LexEVS 6.0 Conceptual Functional Service Specification v.1.0

Conceptual Functional Service Specification

LexEVS 6.0
v1.0
	Architecture Inception Team
	Craig Stancl, Harold Solbrig, Sridhar Dwarkanath, Scott Bauer, Kevin Peterson, Traci St.Martin

	Editor
	Craig Stancl, Traci St.Martin

	Authors
	Craig Stancl, Scott Bauer, Kevin Peterson, Traci St.Martin

	Document Version
	Date
	Author
	Changes

	1.0
	5/4/2010
	Traci
	Information added from CTS2 SFM

	
	
	
	

Table of Contents

91
Overview and Business Case

91.1
Service Description and Purpose

101.2
Scope

121.3
Assumptions

162
Business Storyboards

162.1
Storyboards Overview

162.2
Primary Actors

162.2.1
People Actors

182.2.2
System Actors

182.3
Story Boards

182.3.1
Administrative Scenarios

212.3.2
Search / Query Scenarios

272.3.3
Authoring/Curation Scenarios

322.3.4
Association Scenarios

403
Detailed Functional Model

403.1
Structure of the Service

443.2
Detail of the Capabilities

804
Profiles

804.1
Functional Profiles

834.2
Semantic Profiles

854.3
Conformance Profiles

905
System Implementation Details

905.1
System Runtime Interaction Details

925.2
Implementation/Deployment Considerations

946
Conformance and Compliance

946.1
Compliance and Conformance Statements

967
Appendix A - Relevant Standards

978
Appendix B - References

989
Appendix C - Glossary

9910
Appendix D – Cross Reference Tables

9910.1
List of Storyboards

9910.2
Storyboards to Capabilities Mapping

10010.3
Actors

1 Overview and Business Case
1.1 Service Description and Purpose

The goal of the Common Terminology Services 2 (CTS 2) specification stack is to provide a standardized interface for the usage and management of terminologies. Terminologies provide the atomic building blocks of shared semantics, concepts. In a shared semantics environment, CTS2 provides a modular, common and universally deployable set of behaviors which can be used to deal with a set of terminologies chosen by the users of the service in their deployment environment. The service will contribute to interoperability by supporting an easy access to the foundational elements of shared semantics. It will also foster the authoring of high-quality terminologies via its authoring profile. This goal is realized via the expansion of the original functionality outlined in HL7’s Common Terminology Service (CTS) Specification. CTS 2 defines the functional requirements of a set of service interfaces to allow the representation, access, and maintenance of terminology content either locally, or across a federation of terminology service nodes.

The CTS 2 specification strives to expand on the original functionality outlined in HL7’s Common Terminology Service specification, specifically looking to:

1. Establish the minimal common structural model for terminology behavior independent from any specific terminology implementation or interchange model, and how it is related to meta-data (information about data) and data (the information itself)

2. Integrate into CTS 2 the functional coverage outlined in the existing CTS specification.

3. Specify both an information and functional model that addresses the relationships and use of terminology, e.g. how value sets are built and queried, and how terminological information is validated.

4. Specify the interactions between terminology providers and consumers – how terminology users can submit unambiguous requests for corrections and extensions and how revisions to content are identified, distributed and integrated into running systems.

5. Specify how mapping between compatible terminologies and data models is defined, exchanged and revised.

6. Specify how logic-based terminologies can be queried about subsumption and inferred relationships.

7. Engage broad community participation to describe the dimensions of use and purpose for vocabularies and value sets. This aim will attempt to harmonize these efforts in terms of models, use cases, and requirements for creating a functional model for CTS 2.

1.2 Scope

	Items
	Scope / Out of Scope
	Source

	Administration: This is a set of functionality that provides the ability to manage content as part of a terminology service. Administration functions include the ability to load terminologies, export terminologies, as well as the management of notifications. These functions are generally protected and accessible by service administrators with appropriate authorization.

	Scope
	CTS2 SFM

	Search/Query: This is a set of functionality that provides the ability to find concepts based on some search criteria. This includes restrictions to specific associations or other attributes of the terminology, including navigation of associations for result sets. This represents the primary utility for using terminology content in a number of application contexts. The CTS 2 Query Profile includes capabilities for searching and querying terminology content as well as representing terminology content in the appropriate formats.
	Scope
	CTS2 SFM

	Authoring/Maintenance: This is a set of functionality that provides the ability to create and maintain content. From a terminology service perspective, this would include the appropriate APIs to add, change, or delete concepts and associations. This would also include the processing of change events from various terminology providers.

	Scope
	CTS2 SFM

	Associations: This is a set of functionality that provides the ability to map concepts and the concept's associated attributes from a source terminology to a concept in a target terminology, or create relationships between concepts within a single code system.
	Scope
	CTS2 SFM

1.3 Assumptions

	Assumption
	Affects
	Source

	Dependencies on other Service Frameworks
	As a service specification, the original CTS specified service discovery APIs. We assume that for CTS 2 a service discovery framework (e.g. using the Universal Description, Discovery and Integration [UDDI] registry) is available to aid with discovery and query of the CTS 2 service, and that the service is queriable by the common service metadata attributes outlined in the Service Discovery framework, in addition to terminology service specific metadata.
	CTS2 SFM

	Message API Support (MAPI)
	In the original CTS, the Message API component is specific to HL7. Its primary purpose is to allow a wide variety of message processing applications to create, validate and translate CD (concept descriptor)-derived data types in a consistent and reproducible fashion. It is assumed that this level of functionality will remain specific to HL7, and as such will be managed through the development of a profile specific to HL7.

	CTS2 SFM

	General CTS API Support
	Unless otherwise indicated, it is assumed that CTS 2 provides the functional coverage required for backwards compatibility to CTS. It is assumed that areas where CTS 2 compatibility with CTS will vary include areas such as:

· HL7 Datatypes - Where the version of the datatypes has been updated since CTS was developed.

· Service Discovery - The CTS service discovery APIs are no longer needed assuming the existence of Service Discovery infrastructure.

· Separating MAPI APIs into a HL7 specific terminology profile.

	CTS2 SFM

	Operations on ISO21010 CD datatype
	The ISO21090 datatype Concept Descriptor is a reference to a concept defined in an external code system, terminology, or ontology. From an HL7 perspective, at the tooling/application level, high level operations dealing with the relationships between CDs are needed. Such operations include subsumption relationship of two CDs, CD translation equivalence as well as CD clusters related operations. Because CTS2 is a utility service, it will not provide these operations. However, these operations can be obtained be combining lower level CTS2 operations.

	CTS2 SFM

2 Business Storyboards

2.1 Storyboards Overview

2.2 Primary Actors

2.2.1 People Actors

	Name
	Role
	Notes

	Terminology User
	An actor such as a subject matter expert, terminologist or terminology enabled application.
	Terminology User activities include, but are not limited to, querying for specific concept codes and browsing or comparing value sets. (CTS2 SFM)

	Terminology Administrator
	An actor responsible for ensuring the availability and overall maintenance of the terminology server
	This includes, but is not limited to loading content into the terminology server, and making available the required functionality to address the specific conformance profiles implemented by the Terminology Server instance. (CTS2 SFM)

	Terminology Enabled Application Developer
	A Terminology Enabled Application Developer is an actor who is responsible for the development of software applications that make explicit use of controlled terminologies
	(CTS2 SFM)

	Terminology Author/Curator
	An actor who is responsible maintaining terminology content, including but not limited to, the development of new concepts and associations that may be submitted to the Terminology Provider or the extension of an existing terminology with local concepts
	This may also determine who can validate and perform quality control of terminology content. Terminology Authors / Curators may not necessarily belong to the Terminology Provider's organization. (CTS2 SFM)

	Terminology Human Language Translator
	An actor with domain knowledge who is also familiar with the languages and dialects which they are responsible for translating.
	(CTS2 SFM)

	Terminology Mapper
	An actor (human or system) that is responsible for creating or maintaining specialized associations, or "mappings" between concepts from different code systems.
	(CTS2 SFM)

	Terminology Provider
	The actor the individuals or organization that is responsible for the development of Terminology Content.
	(CTS2 SFM)

	Terminology Value Set Developer
	An actor with specific domain knowledge, as well as expertise in controlled terminologies who develop s and maintains domain-or application-specific terminology value sets.
	(CTS2 SFM)

2.2.2 System Actors
	Name
	Notes

	LexEVS
	LexEVS API

2.3 Story Boards

2.3.1 Administrative Scenarios
The administration scenarios are intended to provide the functional operations necessary for terminology administrators to be able to access and make available terminology content obtained from a Terminology Provider. Terminology Administrators are required to interface with Terminology Provider systems in order to obtain the terminology content, then load that terminology content on local Terminology Servers.

