 2 Functional Profiles 22
7.2.1 CTS 2 Query Profile 23

The CTS 2 Query Profile specifies basic query only functional coverage necessary for a service to declare
itself as being a minimally conformant CTS 2 service. The CTS 2 Query Profile includes capabilities for
searching and query terminology content. If only this profile were supported, other means would be necessary
for defining and structuring code systems and concepts, metadata, importing and exporting code systems and
so on.

Profile
Member
Operations

Operation Profile Notes

CTS 2
Query

List Code
Systems

The ability to provide a listing of the
available code systems that meet input

The CTS 2 Query Profile specifies the
minimal functional coverage necessary

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 125 of 148

search criteria.

Return Code
System Details

The ability to retrieve a specific code
system attributes (synonyms,
associations) and other metadata.

List Code
System
Concepts

The ability to retrieve a list of all of the
concepts, with associated attributes
(synonyms, associations) and other
metadata that meet input criteria.

Return
Concept
Details

The ability to retrieve a specific
concept, with associated attributes
(synonyms, associations) and other
metadata.

List Value Sets The ability to determine what value sets
are available to a Terminology Service.
This includes seeing a listing of the
available value sets that match some
search criteria, as well as the details
pertaining to each value set available to
the terminology service.

Return Value
Set Details

The ability to retrieve a specific value
set, with associated attributes and other
metadata.

List Value Set
Contents

The ability to see a listing of specific
concepts, as well as the details
pertaining to each concept in any of the
given value sets available to a
terminology service.

Check Concept
Value Set
Membership

The ability to validate that a given
concept exists in a given value set.

List Concept
Domains

The ability to determine what concept
domains are available to a Terminology
Service.

Return
Concept
Domain
Details

The ability to retrieve a specific
concept domain, with associated
attributes and other metadata.

Profile

List Concept
Domain The ability to see a listing of specific

value sets that are bound to a concept

for a service to declare itself as being a
conformant CTS 2 service. The CTS 2
Query Profile includes the ability to
search the contents of code systems,
value sets and value sets bound to
Concept Domains

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 126 of 148

Bindings domain in specified usage contexts.

Check Concept
Domain
Membership

The ability to validate that a given
concept code is bound to a given
concept domain.

List Usage
Contexts

The ability to determine what usage
contexts are available to a Terminology
Service.

Return Usage
Context Details

The ability to retrieve a specific usage
context, with associated attributes and
other metadata.

List
Associations

The ability to determine what
associations are available on the
terminology service by browsing a list
of available associations on the CTS 2
instance that meet specified search
criteria.

Return
Association
Details

The ability to retrieve metadata on
available associations in the CTS 2
service instance.

List
Association
Types

Returns the details for the known
attributes (metadata) of a coded concept

Return
Association
Type Details

The ability to return all information for
a Association type.

Check Value
Set
Subsumption

Determine whether one of the two
supplied value sets subsumes the other

Check Concept
to Concept
Domain
Association

Determine whether the supplied coded
concept exists in a code system in use
for the specified concept domain,
optionally within specific usage
contexts.

Determine
Transitive
Concept
Relationship

Determine whether there exists a
transitive relationship between two
concepts, if it exists

 Compute Determine Whether One Concept

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 127 of 148

Subsumption
Relationship

Subsumes a Second

 1

3
4
5
6
7

8

7.2.2 Terminology Administration Profile 2

The Terminology Administration profile builds on the minimal profile and is intended to provide the
functional operations necessary for terminology administrators to be able to access and make available
terminology content obtained from a Terminology Provider. Terminology Administrators are required to
interface with Terminology Provider systems in order to obtain the terminology content, then load that
terminology content on local Terminology Servers.

Profile
Member
Operations

Operation Profile Notes

Import Code
System

Terminology content would be
loaded into the terminology server as
an entire terminology load or
skeleton load (i.e. load of structure
without loading the nodes).

Import Code
System
Revision

Terminology content would be
loaded into the terminology server as
a delta or set of changes from the
previous version of the terminology.

Import Value
Set Version

Ability to import values sets

Import
Association
version

Ability to import Associations

Export
Association

Ability to export Association Type
instances

Export Code
System
Content

Terminology content would be
exported either in whole or in part
based on filtering against
terminology properties. The export
format may also be specified.

Terminology
Administration
Profile

Change Code
System Status

Terminology content status would be
changed, thus changing its

The Terminology Administration
profile utilizes the all of the
operations defined in the
Administrative Scenario section,
as well as the functionality
outlined in the CTS 2 Query
Profile.

http://biomedgt.org/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Import_Terminology
http://biomedgt.org/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Import_Terminology
http://biomedgt.org/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Minimal_CTS_2_Profile
http://biomedgt.org/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Minimal_CTS_2_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 128 of 148

availability for access by other
terminology service functions.

Register for
Notification

A client registers for notification so
that an electronic notification would
be sent to subscribed users in the
event of a change to the specified
terminology element.

Update
Notification
Registration

Subscription notification information
can be updated for a subscriber's
notification account.

Update
Notification
Registration
Status

Updates the status of a notification
registration.

CTS 2 Query
Profile

The CTS 2 Query Profile specifies
the minimal functional coverage
necessary for a service to declare
itself as being a conformant CTS 2
service. The CTS 2 Query Profile
includes the ability to search the
contents of code systems and value
sets.