2.3.1.1 ADS-SB1: Import Content
	Outline
	Administrative Scenario – import content

	Detail
	A Terminology Administrator is required to make available terminology content from a Terminology Provider available to Terminology Users through a Terminology Server. This may or may not include the removal of a previously loaded terminology content from the terminology server. To accomplish this, the Terminology Administrator may be required to convert the content from the format provided by the Terminology Provider to a format that the Terminology Server is capable of importing (the conversion being out of scope of this service). Example of terminology content that may be available for loading into the Terminology Server include but is not limited to:

· Source terminologies (complete sources and deltas)

· Value Sets

· Mappings

These content sources may either be new sources, or updated versions of an previously existing content sources.

2.3.1.2 ADS-SB2: Export Content
	Outline
	Administrative Scenario – export content

	Detail
	A Terminology Administrator is required to export a terminology or terminology value set from the Terminology Server. This may require filtering of the exported content. In cases where standard or common terminology interchange formats are available (such as HL7 Vocabulary MIF or LexGrid), conversion of content on the CTS 2 server into said standard would be considered.

Associated Functional Models: Export Code System Content, Export Association

2.3.1.3 ADS-SB3: Decommission Terminology Content
	Outline
	Administrative Scenario – Decommission Terminology content

	Detail
	A Terminology Administrator is required to decommission a terminology or terminology version from the terminology service, rendering it unavailable for subsequent access by other service functions.

Associated Functional Models: Import Code System, Import Code System Revision, Import Association Version, Import Value Set Version

2.3.1.4 ADS-SB4: Change Content Status
	Outline
	Administrative Scenario – Change Content Status

	Detail
	A Terminology Administrator is required to activate or inactivate a given terminology, thus changing its availability for access by other terminology service functions.

Associated Functional Models: Change Code System Status

2.3.1.5 ADS-SB5: Update Notification

	Outline
	Administrative Scenario – Update Notification

	Detail
	A Terminology User has a dependency on a specific terminology element that is available to a Terminology Server. The Terminology User is interested in knowing when this terminology element is modified in any way, and would like to receive an electronic notification in the event of that change to that terminology element

Associated Functional Models: Register for Notification

2.3.1.6 ADS-SB6: Update Notification Management

	Outline
	Administrative Scenario – Update Notification Management

	Detail
	A Terminology User is required to update the notification information pertinent to their notification account.

Associated Functional Models: Update Notification Registration, Update Notification Registration Status

2.3.1.7 ADS-SB7: Content Dependency Notification

	Outline
	Administrative Scenario – Content Dependency Notification

	Detail
	A Terminology Administrator is required to run a dependency check to compare updated content for a given code system, against the version of that code system currently used by the Terminology Administrator’s organization. For example, to provide a list of all terminology elements which are somehow affected by upgrading to a newer version of a terminology.

Associated Functional Models: Register for Notification, Update Notification Registration, Update Notification Registration Status

2.3.2 Search / Query Scenarios
The scenarios in this section describe the ability to query code system and value set. These scenarios attempt to outline the information requirements for querying.

In each scenario below, the Terminology User may need to specify additional information pertaining to the query. This information may include:

· The ability to determine the status of metadata or contents of a code system, value set as it existed in a specified version, where version represents a meta-data component used to filter the result set of the query.

2.3.2.1 SQS-SB1: Retrieve Available Code Systems

	Outline
	Code System Search /Query Scenario – Retrieve Available Code Systems

	Detail
	A Terminology User wants to determine what code systems are available through a specific instance of a Terminology Service. The Terminology User is interested in seeing a listing of the available code systems, as well as the details pertaining to each code systems available through a specific Terminology Service instance.

Associated Functional Models: List Code Systems, Return Code System Details

2.3.2.2 SQS-SB2: Retrieve Coded Concepts from Code System

	Outline
	Code System Search /Query Scenario – Retrieve Coded Concepts from Code Systems

	Detail
	A Terminology User wants to browse or query the content of a specific code system. The Terminology User is interested in seeing a listing of specific coded concepts, associated attributes, as well as the metadata pertaining to each coded concept that meets some search criteria. For example, after a retrieval of concepts has been performed, the result set could be fed to a terminology browsing GUI

Associated Functional Models: List Code System Concepts, Return Concept Details

2.3.2.3 SQS-SB3: Validate Concept in Code System
	Outline
	Code System Search /Query Scenario Scenario – Validate Concept in Code System

	Detail
	A Terminology User wants to validate that a given concept exists in a given code system.

Associated Functional Models: List Code System Concepts

2.3.2.4 SQS-SB4: Identify Concept Language Translations

	Outline
	Code System Search /Query Scenario – Identify Concept Language Translations

	Detail
	A Terminology User wants to determine what (if any) alternate language representations exist for a given Concept.

Associated Functional Models: Return Concept Details

2.3.2.5 SQS-SB5: Retrieve Concept Representations
	Outline
	Code System Search /Query Scenario – Retrieve Concept Representations

	Detail
	A Terminology User wants to determine what (if any) alternate representations (designations) exist for a given Coded Concept. Examples of alternate representations for a concept may include abbreviations, or synonyms.

Associated Functional Models: Return Concept Details, List Value Set Contents (Expand value set)

2.3.2.6 SQS-SB6: Compare Code System Versions
	Outline
	Code System Search /Query Scenario – Compare Code System Versions

	Detail
	A Terminology User wants to determine what differences exist between different versions or instances of a code system.

Note that the Service calls just return the required Code systems and concept information. Carrying out the side by side comparison would be a client function.

Associated Functional Models: Return Code System Details, List Code System Concepts

2.3.2.7 SQS-SB7: Retrieve Available Value Sets
	Outline
	Value Set and Concept Domain Search /Query Scenario – Retrieve Available Value Sets

	Detail
	A Terminology User wants to determine what value sets are available through a specific instance of a Terminology Service. The Terminology User is interested in seeing a listing of the available value sets that match some search criteria, as well as the details pertaining to each value set available through a specific CTS 2 Service instance.

Associated Functional Models: List Value Sets, Return Value Set Details

2.3.2.8 SQS-SB8: Retrieve Coded Concepts from Value Set
	Outline
	Value Set and Concept Domain Search /Query Scenario – Retrieve Coded Concepts from Value Set

	Detail
	A Terminology User wants to browse or query the content of one or more value sets. The Terminology User is interested in seeing a listing of specific coded concepts, as well as the details pertaining to each coded concept in any of the given value sets. For example, the Terminology User may want to search for some criteria over a set of value sets.

Associated Functional Models: List Value Set Contents (Expand value set), Return Concept Details

2.3.2.9 SQS-SB9: Retrieve Available Concept Domains
	Outline
	Value Set and Concept Domain Search /Query Scenario – Retrieve Available Concept Domains

	Detail
	A Terminology User wants to determine what Concept Domains and Usage Contexts are available through a specific instance of a Terminology Service. The Terminology User is interested in seeing a listing of the available concept domains that match some search criteria.

Associated Functional Models: List Concept Domains, Return Concept Domain Details, List Usage Contexts, Return Usage Context Details

2.3.2.10 SQS-SB10: Retrieve Coded Concepts for Concept Domain via Value Set Membership
	Outline
	Value Set and Concept Domain Search /Query Scenario – Retrieve Coded Concepts for Concept Domain via Value Set Membership

	Detail
	A Terminology User wants to browse or query the content of one or more value sets and contained concept codes that are related to a specific Concept Domain (and optionally Usage Context) via a value set membership. The Terminology User is interested in seeing a listing of specific coded concepts, as well as the details pertaining to each coded concept in any of the given Concept Domains. (Note that this involves finding the value set bindings and then querying the value sets, although the service should hide that from the user to some degree).

Associated Functional Models: List Concept Domain Bindings, Return Concept Details, Return Usage Context Details, List Value Set Contents (Expand value set)

2.3.2.11 SQS-SB11: Validate Coded Concept in Value Set
	Outline
	Value Set and Concept Domain Search /Query Scenario – Validate Coded Concept in Value Set

	Detail
	A Terminology User wants to validate that a given concept exists in a given value set. The value set may optionally be bound to a Concept Domain and Usage Context.