 1

3
4
5
6

7

7.2.3 Terminology Authoring Profile 2

Terminology authors require the capability to robustly query and access terminology content, as well as
directly modify the terminology content. The Terminology Authoring profile is intended to provide the
functional operations necessary for terminology authors to analyze the existing terminology content, as well as
directly edit terminology content.

Profile
Member
Operations

Operation Profile Notes

Terminology
Authoring
Profile

Create Code
System

The ability to create a new
Code System to contain a set
of new coded concepts. The
Code System is created by
defining the set of meta-data

The Terminology Authoring Profile is
intended to provide the capability to
robustly query and access
terminology content, as well as
directly modify the terminology

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 129 of 148

properties that describe it.

Maintain Code
System Version

The ability to maintain the
content and metadata of a
version for a code system.

Update Code
System Version
Status

The ability to modify the status
of a code system.

Create Concept
The ability to define and add a
new concept to a code system.

Maintain Concept
The ability to modify a
concept that exists in a code
system.

Update Concept
Status

The ability to modify the status
of a concept that exists in a
code system.

Create Value Set

The ability to create a dynamic
value set that is defined by a
computable expression that
can be resolved to an exact list
of coded concepts at any given
point in time.

Maintain Value Set

Update properties or
expression of a value set
definition (extensional and
intensional value sets).

Update Value Set
Status

The ability to modify the status
of a value set.

Create Concept
Domain

The ability to define and add a
new concept domain.

Maintain Concept
Domain

The ability to modify a
concept domain, including
bindings to value sets within
usage contexts.

Create Usage
Context

The ability to define and add a
new usage context.

Maintain Usage The ability to modify a usage

content. This includes the ability to
modify code system content, value set
content, as well as the metadata
pertaining to each. This profile
includes the functions necessary to
administer and search terminology
content as outlined in the CTS 2
Query Profile as well as the
Terminology Administration Profile

http://biomedgt.org/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Minimal_CTS_2_Profile
http://biomedgt.org/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Minimal_CTS_2_Profile
http://biomedgt.org/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Terminology_Administration_Profile

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 130 of 148

Context context.

Terminology
Administration
Profile

The Terminology
Administration profile is
intended to provide the
functional operations
necessary for terminology
administrators to be able to
access and make available
terminology content obtained
from a Terminology Provider.

Create Association
The ability to create an
association between concepts.

Update Association
Status

The ability to update the status
of an association between
concepts.

Create Association
Type

The ability to create a new
Association type that may be
used to link two concepts.

Maintain
Association Type

The ability to modify or
deprecate an existing
Association type that may be
used to link two concepts.

Create Lexical
Association
Between Coded
Concepts (optional
for this profile)

The ability to instantiate an
association between two sets
of coded concepts using a set
of lexical rules (matching
algorithms) to generate the
associations .

Create Rules Based
Association
Between Coded
Concepts (optional
for this profile)

The ability to instantiate an
association between two sets
of coded concepts using a set
of description logic or
inference rules that either
assert or infer
mappings between two Code
Systems.

Create Code
System Supplement

Create a new Code System
Supplement as a container of a
set of concepts and concept
properties to be appended to a

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 131 of 148

target code system

Maintain Code
System Supplement

Update Code System
Supplement meta-data
properties and add concepts
and properties to code system

7.3 CTS 2 Semantic Profiles 1

Semantic profiles are created to group together vocabularies with similar designs. Vocabularies grouped under
a single semantic profile can be queried using the same functional variants of CTS2 functions. A semantic
profile can be seen as a superset of the terminology metamodels of the supported terminologies with
information model classes as the elements of the sets. This approach provides the following advantages:

2
3
4
5

7
8

10
11

12
13

14
15

16
17
18

19

 It allows the CTS2 author to focus on a set of design attributes of terminologies and support them 6
using functional variants, rather than having to focus on individual terminologies while authoring the
standard.

 It allows the implementer to implement functional variants of CTS2 functions based on the semantic 9
profiles they want to support rather than to create or implement functional variants for the
terminologies that are to be supported by their implementation.

 It allows terminology authoring organizations to classify their terminology under a semantic profile
and insulates them from the complexities of functional variants of CTS2 functions.

When conformance against a semantic profile is claimed, the implementer has to list typical terminologies
which are supported by the CTS2 implementation.

These intrinsic qualities of terminologies allow the functional profiles to be implemented in accordance with
the properties of the classes of these terminologies. The following Semantic Profiles for terminologies are
defined currently:

7.3.1 HL7 Terminology Profile 20

Profile
Sample
Terminology
Criteria

Sample
Terminologies
Classified
Under Profile

Notes

HL7
Terminology
Profile

 The HL7 V3
Terminology

 HL7 The HL7 Terminology Profile specifies an
implementation specific to the interoperability
requirements outlined by HL7 Version 3. It
outlines the specificity necessary for a service to

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 132 of 148

declare itself as being an HL7 conformant CTS 2
service. The HL7 Profile includes capabilities for
searching terminology content, representing
terminology content in a form supporting the
structures required by and specific HL7v3.

 1

7.3.2 Mature Terminology Profile 2

Profile
Sample
Terminology
Criteria

Sample
Terminologies
Classified Under
Profile

Notes

Mature
Terminology
Profile

 Unique
identifiers for
all concepts

 Unique
identifiers for
all
designations

 Unique
identifiers for
all
relationships

 Identifiers are
never reused.

 SNOMED
CT, all
versions

 ICD 10 CM
 LOINC
 RxNorm
 MEDCIN
 NDF / NDF-

RT
 CPT

Terminologies in the Mature Terminology
Profile make an attempt to conform to many
of terminology best practices that are, for
example outlined in Desiderata for
Controlled Medical Vocabularies in the
Twenty-First Century, James J. Cimino.

 3

7.3.3 Developing Terminology Profile 4

Profile
Sample Terminology
Criteria

Sample Terminologies
Classified Under Profile

Notes

Developing
Terminology
Profile

 Codes that are not
globally unique
within the
terminology but need
further qualification,
e.g. an additional
identifier.

 Some HL7
Vocabulary tables
(where the
additional identifier
may refer to a
concept domain)

 Some of the locally

Terminologies in the
Developing Terminology
Profile are either developed
using ad hoc techniques, or
have degraded over time.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 133 of 148

 The concepts can be
uniquely identified by
combining the
concept code and an
additional identifier.

developed
terminology
sources or code sets

 1

4
5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23

25
26
27

28
29
30

7.4 CTS 2 Conformance Profiles 2
7.4.1 Conformance Interoperability 3

The capabilities defined within the CTS 2 service functional model have been attributed to different functional
profiles. The purpose of functional profiles is to group together functions to form cohesive levels of
operational capability against which implementations can be tested for conformance. Thus, interoperability
between CTS 2 implementations is assured within a specified conformance profile. In other words, two CTS 2
implementations that conform to the conformance profile defined by the Terminology Authoring and the
Mature terminology profiles will be able to interoperate using the functions described in the resulting cross-
product of those profiles because they will support the same operations applied to the same superset of
terminology metamodels (which is the semantic profile). The more profiles an implementation complies
with, the more powerful it will be, i.e. it will be able to interoperate with all operations of implementations
which are conformant against less profiles; however, the latter will not be able to interoperate with all
operations of the former.

These profiles serve to educate the purchasing and implementation communities, allowing for implementation
variation while still promoting interoperability. Service Level Agreements made between organizations are
then testable because they are informed by these profiles. Governance of these agreements is less ambiguous
and more enforceable due to precise functional levels of interoperability that may be expected.

Implementation of this functional specification should explicitly deal with the different interoperability roles
that CTS 2 may fill using these conformance profiles. The business rules enforced by an organization’s
purchasing, implementation, and governance arms should be discussed, and the ways in which CTS 2
facilitates that enforcement should be made clear.

7.4.2 Conformance Assertion 24

Implementations of CTS 2 conform to a specified conformance profile, which is a combination of a functional
and semantic profile. That is, conformance to a specific profile is asserted to against the quality metric of a
specified semantic profile in association with the specified functional profile.

There are currently three different functional profiles defined, where each functional profile can be
implemented according to ay of three semantic profiles. The available semantic profiles are identified as the
Mature Terminology, Developing Terminology or HL7 Terminology semantic profiles, providing up to

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 134 of 148

1
2

nine different conformance profiles to CTS 2. Implementers wishing to conform with the HL7 terminology
semantic profile should

Mature Terminology
Semantic Profile

Developing Terminology
Semantic Profile

HL7 Terminology
Semantic Profile

CTS 2 Query
Functional Profile

CTS 2 Query - Mature
Terminology
Conformance Profile

CTS 2 Query - Developing
Terminology Conformance
Profile

CTS 2 Query - HL7
Terminology
Conformance Profile

Terminology
Administration
Functional Profile

Terminology
Administration - Mature
Terminology
Conformance Profile

Terminology
Administration -
Developing Terminology
Conformance Profile

Terminology
Administration - HL7
Terminology
Conformance Profile

Terminology
Authoring Functional
Profile

Terminology Authoring -
Mature Terminology
Conformance Profile

Terminology Authoring -
Developing Terminology
Conformance Profile

Terminology Authoring -
HL7 Terminology
Conformance Profile

 3

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 135 of 148

2
3

4
5
6

7
8
9

10
11

12
13
14
15

16
17

8 The Services Framework Functional Model 1

The Services Framework Functional Model identifies common underlying enterprise infrastructure such as
naming, directory, security, etc. that may be assumed and referenced by this Functional Model.

Note that the Services Framework Functional Model is being developed in parallel with other service
Functional Models; candidate functionality for the Framework should be submitted to the HL7 SOA WG or
the ArB for evaluation.

CTS 2 compliant service instances are intended to be middleware services, and operate within the context of
supporting infrastructure services that may exist within an enterprise. As a result, a number of underpinning
capabilities have been intentionally omitted from the scope of this specification. These include (but are not
limited to) capabilities such as meta data provision and management, identity management, security and
record location services.

The CTS 2 specification, by design, can be used as a means to integrate a new capability into a service-
oriented architecture, or can be used to provide a service interface to access content in legacy applications. It is
not intended as a replacement of any single system, but instead to act as a companion component that
facilitates interoperability with data sharing partners through a standardized set of APIs.