Associated Functional Models: Check Concept Value Set Membership, Check Concept to Concept Domain Association

2.3.2.12 SQS-SB12: Compare Value Set Versions
	Outline
	Value Set and Concept Domain Search /Query Scenario – Compare Value Set Versions

	Detail
	A Terminology User wants to determine what differences exist between different versions of a value set.

Value Sets can be defined as either enumerations of concepts (extensional value set), or by expression syntax that defines the content of the Value Set.

In the case of an Enumerated Value Set, the specific Value Set version identifier can be used as a compare point for the two value sets. For Intensionally defined Value Sets, the compare point is the set of concepts that are resolved at the point in time that is specified, or the current time the function is called. The time that may be specified is usually the time used in a specific STATIC binding of interest.

NOTE : Service calls just return the required Value Set information. Carrying out the side by side comparison would be a client function.

Associated Functional Models: Return Value Set Details, List Value Set Contents (Expand value set)

2.3.3 Authoring/Curation Scenarios
This section outlines the requirements of terminology systems that provide the capability of making changes to terminology elements such as code system or value sets. This includes both the direct modification of terminology content for use by individuals responsible for terminology authoring and curation. Such functionality includes:

· adding new concepts into a code system

· adding new relationships into a code system

· extending a code system with local terms

· creating or modifying value sets

· modifying other code system content and attributes

· Capability for validation of authoring requests without commit
In addition to direct modification of terminology content, this section also specifies functionality with the capability of creating structured change requests for consideration by terminology maintainers. This functionality is key in allowing Terminology Providers to solicit feedback pertaining to terminology structure and content from Terminology Users in a controlled and structured manner.

2.3.3.1 ACS-SB1: Create Code System
	Outline
	Code System Authoring/Curation Scenario – Create Code System

	Detail
	A Terminology Author is required to create a new Code System to contain a set of new coded concepts. The Code System is created by defining the set of meta-data properties that describe it.

Associated Functional Models: Create Code System

2.3.3.2 ACS-SB2: Maintain Code System
	Outline
	Code System Authoring/Curation Scenario – Maintain Code System

	Detail
	As part of ongoing terminology maintenance, a Terminology Author is required to perform maintenance to the defining characteristics of an existing code system.

Associated Functional Models: Maintain Code System Version, Update Code System Version Status, Maintain Code System Supplement

2.3.3.3 ACS-SB3: Create Concept
	Outline
	Code System Authoring/Curation Scenario – Create Concept

	Detail
	A Terminology Author is required to create a concept to be included in a Code System.

For example, as part of providing Terminology Service infrastructure to another department, a Terminology Author is required to add additional concept codes to a code system to represent the domain concepts that are important to the new department.

The new concept is defined by the set of meta-data properties that describe it, which may include its proper placement via association binding within the hierarchy of the Code System.

Associated Functional Models: Create Concept

2.3.3.4 ACS-SB4: Maintain Concept
	Outline
	Code System Authoring/Curation Scenario – Maintain Concept

	Detail
	A Terminology Author is required to maintain a concept. This includes but is not limited to functionality such as:

· making updates to the associated concept attributes,

· changing the presentation,

· changing preferred name,

· changing synonymy,

· technical corrections to the concept

· modifying the associations bound to concepts

· deprecating a concept

· deprecating a concept and superseding it with another concept

These types of changes may result in a new version of the code system being modified depending on the versioning policy of the terminology publisher.

Associated Functional Models: Maintain Concept, Update Concept Status

2.3.3.5 ACS-SB5: Create Value Set
	Outline
	Value Set Authoring/Curation Scenario – Create Value Set

	Detail
	A Terminology User is required to create a value set by intension or extension. Both of them can be defined by a computable expression that can be resolved to an exact list of coded concepts at any given point in time. For example, an intensional value set might be expressed as, SNOMED CT concepts that are children of the SNOMED CT concept “Diabetes Mellitus.” An extensionally defined value set is an enumerating rule.

NOTE : When creating a value set, the Terminology User may or may not bind the value set definition to a specific version of the Code System(s) from which the concepts are being drawn. If the value set expression is bound to a specific version of the Code System(s), the value set will always resolve the same set of concept codes for any given version of the value set (see static binding in Core Principles). If the value set expression is not bound to a specific version of the Code System(s), the value set will resolve a different set of concept codes as the version (and presumably contents) of the Code System changes (see dynamic binding in Core Principles).

Examples of expressions (or Examples of Rule Sets):

· All active unique identifiers from a given coding system.

· All unique identifiers that participate in a specified relationship with a given local code in a coding system, which may or may not include the specified code itself.

· The transitive closure of a specified transitive relationship with a given code, including or excluding the code itself.

· A reference to another value set

· Other mechanisms that have to have external human or computational resolution.

· Nested value set definition is a rulein which a value set entry references another value set (a child value set). There is no preset limit to the level of nesting allowed within value sets. Value sets cannot contain themselves, or any of their ancestors (i.e., they cannot be defined recursively).

· Unions, intersections and exclusions of any of the above

· A list of concept identifiers from one or more code systems

· Additional details and examples can be found at: http://wiki.hl7.org/index.php?title=Category:V3_Methodology_Requirements
Associated Functional Models: Create Value Set

2.3.3.6 ACS-SB6: Maintain Value Set (meta-data)
	Outline
	Value Set Authoring/Curation Scenario – Maintain Value Set (meta-data)

	Detail
	As part of ongoing value set maintenance, a Terminology Author is required to perform maintenance to the descriptive characteristics of an existing value set.

Associated Functional Models: Maintain Value Set

2.3.3.7 ACS-SB7: Maintain Value Set
	Outline
	Value Set Authoring/Curation Scenario – Maintain Value Set

	Detail
	A Terminology User is required to maintain (i.e. remove or update) a value set which will create a new value set version.

For example, a Terminology User identifies an error in how a value set is defined. A Terminology Author corrects the error in the value set to be accurate to the understanding of the Terminology User.

Associated Functional Models: Maintain Value Set, Update Value Set Status

2.3.3.8 ACS-SB8: Create Concept Domain
	Outline
	Concept Domain and Usage Context Authoring/Curation Scenario – Create Concept Domain

	Detail
	A Terminology Author is required to create a Concept Domain.

Associated Functional Models: Create Concept Domain

2.3.3.9 ACS-SB9: Usage Context
	Outline
	Concept Domain and Usage Context Authoring/Curation Scenario – Usage Context

	Detail
	A Terminology User is required to create a Usage Context within a Jurisdictional Domain. (It is assumed that Jurisdictional Domains themselves would be created as part of system configuration.

Associated Functional Models: Create Usage Context

2.3.3.10 ACS-SB10: Maintain Concept Domain
	Outline
	Concept Domain and Usage Context Authoring/Curation Scenario – Maintain Concept Domain

	Detail
	A Terminology Author is required to maintain a concept domain, including the ability for a Terminology User to identify the value set bindings for specific usage contexts.

Associated Functional Models: Maintain Concept Domain

2.3.3.11 ACS-SB11: Maintain Usage Context
	Outline
	Concept Domain and Usage Context Authoring/Curation Scenario – Maintain Usage Context

	Detail
	A Terminology User is required to maintain a Usage Context.

Associated Functional Models: Maintain Usage Context

2.3.4 Association Scenarios
The scenarios in this section describe the ability to create, query and maintain associations between coded concepts. These coded concepts may or may not come from the same code system, and as such can describe intra-code system associations as well as inter-code system associations (mappings) across different systems.

These scenarios attempt to outline the information requirements for associations. Since the behavior is similar for both types of association, a single set of operations are defined. Where an information model distinction exists, specific semantic profiles could be defined. In each scenario below, the Terminology Mapper may need to specify additional information pertaining to the source / target association of interest. This information may include:

· The version of the source and target code systems being used to create the association, or,

· The code system of interest, whether that pertains to a single code system or more than one code system

· The version of the source and target code systems being used to create the association, or,

· The cardinality of the association, i.e.: if the association is one-to-one, one-to-many, many-to-one, or many-to-many.

Additionally, the type of associations may include, but are not limited to:

· if the source concept is an exact match to the target concept,

· if the source concept is equivalent to the target concept,

· if the source concept is broader than the target concept,

· if the source concept is narrower than the target concept

· Other examples are generic-to-brand name, ingredient-variant-of, etc.

2.3.4.1 AS-SB1: Enumerate Association Types
	Outline
	Association Administrative Scenarios – Enumerate Association Types

	Detail
	A Terminology User wants to determine the set of association types (AssociationType) that are available on a terminology server.

Associated Functional Models: List Association Types, Return Association Type Details

2.3.4.2 AS-SB2: Identify / Retrieve Associations for a Single Concept
	Outline
	Association Administrative Scenarios – Identify / Retrieve Associations for a Single Concept

	Detail
	A Terminology User wants to identify all the associations that exist for a given concept. This includes both direct and indirect relationships, and may be depth limited where appropriate. This includes concept relationships (associations for the concept that are within its native code system) or concept maps (associations between the specified concept code system and another code system) or both. Returns a set of triples: the source, the target and the association

Associated Functional Models: List Concept Associations, Return Association Details

2.3.4.3 AS-SB3: Identify / Retrieve Associations between Two or More Coded Concepts
	Outline
	Association Administrative Scenarios – Identify / Retrieve Associations between Two or More Coded Concepts

	Detail
	A Terminology User is required to provide a listing of the associations that exist between coded concepts. For example, these associations may be required as part of a government regulatory compliance review or audit.

This includes concept relationships (associations for the concept that are within its native code system) or concept maps (associations between the specified concept code system and another code system) or both. Returns a set of triples: the source, the target and the association.

Associated Functional Models: List Concept Associations, Return Association Details

2.3.4.4 AS-SB4: Import Associations
	Outline
	Association Administrative Scenarios – Import Associations

	Detail
	A Terminology User is required to make new associations available through a Terminology Server. This may or may not include the removal of previously loaded associations from the terminology server. This may include importing a set of mappings between or within code systems.

Associated Functional Models: Import Association Version

2.3.4.5 AS-SB5: Export Associations
	Outline
	Association Administrative Scenarios – Export Associations

	Detail
	A Terminology User wants to export association type instances from the Terminology Server. This may require filtering of the content and converting the format of the export.

Associated Functional Models: Export Association

HYPERLINK

2.3.4.6 AS-SB6: Remove Associations
	Outline
	Association Administrative Scenarios – Remove Associations

	Detail
	A Terminology User is required to remove (deprecate) associations or association versions from the terminology service, rendering them unavailable for subsequent access by other service functions.

Associated Functional Models: Update Association Status

2.3.4.7 AS-SB7: Retrieve Available Associations
	Outline
	Association Search/Query Scenarios – Retrieve Available Associations

	Detail
	A Terminology User wants to determine what associations are available on the terminology service by browsing a list of available associations on the CTS 2 instance. The service differentiates between coded concept relationships and coded concept maps available for any specified concept.

Associated Functional Models: List Concept Associations

2.3.4.8 AS-SB8: Validate Associations
	Outline
	Association Search/Query Scenarios – Validate Associations

	Detail
	A Terminology User wants to validate that a given association or set of associations are available on the CTS 2 service instance based upon specific search criteria.

Associated Functional Models: List Concept Associations

2.3.4.9 AS-SB9: Retrieve Association Metadata
	Outline
	Association Search/Query Scenarios – Retrieve Association Metadata

	Detail
	A Terminology User wants to retrieve metadata on available associations in the CTS 2 service instance. This may include metadata regarding the code system(s) employed, versions, authoring / curation content or additional data hosted on the CTS server designated to be used by external systems (i.e.: XML encoded or OWL formatted mapping rule content).

Associated Functional Models: Return Association Details

2.3.4.10 AS-SB10: Compare Association Versions
	Outline
	Association Search/Query Scenarios – Compare Association Versions

	Detail
	A Terminology User wants to compare two or more versions of an association on a CTS 2 service instance by viewing each association version’s identifying information or metadata. Retrieval is provided by the service, the actual comparison will be the responsibility of the service client application.

Associated Functional Models: Return Association Details

2.3.4.11 AS-SB11: Request / Retrieve Association Instance
	Outline
	Association Search/Query Scenarios – Request / Retrieve Association Instance

	Detail
	A Terminology User would like to request or retrieve metadata about an association from a CTS2 instance.

Associated Functional Models: Return Association Details

2.3.4.12 AS-SB12: Compute Transitive Closure
	Outline
	Association Search/Query Scenarios – Compute Transitive Closure

	Detail
	A Terminology User want to compute the transitive closure of a binary relation such that whenever (a,b) and (b,c) are in the extension, (a,c) is also in the extension.

Associated Functional Models: Determine Transitive Closure Relationship

2.3.4.13 AS-SB13: Subsumption
	Outline
	Association Search/Query Scenarios – Subsumption

	Detail
	A Terminology User wants to determine if a concept is incorporated under a more general category. Examples of subsumption relationships are: A is-a B, A is-part-of B, A is-specialization-of B.

Associated Functional Models: Compute subsumption relationship

2.3.4.14 AS-SB14: Create / Maintain an Association between Coded Concepts
	Outline
	Association Author/Curation Scenarios – Create / Maintain an Association between Coded Concepts

	Detail
	A Terminology User wants to create or maintain (i.e. remove or update) an association between coded concepts. For example, these associations may be required to map a local Code System to standard Code Systems in order to be compliant with regulatory reporting policies.

NOTE: Only "create" operations have been identified since it is viewed that any changes to a relationship definition (other than state changes, which are included in a separate operation) are in fact definitions of new relationships (i.e. the rules for the relationship define the relationship, and are not something separate or merely properties. It is possible that the technical specification may introduce update operations, but at this level would not add meaning).

Search criteria may be accompanied by a "match algorithm code" that determines how the search text will be applied. The table below (from CTS) provides an example set of match algorithms.

NOTE: Refer to section 10.10 for details on the matching algorithm.

Associated Functional Models: Create Concept Association

2.3.4.15 AS-SB15: Create Association Type
	Outline
	Association Author/Curation Scenarios – Create Association Type

	Detail
	A Terminology Author is required to create a new association type that may be used to link two concepts.

Associated Functional Models: Create Concept Association Type

2.3.4.16 AS-SB16: Maintain Association Type
	Outline
	Association Author/Curation Scenarios – Maintain Association Type

	Detail
	A Terminology Author is required to modify or deprecate an association type that may be used to link two concepts.

Associated Functional Models: Maintain Concept Association Type

2.3.4.17 AS-SB17: Create Lexical Association
	Outline
	Association Author/Curation Scenarios – Create Lexical Association

	Detail
	A Terminology User wants to instantiate an association between two sets of coded concepts using a set of lexical rules (matching algorithms) to generate the associations.

NOTE: This operation is likely not an automated process, as many terminologies do not possess the ontological structures necessary to instantiate additional associations automatically. This however should not preclude the automated creation of associations for terminologies with the ontological infrastructure necessary to enable reasoning engines to effectively instantiate new associations.

Associated Functional Models: Create Lexical Association Between Coded Concepts

2.3.4.18 AS-SB18: Create Rules Based Association
	Outline
	Association Author/Curation Scenarios – Create Rules Based Association

	Detail
	A Terminology User wants to instantiate an association between two sets of coded concepts using a set of description logic or inference rules that either assert or infer mappings between two Code Systems.

NOTE: This operation is likely not an automated process, as many terminologies do not possess the ontological structures necessary to instantiate additional associations automatically. This however should not preclude the automated creation of associations for terminologies with the ontological infrastructure necessary to enable reasoning engines to effectively instantiate new associations. These associations may be subject to human review to verify validity.

Associated Functional Models: Create Rules Based Association Between Coded Concepts

3 Detailed Functional Model
3.1 Structure of the Service

	Name
	Description

	Import Code System
	Installs a code system (aka terminology) into the terminology service for subsequent access by other service functions.

	Import Code System Revision
	Installs either an entire new version or the necessary revision updates for an already loaded code system (terminology) into the terminology server repository (content included by value or by reference to a location).

	Import Value Set Version
	Installs a value set version into the terminology service for subsequent access by other service functions.

	Import Association Version
	Installs a set of code system associations (mappings) into the terminology service for subsequent access by other service functions.

	Export Association
	Exports association type instances from a code system applying filter criteria

	Export Code System Content
	Exports a code system (terminology), subset criteria (specific set of concepts and/or associations/maps from the Terminology Server by filtering the content and converting to the requested format for export (according to the semantic profile of the deployment jurisdiction).

	Change Code System Status
	Changes the state of a code system. (Includes inactivation, activation etc.)

	Register for Notification
	Register to be notified whenever a vocabulary element (code system, value set, concept or relationship) is modified in any way.

	Update Notification Registration
	Revises a notification entry for a particular vocabulary element.

	Update Notification Registration Status
	Changes the status of a notification entry for a particular vocabulary element (suspend, reinstate, cancel, remove).