CTS 2 serves as a simplifying resource for the organization, as it can provide a single point of access for all
terminology resources.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 136 of 148

2
3

7

10
11
12
13
14

9 Relationship to Information Content 1

The following principles shall be followed for specifying the information model to be used by the services
being specified in this Service Functional Model:

1. PIMs shall provide a conformance profile supporting HL7 content where relevant 4
2. We shall not preclude the use of non-HL7 content 5
3. PIMs will reuse to the maximum extent possible the content models as defined in other standards (for 6

example, HL7 RMIMs)
4. Information content representations shall be represented in platform-agnostic formalisms (e.g., UML) 8
5. PIMs may identify content at varying levels of granularity, depending upon the functions being 9

specified. (For example, the Common Terminology Service will deal with different granularity of
information than the Resource Location and Update Service).

6. Conformance Profiles may be balloted or adopted after the release of the initial SFM to address
specialized business needs. (realm-specific profiles, domain-specific profiles, etc.)

7. Details about semantics specific to this SFM appear in other sections of this document

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 137 of 148

2
3
4
5

6

8
9

10
11
12
13

15
16
17

18
19
20
21

22
23
24
25

26
27

28

30
31

10 Recommendations for Technical RFP Issuance 1

This section includes Identification of topics requiring elaboration in candidate solutions provided through the
OMG RFP process (http://www.omg.org/gettingstarted/processintro.htm). These may be service-specific,
deployment related, or non-functional. In this section, responders to an OMG RFP for this SFM will be
referred to generically as the responder.

10.1 HL7 Support 7

As an HL7 specification, CTS 2 implementation claiming conformance against HL7 profiles are required to
support the use of terminology in HL7 environments, including access of terminology content in HL7 models,
HL7 Messages, and access of externally developed terminology content. In the absence of a fully specified
HL7 semantic profile in this DSTU, PIM developers wishing to claim conformance against the HL7 semantic
profile are requested to study the MIF vocabulary model as a surrogate for this profile and derive an HL7
semantic profile.

10.2 Metamodels: Disparate Terminologies 14

While defining the semantics of payloads sent through CTS 2 is beyond the scope of this publication, the
ability of CTS 2 to notify a service partner about the nature of the capabilities of that implementation of CTS 2
is essential to fulfilling terminology service interoperability.

CTS 2 could conceivably be used to access and maintain a great variety of terminology sources, including
SNOMED, ICD, and RxNorm (to name a few). To create true terminological interoperability between
organizations it is essential to provide a scalable and extensible terminology model that can be included in the
description of and access to the terminology resources available on any given terminology service.

Though a limited number of metamodels have been included in this document as a mechanism of defining the
necessary behaviors of a terminology, it is expected that HL7, HL7 member organizations, terminology
providers, and terminology users will be producing representations that will be supported within a given CTS
2 implementation.

Responders will discuss how Metamodels for Disparate terminologies are structured in their implementation
of CTS 2.

10.2.1 Metamodels: HL7 Terminologies 29

Where terminology content exposed through CTS 2 is from an HL7 domain it is necessary to include support
for Concept Domains, Binding Realms and context bindings.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 138 of 148

1
2
3
4

5
6
7

8
9

10

12
13
14
15
16

17
18
19
20
21
22

23
24

25

28
29
30

31
32

33

RFP submitters should take the requirement for Domain and Binding Realm descriptions as a starting point to
discuss the additional physical information descriptions. The usage of the two should be described and
modeled so as to paint a complete picture of the issue of semantic description and discovery through the CTS
2 interface.

Additionally, metamodels should allow for the use of logical operators in describing their hierarchy or
aggregation. For example, Boolean Operators (AND, OR, NOT) should be available in creating query
parameters.

Responders will discuss how metamodels for HL7 terminologies are structured in their implementation of
CTS 2.

10.3 Conformance Profiles and Service Level Agreements 11

The capabilities defined within the CTS 2 SFM have been attributed to specific conformance profiles. The
purpose of a conformance profile is to group together functions to form cohesive levels of operational
capability against which implementations can be tested for conformance. Thus, interoperability between CTS
2 implementations is assured within a conformance profile. In other words, two CTS 2 implementations that
conform to the Authoring profile will be able to interoperate using the functions outlined in that profile.

These profiles serve to educate the purchasing and implementation communities, allowing for implementation
variation while still promoting interoperability. Service Level Agreements made between organizations are
then testable because they are informed by these profiles. Governance of these agreements is less ambiguous
and more enforceable due to precise functional levels of interoperability that may be expected. Implementation
of this functional specification should explicitly deal with the different interoperability roles that CTS 2 may
fill using these conformance profiles.

The responder should discuss the business rules enforced by an organization’s purchasing, implementation,
and governance arms, as well as the ways in which CTS 2 facilitates that enforcement.

10.4 Operationalizing CTS 2: Considerations in Implementation 26
10.4.1 Optimization 27

Structured terminologies can be quite large in nature in both the number of concepts, designations,
associations, and other attributes that further describe terminology content. As such, efficiently accessing and
querying terminology content is critical.