	List Code Systems
	List the code systems available on this instance of the CTS 2 Service that match entered filter criteria.

	Return Code System Details
	Returns the details (metadata) for a given code system available on the terminology service

	List Code System Concepts
	Returns the set of all concepts (and concept codes) in the specified code system, optionally filtered by input criteria, such as state or specific concept property, e.g. values.

	Return Concept Details
	Returns the details for the known attributes (metadata) of a coded concept

	List Association Types
	List association types that are available on a terminology server that match entered filter criteria (e.g. code system, code system version).

	Return Association Type Details
	Returns the details for the known attributes (metadata) of a relationship type.

	List Value Sets
	Lists the value sets that are available to the CTS 2 service.

	Return Value Set Details
	Look up detailed information (metadata) for a given value set.

	List Value Set Contents (expand value set)
	Lists out the contents (entries) of a given value set, filtering based on input criteria

	Check Value Set Subsumption
	Determine whether one of the two supplied value sets subsumes the other

	Check Concept Value Set Membership
	Determine whether the supplied coded concept exists in the supplied value set

	List Concept Domains
	Lists the concept domains that are available to the CTS 2 service.

	Return Concept Domain Details
	Look up detailed information (metadata) for a given concept domain.

	List Usage Contexts
	Lists the usage contexts that are available to the CTS 2 service.

	Return Usage Context Details
	Look up detailed information (metadata) for a given usage context.

	List Concept Domain Bindings
	List the value set identifier and metadata for the specified domain bindings.

	Check Concept to Concept Domain Association
	Determine whether the supplied coded concept exists in a code system in use for the specified concept domain, optionally within specific usage contexts.

	List Associations
	List the Association available on an instance of the CTS 2 Service that match a set of input filter criteria

	Determine Transitive Concept Relationship
	Determine whether there exists a transitive relationship between two concepts, if it exists, provide the association path.

	Compute Subsumption Relationship
	Subsumes tests whether the parent coded attribute subsumes (is implied by) the child. If ParentCodeSystemNode nor ChildCodeSystemNode are non compositional and are both drawn from the same code system, subsumes returns true if and only if ChildCodeSystemNode can be determined to belong to the transitive closure of the hasSubtype relationship graph headed by ParentCodeSystemNode.

	Return Association Details
	Look up detailed information (metadata) for a given association

	Create Code System
	Create a new Code System to contain a set of new coded concepts.

	Maintain Code System Version
	Update Code System meta-data properties.

	Update Code System Version Status
	Changes the status of a code system version (suspended, reinstated, canceled, removed).

	Create Code System Supplement
	Create a new Code System Supplement as a container of a set of concepts and concept properties to be appended to a target code system. Does not add the concepts and properties.

	Maintain Code System Supplement
	Update Code System Supplement meta-data properties and add concepts and properties to code system.

	Create Concept
	Create concept to be included in a Code System.

	Maintain Concept
	Update Concept meta-data properties.

	Update Concept Status
	Changes the status of a code system concept (suspend, reinstate, cancel, remove).

	Create Association Type
	Create a new relationship type (as intended by the association type class of the conceptual model), an instance of which may be used to link two concepts.

	Maintain Association Type
	Update or deprecate an Association type that may be used to link two concepts.

	Create Value Set
	Create a Value Set (extensional or intentional) that is defined by a computable expression that can be resolved to an exact list of coded concepts at any given point in time.

	Maintain Value Set
	Update properties or expression of a value set definition (extensional and intentional value sets).

	Update Value Set Status
	Changes the status of a value set version (suspend, reinstate, cancel, remove).

	Create Concept Domain
	Create a Concept Domain.

	Maintain Concept Domain
	Update properties of a Concept Domain, including bindings to value sets within usage contexts

	Create Usage Context
	Create a Usage Context.

	Maintain Usage Context
	Update properties of a Usage Context

	Update Association Status
	Update the status of a association (active, inactive, cancelled etc).

	Create Association
	Relates a single specific coded concept within a specified code system (source) to a corresponding single specific coded concept (target) within the same or another code system, including identification of a specified Association type.

	Create Lexical Association between Coded concepts
	Relates a set of one or more coded concepts within a specified code system (source)to a corresponding set of one or more coded concepts (target) within that system or another code system using a set of lexical rules (matching algorithms) to generate the Association.

	Create Rules Based Association between Coded Concepts
	Relates a set of zero or more coded concepts within a specified code system (source)to a corresponding set of zero or more coded concepts (target) within that system or another code system using a set of description logic or inference rules that either assert or infer Associations.

3.2 Detail of the Capabilities
	Name [M]
	Import Code System

	Description [M]
	Installs a code system (aka terminology) into the terminology service for subsequent access by other service functions. This operation is used for the initial install of the overall terminology structure itself. This may include the full set of concepts, relationships and so on, or some of these elements may be loaded using the Import Code System Revision operation. The actual contents may be supplied by value or reference, i.e. as a complete set of explicit content or as a reference to a location where the content can be separately obtained for loading.

	Pre-Conditions [M]
	1. Code System source is available in a format directly consumable by CTS 2 import tools.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System ID

2. Code System Description (optional)

3. Code System Administrative Info (optional)

4. Code System Version (see model for class description)

5. Code System Contents (i.e. either:

Source Location (URI) OR Code System Contents (Concepts, Concept Properties, ConceptAssociations, Designations etc.)

	Outputs [M]
	1. An acknowledgment indicating whether the terminology has been successfully loaded or not.

	Post-Conditions [O]
	1. The code system is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Code system not found at source location

2. Supplied contents cannot be processed (may be a number of specific errors)

(Information pertaining to all failures is logged and reported for analysis and serviceability.)

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Import Content, Import Associations

	Name [M]
	Import Code System Revision

	Description [M]
	Installs either an entire new version or the necessary revision updates for an already loaded code system (terminology) into the terminology server repository (content included by value or by reference to a location).

Includes indicator as to whether intent is to replace whole code system or just replace some elements (codes, associations etc), cf. Maintain Concept

	Pre-Conditions [M]
	1. Code System revision source is available in a format directly consumable by CTS 2 import tools

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Revision Source ID

2. Code System ID

3. Current Code System Version ID (optional)

4. New Code System Version (class)

5. Scope of Replacement (encoded and description)

6. Code System Location (URI) .. OR ..

7. Updated Contents (Concepts, Concept Properties, ConceptAssociations, Designations etc.)

	Outputs [M]
	1. An acknowledgment indicating whether the terminology revision has been successfully loaded or not.

	Post-Conditions [O]
	1. The code system revision is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Code System does not exist.

2. Code System source is not consumable by CTS 2 import tools.

3. Code System not found at source location

4. Supplied contents cannot be processed (may be many different error conditions)

(Information pertaining to the failures is logged and reported for analysis and serviceability.)

	Aspects left for Technical Bindings [O]
	Detailed specification of the mechanism to recognize the specific information structures that may be imported.

	Notes [O]
	CTS2 SFM

Asso Code System revisions may be available as either:

1. complete code systems

2. set of deltas to be applied sequentially to the previous version.

In either case, all previous versions/iterations should be available until specifically removed.

Depending on the scope of the actual import, many different information structures may be included. One particular area (Associations) is expanded in more detail below. This could include elements such as:

1. Association Identifier (if known)

2. Association Description

3. Association Source Code System Id and Concept Code

4. Association Target Code System Id and Concept Code

5. Association Type

6. Association Restrictions

7. Association Cardinality

8. Association Group

9. Association Order

10. Association is Reciprocal

11. Association is Refinable

12. Association is Transitive

13. Association is Cyclic

14. Association is Inheritable

15. Association Curation / Authoring Information

16. External systems association data hosted on the CTS server (e.g. XML encoded or OWL formatted mapping rule content).

Associated Scenarios: Import Content. Import Associations

	Name [M]
	Import Value Set Version

	Description [M]
	Installs a value set version into the terminology service for subsequent access by other service functions. This operation may also be used for the initial installation of the value set. The value set contents may be explicitly provided, or may be resolved at run time in the case of intentional value sets (where the value set is defined as a computable expression).

	Pre-Conditions [M]
	1. Value set source is available in a format directly consumable by CTS 2 import tools.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Value Set ID

2. Value Set Description (optional)

3. Value Set Administrative Info (optional)

4. Value Set Version (see model for class description)

5. Value Set Contents (ruleSetID)

OR Value Set Contents)

	Outputs [M]
	1. An acknowledgment indicating whether the value set has been successfully loaded or not.

	Post-Conditions [O]
	1. The value set is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Value set not found at source location

2. Supplied contents cannot be processed (may be a number of specific errors)

(Information pertaining to all failures is logged and reported for analysis and serviceability.)

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Import Content

	Name [M]
	Import Association Version

	Description [M]
	Installs a set of code system associations (mappings) into the terminology service for subsequent access by other service functions. This operation may be used for the initial installation of a set of associations. This may include the full set of associations between concepts from different code systems. The actual associations may be supplied by value or reference, i.e. as a complete set of explicit association or as a reference to a location where the associations can be separately obtained for loading.

	Pre-Conditions [M]
	1. Associations are available in a format directly consumable by CTS 2 import tools.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Association (set) Identifier

2. Association Description (optional)

3. Association Administrative Info (optional)

4. Association Version (optional)

5. Association Location (URI)

OR

1. Association Contents (Concepts, ConceptAssociationType, ConceptAssociations (maps) etc.)

	Outputs [M]
	1. An acknowledgment indicating whether the associations have been successfully loaded or not.

	Post-Conditions [O]
	1. Associations are available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Association not found at source location

2. Supplied contents cannot be processed (may be a number of specific errors)

(Information pertaining to all failures is logged and reported for analysis and serviceability.)

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Import Content, Import Associations

	Name [M]
	Export Association

	Description [M]
	Exports association type instances from a code system applying filter criteria

	Pre-Conditions [M]
	1. CTS 2 Service installed and running

2. Code System source is available for querying

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System ID

2. Code System Version ID

3. Association Type(s)

4. Filter criteria (optional)

5. Export Format

	Outputs [M]
	1. Requested association type instances of the code system

	Post-Conditions [O]
	1. The association instances are exported

	Exception Conditions [M]
	1. Invalid criteria/format input

2. Unrecognized location input

3. Association source is not exportable by CTS 2 export tools.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Export Content, Export Associations

	Name [M]
	Export Code System Content

	Description [M]
	Exports a code system (terminology), subset criteria (specific set of concepts and/or associations/maps from the Terminology Server by filtering the content and converting to the requested format for export (according to the semantic profile of the deployment jurisdiction).

	Pre-Conditions [M]
	1. CTS 2 Service installed and running

2. Code System source is available for export

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System ID

2. Code System Version ID

3. Code System filter criteria

4. Export Format

5. Target Location (URI)

	Outputs [M]
	1. Code System Location

2. Code System Content
(Depending on whether the return will be the actual content or a location in which the associations (maps) are placed for subsequent retrieval.)

	Post-Conditions [O]
	1. The code system is exported to the required location or is returned to the requestor

	Exception Conditions [M]
	1. Invalid criteria/format input

2. Unrecognized location input

3. Association source is not exportable by CTS 2 export tools.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Export Content

	Name [M]
	Change Code System Status

	Description [M]
	Changes the state of a code system. (Includes inactivation, activation etc.) This allows a Terminology Administrator to manage the state of a given code system, thus managing the level of availability for access by other terminology service functions.

	Pre-Conditions [M]
	1. Code system available on the CTS 2 service

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code system identifier

2. Code system version

3. Code system status

	Outputs [M]
	1. An acknowledgment indicating whether the state of the code system has been successfully changed.

	Post-Conditions [O]
	1. The code system source state is changed to the requested value.

	Exception Conditions [M]
	1. Code System state transition not allowed

2. Input parameter does not match

	Aspects left for Technical Bindings [O]
	1. Definition of actual state values / model

	Notes [O]
	CTS2 SFM

Associated Scenario: Change Content Status,

Decommission Terminology Content

	Name [M]
	Register for Notification

	Description [M]
	Register to be notified whenever a vocabulary element (code system, value set, concept or relationship) is modified in any way. The Notification Directions parameter is a placeholder for allowing specific directions to be given for the notification (e.g. whether it is required immediately or may be delayed)

	Pre-Conditions [M]
	1. User or appropriate proxy (system administrator, etc) are authorized to access registry

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. URL or other electronic address which to send the terminology element modification notification to.

2. Notification Target Type (Code System, Value Set, Concept, Concept Relationship)

3. Notification Target Identifier

4. Notification Target Version

5. Notification Directions

	Outputs [M]
	1. An acknowledgment indicating whether the terminology element notification request was successfully created.

2. Notification Identifier

	Post-Conditions [O]
	1. Notification records are updated appropriately

	Exception Conditions [M]
	1. Identified element / version does not exist

2. Notification Directions not recognized

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Subsequent notifications do not require a confirmation. Where appropriate, however, negative feedback on the channel (unable to deliver message, unable to connect), should result in attempts to retransmit and/or the placement of a temporary hold on notifications until connection problem is corrected.

Associated Scenario: Update Notification, Content Dependency Notification

	Name [M]
	Update Notification Registration

	Description [M]
	Revises a notification entry for a particular vocabulary element.

	Pre-Conditions [M]
	1. User or appropriate proxy (system administrator, etc) are authorized to access registry

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Notification Entry Identifier

2. URL or other electronic address which to send the terminology element modification notification to.

3. Notification Target Type (Code System, Value Set, Concept, Concept Relationship)

4. Notification Target Identifier

5. Notification Target Version

6. Notification Directions

	Outputs [M]
	1. An acknowledgment indicating whether the terminology element notification revision request was successfully processed.

	Post-Conditions [O]
	1. Notification records are updated appropriately.

	Exception Conditions [M]
	1. Notification Entry Identifier does not exist.

2. Identified element / version does not exist

3. Notification Directions not recognized

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Subsequent notifications do not require a confirmation. Where appropriate, however, negative feedback on the channel (unable to deliver message, unable to connect), should result in attempts to retransmit and/or the placement of a temporary hold on notifications until connection problem is corrected.

Associated Scenario: Update Notification Management, Content Dependency Notification

	Name [M]
	Update Notification Registration Status

	Description [M]
	Changes the status of a notification entry for a particular vocabulary element (suspend, reinstate, cancel, remove).

	Pre-Conditions [M]
	1. User or appropriate proxy (system administrator, etc) are authorized to access registry

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Notification Entry Identifier

2. Notification Status

	Outputs [M]
	1. An acknowledgment indicating whether the notification status revision request was successfully processed.

	Post-Conditions [O]
	1. Notification status is updated appropriately.

	Exception Conditions [M]
	1. Notification Entry Identifier does not exist.

2. Invalid state change

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Update Notification Management, Content Dependency Notification

	Name [M]
	List Code Systems

	Description [M]
	List the code systems available on this instance of the CTS 2 Service that match entered filter criteria.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Filter Criteria

2. Query Control

	Outputs [M]
	1. A listing of zero or more code systems, together with metadata properties available on the instance of the terminology service.

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Invalid filter criteria

2. Invalid query control

	Aspects left for Technical Bindings [O]
	Definition of filter criteria. Should include name for a simple means of retrieving ID where not known.

	Notes [O]
	CTS2 SFM

Associated Scenario: Retrieve Available Code Systems

	Name [M]
	Return Code System Details

	Description [M]
	Returns the details (metadata) for a given code system available on the terminology service

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Identifier

2. Code System Version

	Outputs [M]
	1. Details pertaining to a specific code system (metadata or attributes for the code system, e.g. description)

	Post-Conditions [O]
	None

	Exception Conditions [M]
	1. Code System Identifier not found.

2. Code System version not found.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Retrieve Available Code Systems, Compare Code System Versions

	Name [M]
	List Code System Concepts

	Description [M]
	Returns the set of all concepts (and concept codes) in the specified code system, optionally filtered by input criteria, such as state or specific concept property, e.g. values.

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Identifier

2. Code System Version

3. Filter Criteria

4. Query Control

	Outputs [M]
	1. The set of zero or more concepts and concept codes in the specified code system matching the filter criteria.

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Code System Identifier not found.

2. Code System version not found.

3. Invalid filter criteria

4. Invalid query control

	Aspects left for Technical Bindings [O]
	Definition of filter criteria and the state model.

	Notes [O]
	CTS2 SFM

Returning all concepts and concept codes in a code system is generally impractical for large code sets. Indexing, query optimization is necessary.

Associated Scenario: Retrieve Coded Concepts from Code System, Compare Code System Versions

	Name [M]
	Return Concept Details

	Description [M]
	Returns the details for the known attributes (metadata) of a coded concept

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Identifier

2. Code System Version Id

3. Concept Identifier

4. Concept Version Id

	Outputs [M]
	1. The details of the attributes (metadata) of the coded concept

	Post-Conditions [O]
	None

	Exception Conditions [M]
	1. Code System Identifier not found.