Responders to the RFP should discuss optimization strategies for accessing and updating specific
terminologies.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 139 of 148

3
4

6

8
9

10

12
13

14
15
16
17
18

19
20

21

23
24

25

27
28
29

10.4.2 Versioning 1
10.4.2.1 Versioning Mechanisms 2

To ensure consistent representation of vocabulary versions, the CTS 2 committee recognizes the following
approaches to versioning vocabulary entities:

 A vocabulary specification may use a numeric or decimal representation of the version number, that is, 5
the version identifier may be that string containing only numeric digits and decimal points.

 A vocabulary specification may use a release date to represent the version. 7

Responders to the RFP should contrast these two versioning mechanisms, and discuss how each are supported
by the proposed solution (possibly as collaborative mechanisms), including the recommended string and date
formats respectively.

10.4.2.2 Versionable Elements 11

Many different terminology elements are subject to change and as such need to be versioned. Examples of
terminology versioning use cases include:

 Get the current state of a terminology element (the default behavior today).
 Get the state of a terminology element on date D.
 Get the state of a terminology element in Version V.
 Get a trace (date/versions) of terminology element changes.
 Get a trace of terminology element attribute changes, e.g. a specific Property Type.

Responders to the RFP will outline the specific versioning mechanisms they intend on supporting, as well as
what types of changes constitute a new version of a terminology element.

10.4.3 Internationalization 22

Responders to the RFP will discuss what effect, if any, localization and internationalization of terminologies
will have on technical implementations of CTS 2?

10.5 Service Description and Discovery 26

Because CTS 2 exists as a service between organizations, CTS 2 should be considered a perfect candidate to
benefit from service description and discovery, such as what terminologies are available on any given CTS 2
implementation, ad the specific profiles implemented by that service implementation.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 140 of 148

1
2

3

5
6
7
8
9

10

11
12

13

Responders to the RFP should explicitly discuss this deployment case, how to better describe CTS 2 to
improve service discovery.

10.6 Federated Terminology Services 4

As implementers strive to organize CTS 2 within and between institutions, it is likely that a federation of
terminology sources and terminology servers will develop. These service interfaces will be a set of CTS2
service instances, which may be responsible of serving different terminology resources. They are likely to
occupy various information and domain levels within and between organizations. Common federation patterns
are likely to emerge, such as a mesh or a hierarchical structure. However, other deployment scenarios are
desirable as well. Special attention should be paid to implementation in a non-homogeneous environments.

Responders to the RFP discuss how the implementation would support federated terminologies, and how it
would allow for a hierarchical service topology to satisfy most deployment requirements.

10.7 Terminology Structure Considerations 14

Section 2.4.2 of this document describes a logical (analysis level) model with the intent that most - if not all -
key attributes that affect terminology behavior have been described. This model represents the minimal
classes, attributes and associations necessary to represent conceptual terminologies.

15
16
17

18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Responders to the RFP should provide a detailed Platform Independent Model (PIM) model that can represent
terminology sources that adhere to terminology best practices. Such a model can be seen as a superset of the
metamodels of the supported terminologies. The PIM must be rich enough to support different terminologies
like:

1. SNOMED CT.The International Health Terminology Standards Development Organization is
an international not-for-profit organization based in Denmark. IHTSDO acquires, owns and
administers the rights to SNOMED CT and other health terminologies and related standards.
The purpose of IHTSDO is to develop, maintain, promote and enable the uptake and correct
use of its terminology products in health systems, services and products around the world, and
undertake any or all activities incidental and conducive to achieving the purpose of the
Association for the benefits of the members. The responder will discuss how their
implementation will specifically manage SNOMED CT, and discuss potential or actual
integration points with the IHTSDO Workbench.

2. LOINC - Logical Observation Identifiers Names and Codes (LOINC) is a database and
universal standard for identifying medical laboratory observations. It was developed and is
maintained by the Regenstrief Institute, Inc., a US non-profit medical research organization, in
1994. LOINC was created in response to the demand for an electronic database for clinical care
and management and is publicly available at no cost. It is endorsed by the American Clinical
Laboratory Association and the College of American Pathologist. Since its inception, the

http://biomedgt.org/apelcore/index.php/HL7_Common_Terminology_Services_2_Service_Functional_Model_%28SFM%29#Terminology_Structure_Considerations

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 141 of 148

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15

16
17
18

19

21
22
23
24
25
26
27

29
30
31
32
33
34
35

36
37

database has expanded to include not just medical and laboratory code names, but also: nursing
diagnosis, nursing interventions, outcomes classification, and patient care data set.

3. MedDRA - MedDRA or Medical Dictionary for Regulatory Activities is a clinically validated
international medical terminology used by regulatory authorities and the regulated
biopharmaceutical industry throughout the entire regulatory process, from pre-marketing to
post-marketing activities, and for data entry, retrieval, evaluation, and presentation. In addition,
it is the adverse event classification dictionary endorsed by the International Conference on
Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use
(ICH). MedDRA is used in the US, European Union, and Japan. Its use is currently mandated
in Europe and Japan for safety reporting. MedDRA is managed by the MSSO (Maintenance
and Support Services Organization), an organization that reports to the International Federation
of Pharmaceutical Manufacturers and Associations (IFPMA). MedDRA is free for regulators
and priced according to company revenue for industry. The FDA has committed to keeping
current on MedDRA, and it has become the standard for adverse event reporting in the USA.

The PIM should also discuss a strategy for representing less mature terminologies in a format that allows
them to be consistently accessed by the appropriate CTS 2 functions in accordance with the required semantic
profiles.

10.8 Post coordination 20

Many applications dealing with complex terminologies are confronted with the problem of post-coordinated
terms. Essentially, these are composite concepts created by combining atomic concepts of a code system
according to certain semantic and syntactic rules. Example: expression of the pre-coordinated term
hypophysectomy as {pituitray|excision}. Responders to the OMG RFP claiming conformance against a
semantic profile comprising terminologies which use post coordination are obliged to comment on how they
want to design operations affected by this problem (e.g. List Concepts with a post-coordinated term as input
search parameter).

10.9 Terminology Maintenance 28

CTS 2 specifies a set of service functions specific to the maintenance of terminology sources. These service
functions in and of themselves are expected to influence a broader set of application level functions that
comprise a terminology maintenance solution. Such terminology maintenance solutions would include
workflow and process that would not only allow terminology providers to efficiently and accurately maintain
the terminology content, but may also include the ability for terminology users to submit, review and
modification of terminology content change requests. These change requests would be considered by the
terminology providers for inclusion into the next version of the terminology.

Responders to the RFP should discuss how CTS 2 query and maintenance functionality would be included in a
broader terminology maintenance solution that includes workflow and change request processing.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 142 of 148

1

2

4
5
6
7
8
9

10.10 Matching Algorithms 3

The match algorithm list shown below (from the original CTS specification) is not exhaustive. It is permissible for service
implementations to extend the list below with additional, custom match algorithms as appropriate, although implementers are
strongly encouraged to register the algorithm code to help ensure interoperability. However, all of the listed matching algorithms
with the exception NYIIS are normative and have to be implemented to claim conformance to this specification.

Table 1

Match Algorithm Code Description

IdenticalIgnoreCase
The lower case representation of the target text must match the lower case
representation matchText exactly.

Identical The target text must match the matchText exactly.

StartsWithIgnoreCase
The lower case representation of target text must begin with the lower case
representation of matchText.

StartsWith The target text must begin with the matchText.

EndsWithIgnoreCase
The lower case representation of the target text must end with the lower case
representation of matchText.

EndsWith The target text must end with the matchText.

ContainsPhraseIgnoreCase
The lower case representation of the target text must contain the lower case
representation of the matchText.

ContainsPhrase The target text must contain the matchText.

WordsAnyOrderIgnoreCase The target text must contain all of the words in the match text, but in any order.

WildCardsIgnoreCase

The match text may contain zero or more 'wild cards', designated by an asterisk
(*). Wild cards match 0 or more characters in the target string. The escape
character is a backslash('\') meaning that the matchText "a*b*' would match any
string that begins with the string "a*b".

RegularExpression
The match text may contain regular expressions, as defined in XML Schema Part
2: Datatypes.

NYSIIS New York State Identification and Intelligence System phonetic encoding

 10

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 143 of 148

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

11 Appendix A - Relevant Standards 1

11.1 HL7 Common Terminology Services 2

The Common Terminology Services (CTS) specification was developed as an alternative to a common data
structure. The HL7 Common Terminology Services (HL7 CTS) is an Application Programming Interface
(API) specification that is intended to describe the basic functionality that will be needed by HL7 Version 3
software implementations to query and access terminological content. It is specified as an API rather than a set
of data structures to enable a wide variety of terminological content to be integrated within the HL7 Version 3
messaging framework without the need for significant migration or rewrite. Instead of specifying what an
external terminology must look like, HL7 has chosen to identify the common functional characteristics that an
external terminology must be able to provide. As an example, an HL7 compliant terminology service will need
to be able to determine whether a given concept code is valid within the particular resource. Instead of
describing a table keyed by the resource identifier and concept code, the CTS specification describes an
Application Programming Interface (API) call that takes a resource identifier and concept code as input and
returns a true/false value. Each terminology developer is free to implement this API call in whatever way is
most appropriate for them. There are two layers between HL7 Version 3 message processing applications and
the target vocabularies. The upper layer, the Message API communicates with in terms of vocabulary
domains, realms, coded attributes and other artifacts of the RIM and HL7 messaging model. The lower layer,
the Vocabulary API communicates in terms of coding system, concept codes, designations, and other
vocabulary related entities.

The CTS 2 specification is an extension of the original HL7 Common Terminology Services approved
standard, and as such played a key role in the development and design of CTS 2.

http://informatics.mayo.edu/LexGrid/downloads/CTS/specification/ctsSpec/cts.htm

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 144 of 148

3
4
5
6
7

8
9

10

12
13
14
15
16
17

18
19

20

22
23
24
25
26
27
28
29
30
31

32

33

12 Appendix B – Glossary 1

12.1 Terminology Principles 2

The following Glossary provides definitions of key vocabulary terms used in this service specification. These
definitions are compatible with definitions used in HL7, but can be seen as hyperonyms 1) of these as they
cover a broader spectrum of vocabulary user requirements than those of the HL7 users in order to meet the
requirements of the entire CTS2 service user community. Is the intent that these terms align in the broadest
sense with those outlined in the HL7 Core Principles document.