2. Code System Version not found.

3. Concept Identifier not found.

4. Concept Version not found.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

For versions, an acceptable input should be "current" or "latest"

Associated Scenario: Retrieve Coded Concepts from Code System, Retrieve Coded Concepts from Value Set, Retrieve Concept Representations, Retrieve Coded Concepts from Code System, Validate Concept in Code System, Identify Concept Language Translations, Retrieve Coded Concepts for Concept Domain via Value Set Membership

	Name [M]
	List Association Types

	Description [M]
	List association types that are available on a terminology server that match entered filter criteria (e.g. code system, code system version).

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Filter Criteria

2. Query Control

	Outputs [M]
	1. Returns a list of zero or more association types, together with associated metadata

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Invalid filter criteria

2. Invalid query control

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Enumerate Association Types

	Name [M]
	Return Association Type Details

	Description [M]
	Returns the details for the known attributes (metadata) of a relationship type.

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Association Type Id

	Outputs [M]
	1. Full metadata for the Relationship type

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Association Type Id not found

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Enumerate Association Types

	Name [M]
	List Value Sets

	Description [M]
	Lists the value sets that are available to the CTS 2 service.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Value Set Filter Criteria

2. Query Control

	Outputs [M]
	1. Listing of zero or more value sets on this instance of the terminology server that match the input filter criteria, together with associated metadata.

	Post-Conditions [O]
	None

	Exception Conditions [M]
	1. Invalid filter criteria

2. Invalid query control

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

When search attributes are applied, the result set is restricted to the value sets that match the search filter criteria. Examples include:

1. restricting to matching properties such as:

1. Value Set Name

2. Value Set version

3. Code Systems that comprise the values of the value set

Metadata attributes/properties of the value set

Associated Scenario: Retrieve Available Value Sets

	Name [M]
	Return Value Set Details

	Description [M]
	Look up detailed information (metadata) for a given value set.

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Value Set Identifier

2. Value Set version

	Outputs [M]
	1. Details (metadata) pertaining to the specified value set (resolved meta data or attributes for the value set.)

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Value Set Identifier not found.

2. Value Set version not found.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

For version, an acceptable input should be "current" or "latest".

Associated Scenario: Retrieve Available Value Sets, Compare Value Set Versions

	Name [M]
	List Value Set Contents (Expand value set)

	Description [M]
	Lists out the contents (entries) of a given value set, filtering based on input criteria. This function is to be used to create the value set expansion.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Value Set Identifier

2. Value Set version (Optional)

3. Value Set time stamp (optional)

4. Filter criteria

5. Query Control

	Outputs [M]
	1. A list of zero or more code system nodes for the given value set. Output truncated if value set not finite.

	Post-Conditions [O]
	None

	Exception Conditions [M]
	1. Value Set Identifier not found.

2. Value Set version not found.

3. Invalid filter criteria

4. Invalid query control

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Value sets may not be finite (e.g. the set of all real numbers between 1 and 10) Obviously we don't want to list them all.

Associated Scenario: Retrieve Coded Concepts from Value Set, Compare Value Set Versions, Retrieve Concept Representations, Retrieve Coded Concepts for Concept Domain via Value Set Membership

	Name [M]
	Check Value Set Subsumption

	Description [M]
	Determine whether one of the two supplied value sets subsumes the other

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Pair of two <Value Set Identifier, Value Set Version > conjunctions

	Outputs [M]
	1. Return True if value set A subsumes Value set B

2. Return False if not

	Post-Conditions [O]
	Boolean returned.

	Exception Conditions [M]
	1. At least one conjunction of <Value Set Identifier , Value Set version> not found., indicate which

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

	Name [M]
	Check Concept Value Set Membership

	Description [M]
	Determine whether the supplied coded concept exists in the supplied value set

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Identifier

2. Code System Version (optional)

3. Concept Identifier or Concept Code

4. Value Set Identifier

5. Value Set Version

	Outputs [M]
	1. Return True if coded concept exists in value set

2. Return False if coded concept does not exist in value set

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Code System Identifier not found.

2. Concept code not found.

3. Value Set Identifier not found.

4. Value Set version not found.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Validate Coded Concept in Value Set

	Name [M]
	List Concept Domains

	Description [M]
	Lists the concept domains that are available to the CTS 2 service.

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Concept Domain Filter Criteria

2. Query Control

	Outputs [M]
	1. Listing of zero or more concept domains on this instance of the terminology server that match the input filter criteria, together with associated metadata.

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Invalid filter criteria

2. Invalid query criteria

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

When search attributes are applied, the result set is restricted to the concept domains that match the search filter criteria. Examples include:

1. restricting to matching properties such as:

1. Concept Domain Name

2. Value Sets that are bound to the Concept Domain

3. Usage Contexts in which the Concept Domain is bound to value sets

Metadata attributes/properties of the Concept Domain

Associated Scenario: Retrieve Available Concept Domains

	Name [M]
	Return Concept Domain Details

	Description [M]
	Look up detailed information (metadata) for a given concept domain.

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Concept Domain Identifier

	Outputs [M]
	1. Concept Domain details (resolved meta data or attributes for the concept domain)

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Concept Domain Identifier not found.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Retrieve Available Concept Domains

	Name [M]
	List Usage Contexts

	Description [M]
	Lists the usage contexts that are available to the CTS 2 service.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Usage Context Filter Criteria

2. Query Control

	Outputs [M]
	1. Listing of zero or more usage contexts on this instance of the terminology server that match the input filter criteria, together with associated metadata.

	Post-Conditions [O]
	None

	Exception Conditions [M]
	1. Invalid filter criteria

2. Invalid query control

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

When search attributes are applied, the result set is restricted to the usage contexts that match the search filter criteria. Examples include:

1. restricting to matching properties such as:

1. Usage Context Name

2. Concept Domains that are bound to value sets in the Usage Context

Metadata attributes/properties of the Concept Domain

Associated Scenario: Retrieve Available Concept Domains

	Name [M]
	Return Usage Context Details

	Description [M]
	Look up detailed information (metadata) for a given usage context.

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Usage Context Identifier

	Outputs [M]
	1. Detailed Usage Context description (resolved meta data or attributes for the usage context)

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Usage Context Identifier not found.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Retrieve Available Concept Domains, Retrieve Coded Concepts for Concept Domain via Value Set Membership

	Name [M]
	List Concept Domain Bindings

	Description [M]
	List the value set identifier and metadata for the specified domain bindings. This does not include returning the value set expansion.

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Concept Domain Identifier

2. Filter criteria

3. Query Control

	Outputs [M]
	1. A list of zero or more value set bindings.

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Concept Domain Identifier not found.

2. Invalid filter criteria

3. Invalid query criteria

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Retrieve Coded Concepts for Concept Domain via Value Set Membership

	Name [M]
	Check Concept to Concept Domain Association

	Description [M]
	Determine whether the supplied coded concept exists in a code system in use for the specified concept domain, optionally within specific usage contexts.

 Returns true if a coded concept is an element of a value set expansion bound to the provided concept domain, or bound to both concept domain and usage context.

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Identifier

2. Concept Identifier or Concept Code

3. Concept Domain Identifier

4. List of Usage Context Identifiers (optional)

	Outputs [M]
	1. Return True if coded concept exists in specified concept domain and usage contexts

2. Return False if coded concept does not exist in specified concept domain and usage contexts

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Code System Identifier not found.

2. Concept code not found.

3. Concept Domain Identifier not found.

4. Usage Context Identifier not found.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Validate Coded Concept in Concept Domain via Value Set Membership , Validate Coded Concept in Value Set

	Name [M]
	List Associations

	Description [M]
	List the Association available on an instance of the CTS 2 Service that match a set of input filter criteria

	Pre-Conditions [M]
	none

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Filter Criteria

2. Query Control

	Outputs [M]
	A listing of zero or more associations that match the input filter criteria

	Post-Conditions [O]
	none

	Exception Conditions [M]
	1. Invalid filter criteria

2. Invalid query control

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Definition of filter criteria. This is expected to include: Code System Ids and/or Code System Version Ids, Concept Codes / Ids, Association Types, whether only direct associations are considered or whether the transitive closure of the relation are used.

There are potentially many different types of Associations that can be defined. In some cases, the relationships are explicitly defined, persisted and managed, in other cases, queries can be made based on algorithms (such as those defined in the descriptions of the Create Lexical and Rules Based Associations). To some degree, these are also both more targeted "query" operations in that they return a list of associations based on the input rules, as well as allowing for persisting of the Associations if so required.