Footnote 1) e.g. the designation "jurisdictional domain" can be seen as a hyperonym of the HL7 term "realm"
because the former covers a broader semantic spectrum than the latter, and "realm" is clearly its hyponym.

12.1.1 Code System 11

A Code System is a managed collection of concept identifiers, usually codes, but sometimes more complex
sets of rules and references. They are often described as collections of uniquely identifiable concepts with
associated representations, designations, associations, and meanings. Examples of Code Systems include ICD-
9 CM, SNOMED CT, LOINC, and CPT. To meet the requirements of a Code System as defined by HL7, a
given concept representation must resolve to one and only one meaning within the Code System. In the
terminology model, a Code System is represented by the Code System class.

NOTE: For the purposes of this document, the terms code system; terminology and vocabulary are treated as
synonyms.

12.1.2 Code System Concept 21

A Code System Concept defines a unitary mental representation of a real or abstract thing within the context
of a specific Code System; an atomic unit of thought. Generic representations of concepts outside of the
bounds of a code system are not included in the model, although their effect can be approximated by setting up
Associations (maps) across code systems. Concepts should be unique within a given code system, but may
have synonyms in terms of both the codes used (e.g. “l” and “L” in UCUM for Liter) and in textual
representation (as Designations). Concepts may be simple or compositional in nature. A compositional
concept is one that contains more than one concept concatenated within it – for example “severe hypertension”
– a combination of “hypertension” and a qualifier for severity. Each CodeSystem will have a set of Concepts
associated with it. Terminology best practices dictate that concepts are not deleted from code systems, but are
instead deprecated or retired from use, although nothing in the model prevents this.

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 145 of 148

2
3
4
5
6
7
8
9

10

11

13
14
15
16
17

18
19

20

22
23
24
25
26
27
28
29

30
31
32

33
34
35
36

12.1.3 Concept 1

A Concept defines a unitary mental representation of a real or abstract thing; an atomic unit of thought. It
should be unique in a given Code System. A concept may have synonyms in terms of representation and it
may be a primitive or compositional term

Concepts as abstract, designation-independent representations of meaning are important for the design and
interpretation of HL7v3 models. They constitute the smallest semantic entities on which HL7v3 models are
built. The authors and the readers of a model use concepts and their relationships to build and understand the
models; these are what matters to the human user of HL7v3 based models. The rest of the vocabulary
machinery exists to permit software manipulation of these units of thought.

12.1.4 Concept Domain 12

An HL7 Concept Domain is a named category of like concepts (a semantic type) that will be bound to one or
more attributes in a static model whose datatypes are coded. Concept Domains exist to constrain the intent of
the coded element while deferring the association of the element to a specific coded terminology until later in
the model development process. Thus, Concept Domains are independent of any specific vocabulary or code
system.

Concept Domains represents an abstract conceptual space such as "countries of the world", "the gender of a
person used for administrative purposes", “languages of the world”, etc.

12.1.5 Association 21

Associations define binary relationships or linkages between concepts. The endpoints of an association are
source and target concepts, often implying a direction of the association from a source to a target, which has
bearing on the meaning of the association and the concepts it connects. An association is definitional, in that
the association gives meaning to the concepts associated. For example, an association between a parent and
child concept indicates that the child concept is a refinement or an example of the parent concept in a concept
hierarchy. An association can also define other characteristics of a concept, as in associations between
concepts in different parent-child hierarchies where the child may have a different set of associations than that
one or more of its hierarchical parents.

For example, in SNOMED CT, the concept of “pneumonia” has an “is-a” association to the concept of “lung
consolidation,” and “lung consolidation” has an “is-a” association to the concept of “disorder of lung.” This
represents the logical conclusion that “pneumonia” is a “disorder of lung.”

In the case of Concept Maps (where the source and target concepts are from different code systems) the
direction and designation of the association have similar restrictions, except in the case where the Concept
Map indicates semantic equivalence. The equal association in this case obviates the requirement for
interpreting the association direction. An association links a source Concept to a target Concept. As with

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 146 of 148

1
2
3

4

6
7
8
9

10
11
12

13

15
16
17
18

19
20
21
22
23
24

25
26
27

29
30
31
32

DefinedConceptProperty, there is a separate Concept Version level representation
(CodeSystemVersionConceptAssociation) to identify the Associations supported within a specific version of a
Code System.

12.1.6 Designations 5

Designations are representations of concepts. The designation identifier must uniquely map to a given text
string, bitmap, etc. within the context of the containing concept. In some terminologies, every unique text
string will have exactly one identifier, which means that the same identifier may occur under more than one
concept. In other terminologies, there may be more than one identifier for a given text string, meaning that the
identifier is unique to the concept. Service software must not assume either model. For example, in SNOMED
CT, the concept of “fever” has the fully specified name of “fever (finding),” a preferred name of “fever,” and
synonyms of “febrile” and “pyrexia.” These are all designations for the concept of “fever.”

12.1.7 Binding Realm 14

In HL7, the broadest binding context is the Binding Realm3. All model instances must declare a particular
Binding Realm (or sub-Binding Realm) based on the jurisdiction from which they originate, for which they are
destined, or for some third jurisdiction by site-specific agreement. The declared Binding Realm applies to the
entire model or specification artifact: it is not specific to individual elements of that model or artifact.

A Binding Realm refers to a named interoperability conformance space, meaning that all static models within
a particular Binding Realm share the same conformance bindings. In nontechnical terms, it can be considered a
dialect where speakers use the semantics of the language but agree to use certain terms that are specific to their
community. A Binding Realm has a unique code: the Binding Realm Germany has a code of DE, and the
steward is HL7 Germany. In order to enable conformance, the name of the Binding Realm is carried in the
model instance.

In the interest of maximizing interoperability, interoperability spaces should be as large as possible: Binding
Realms are preferred to be large-grained. A Binding Realm is used to provide and manage the bindings of
Value Sets to reflect rules within a conformance space—e.g., a country.

12.1.8 Jurisdictional Domain 28

A Jurisdictional Domain identifies any body that may define and manage its own code systems or concepts,
including localization of a broader code system. It is specifically to allow for localization of certain concept
elements. A Jurisdictional Domain could be a country, group of countries, a territory (e.g. state), an SDO, an
individual organization or even department within an organization.

3 A Binding Realm is represented as a JurisdictionalDomain in the CTS2 model

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 147 of 148

1
2
3
4
5

6

8
9

10
11

12
13
14
15

16
17

18
19
20

21
22
23
24

25
26

27
28
29
30
31

32
33

34

Jurisdictional Domain is intended to encompass the HL7 concept of Realm, however is broader in scope than
an HL7 Realm. HL7 rules prohibit new codes being added to a code system locally, but do allow for
additional concept relationships, concept properties and designations. (However, any organization could use
the same model, interfaces etc. to define its own code systems for internal use.) This class provides the link to
those classes to enable the localization to be recorded and managed.

12.1.9 Value Set 7

A Value Set represents a uniquely identifiable set of valid concept representations, where any concept
representation can be tested to determine whether or not it is a member of the value set.

Value set complexity may range from a simple flat list of concept codes drawn from a single code system, to
an unbounded hierarchical set of possibly post-coordinated expressions drawn from multiple code systems.

A value set has a definition, which describes a set of codes referencing a collection of unique concept
identifiers, and can be resolved to an expansion, which is a set of concept designations defined by the concept
identifier. The collection of unique identifiers referenced by a value set are drawn from one or more code
systems. Each of these identifiers is represented by a code.

Value sets can be specified in two ways, either by enumeration (extension), or definition (intention).
Extensional Value Set Representation (Enumeration)

An extensionally defined, enumerated set consists of a list of unique identifiers and the corresponding globally
unique id. Whenever possible, it is strongly recommended that the value set identifier match the code used in
the code system itself.

Note, that while all of the entries in a value set may be valid at the time that the value set was defined, it is
quite possible that subsequent versions of a code system to retire some of the codes in the value set. For this
reason, it is important that both explicit and implicit undergo the “value set binding” set described in a
subsequent section.

Value sets defined by extension are comprised of an explicitly enumerated set of codes. The simplest case is
when the value set consists of only one code.

An intensional value set definition describes the contents of a value set in a way that the definition can be
resolved (ideally computationally) to a set of permissible values and unique identifiers. While the construction
rules can potentially be quite elaborate and possible specific to individual coding schemes, HL7 has identified
a core set of rules that appear to be useful in most circumstances. For the sake of value set definition
interoperability, HL7 strongly recommends that these algorithms be used whenever possible.

For example, an intensional value set definition might be defined as, “ SNOMED CT concepts that are
children of the SNOMED CT concept “Diabetes Mellitus.”

Implicit definitions can specify:

7 January 2010

HL7 Common Terminology Services 2 Service Functional Model

Page 148 of 148

3

5

10
11
12

 All active unique identifiers from a given coding system. 1
 All unique identifiers that participate in a specified relationship with a given local code in a coding 2

system, which may or may not include the specified code itself.
 The transitive closure of a specified transitive relationship with a given code, including or excluding 4

the code itself.
 A reference to another value set 6
 Other mechanisms that have to have external human or computational resolution. 7
 Unions, intersections and exclusions of any of the above 8
 Nested value set definition in which a value set entry references another value set (a child value set). 9

There is no preset limit to the level of nesting allowed within value sets. Value sets cannot contain
themselves, or any of their ancestors (i.e., they cannot be defined recursively). Nested value sets are
always intensionally defined in HL7.

	2.3.1 Key concepts of this specification
	3.1.1 CTS 2 Service
	3.1.2 Terminology User
	3.1.3 Terminology Administrator
	3.1.4 Terminology Enabled Application Developer
	3.1.5 Terminology Author / Curator
	3.1.6 Terminology Human Language Translator
	3.1.7 Terminology Mapper
	3.1.8 Terminology Provider
	3.1.9 Terminology Value Set Developer
	5.4 Properties
	5.5 Code System Partitions
	5.6 Code System Supplement
	6 Detailed Functional Model for each Interface
	6.2.3.5.1 Check Concept to Concept Domain Association
	6.2.4 Association related queries

	10.8 Post coordination
	11.1 HL7 Common Terminology Services