Associated Scenario: Identify / Retrieve Associations for a Single Concept, Validate Associations, Identify / Retrieve Associations Between Two or More Coded Concepts

	Name [M]
	Determine Transitive Concept Relationship

	Description [M]
	Determine whether there exists a transitive relationship between two concepts, if it exists, provide the association path.

Determine Transitive Concept Relationship determines if it is possible to get from a given ParentCodeSystemNode into a given ChildCodeSystemNode in one or more association transitions.

	Pre-Conditions [M]
	1. At least one code system is available in the CTS 2 service.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. ParentCodeSystemNodeID (support for compositional expression optional)

2. ChildCodeSystemNodeID (support for compositional expressions optional)

3. ConceptAssociationType

	Outputs [M]
	1. Determine Transitive Concept Relationship will return the edge graph necessary to traverse from ParentCodeSystemNode to ChildCodeSystemNode using the given ConceptAssociationType, or null if the transitive closure does not exist.

	Post-Conditions [O]
	None

	Exception Conditions [M]
	1. Invalid ParentCodeSystemNode

2. Invalid ChildCodeSystemNode

3. Invalid ConceptAssociationType

4. Compositional concepts not supported (if input is compositional and not supported)

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Compute Transitive Closure

	Name [M]
	Compute Subsumption Relationship

	Description [M]
	Subsumes tests whether the parent coded attribute subsumes (is implied by) the child. If ParentCodeSystemNode nor ChildCodeSystemNode are non compositional and are both drawn from the same code system, subsumes returns true if and only if ChildCodeSystemNode can be determined to belong to the transitive closure of the hasSubtype relationship graph headed by ParentCodeSystemNode. No further assertions of the semantics of subsumption beyond this one case. If the service supports subsumption involving qualifiers (compositional expressions) and/or subsumption tests across multiple code systems, it must define the appropriate translation semantics. If the service doesn’t support subsumption on concepts defined using compositional expression, it should raise the QualifiersNotSupported exception if presented with a parentCode or childCode containing qualifiers. Similarly, if the service doesn’t support cross-code system subsumption testing, it should raise SubsumptionNotSupported when supplied with codes with different code systems.

	Pre-Conditions [M]
	1. At least one code system is available in the CTS 2 service.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. ParentCodeSystemNodeID, compositional expressions optional (depending on service realization, no need to support for full compliance)

2. ChildCodeSystemNodeID, compositional expressions optional (depending on service realization, no need to support for full compliance)

	Outputs [M]
	1. Subsumes will return true if the child code can be determined to be a subtype of the parent. Subsumes will also return true if the child and parent codes are equivalent.

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Invalid ParentCodeSystemNode

2. Invalid ChildCodeSystemNode

3. Compositional expression non supported

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Subsumption

	Name [M]
	Return Association Details

	Description [M]
	Look up detailed information (metadata) for a given association

	Pre-Conditions [M]
	None.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Association identifier

	Outputs [M]
	All available Association information (resolved meta data or attributes for the association.) Including:

1. Code system identifier(s)

2. Code system version(s)

3. Code system name(s) and description(s)

4. Concept codes / identifiers / names

5. Authoring / curation information

6. External systems association data hosted on the CTS server (i.e.: XML encoded or OWL formatted Association rule content).

	Post-Conditions [O]
	None.

	Exception Conditions [M]
	1. Association does not exist.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Retrieve Association Metadata, Identify / Identify / Retrieve Associations for a Single Concept, Identify / Retrieve Associations Between Two or More Coded Concepts , Compare Association Versions, Request / Retrieve Association Instance

	Name [M]
	Create Code System

	Description [M]
	Create a new Code System to contain a set of new coded concepts. The Code System is created by defining the set of meta-data properties that describe it.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Name

2. Code System Version

3. Code System properties

	Outputs [M]
	1. An acknowledgment indicating whether the code system was created or not.

2. Code System Id, if the code system was successfully created.

	Post-Conditions [O]
	1. The code system is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Code System already exists.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

1. If the user wants to specify the Code System Id manually, it can be specified as a "Code System Property".

2. The service will denote that the code system exists when applicable. We will let the individual service administrator treat this exception as an error (refuse to create the code system) or a warning (create code system anyway).

3. Since there is a separate "import" operation for loading code sets, the semantics of the "create" should be to just create the code system and then create the Concepts. This implies the need for a "release" or "publish" capability, which will be handled by an "Update Code System Version Status" operation.

Associated Scenario: Create Code System

	Name [M]
	Maintain Code System Version

	Description [M]
	Update Code System meta-data properties.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Id

2. Code System Name

3. Code System Version

4. Code System properties

5. Set of zero or more Concepts (Ids, Properties, Designations)

6. Set of zero or more Concept Associations

	Outputs [M]
	1. An acknowledgment indicating whether the code system was updated or not.

	Post-Conditions [O]
	1. The updated code system is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Code System does not exist.

2. Code System version does not exist.

3. Concept not found

4. Invalid Concept Properties

5. Invalid Concept Details

6. Invalid Associations

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

This allows for maintenance of a Code Systems properties, including creation and updating of Code System Versions, and assignment of Concepts to a Version.

Note that the set of concept IDs could either be a complete new full set or deltas only, which needs to be identified explicitly. Entering as new Version Id causes creation of a new version (assuming the state model allows it at the time) Concepts can be assigned and/or unassigned from Code System Versions, as can Concept Properties, Designations and Concept Relationships.

Associated Scenario: Maintain Code System

	Name [M]
	Update Code System Version Status

	Description [M]
	Changes the status of a code system version (suspended, reinstated, canceled, removed).

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Identifier

2. Code System Version

3. Status

	Outputs [M]
	1. An acknowledgment indicating whether the status revision request was successfully processed.

	Post-Conditions [O]
	1. Code System Version status is updated appropriately.

	Exception Conditions [M]
	1. Code System Version Identifier does not exist.

2. Invalid state change

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Maintain Code System

	Name [M]
	Create Code System Supplement

	Description [M]
	Create a new Code System Supplement as a container of a set of concepts and concept properties to be appended to a target code system. Does not add the concepts and properties.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Target Code System Id

2. Code System Supplement Name

3. Code System Supplement description

4. Code System Supplement provenance details

5. Code System Supplement effective date

	Outputs [M]
	1. An acknowledgment indicating whether the code system supplement was created or not.

2. Code System Supplement Id, if the code system was successfully created.

	Post-Conditions [O]
	Supplement created.

	Exception Conditions [M]
	1. Code System Supplement already exists.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

	Name [M]
	Maintain Code System Supplement

	Description [M]
	Update Code System Supplement meta-data properties and add concepts and properties to code system.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Property Id

2. Code System Supplement Name

3. Code System Supplement description

4. Code System Supplement provenance details

5. Code System Supplement effective date

6. Set of zero or more Concepts

7. Set of zero or more concept properties

	Outputs [M]
	1. An acknowledgment indicating whether the code system supplement was updated or not.

	Post-Conditions [O]
	Supplement updated.

	Exception Conditions [M]
	1. Code System Supplement not found.

2. Code System version does not exist.

3. Concept not found

4. Invalid Concept Properties

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

This allows for maintenance of a Code Systems Supplement properties, including creation and updating of Code System Versions, and assignment of Concepts and their properties to a Supplement .

	Name [M]
	Create Concept

	Description [M]
	Create concept to be included in a Code System. The new concept is defined by the set of meta-data properties that describe it, which may include its proper placement via association binding within the hierarchy of the Code System.

	Pre-Conditions [M]
	1. A sequencer that provides Concept Identifiers must be available if the Concept Identifier is not provided as an input.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System ID

2. Code System Version

3. Concept Code

4. Concept Identifier or Concept Code (optional)

5. Concept Properties

6. (Allowable) Concept Relationships

7. Concept Designations

	Outputs [M]
	1. An acknowledgment indicating whether the concept was created or not.

2. Concept Identifier or Concept Code

	Post-Conditions [O]
	1. The concept is available in the code system and is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Code System does not exist.

2. Code System version does not exist.

3. Concept already exists.

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

1. The service will denote that the concept exists when applicable. We will let the individual service administrator treat this exception as an error (refuse to create the concept) or a warning (create concept anyway).

2. Generated ID can be used for disambiguation in code sets where codes are reused. The input Code System Version is the version of the code system in which the concept code is first created Entered Concept Properties and Relationships become the "allowable" or "Defined Concept Properties / Relationships" in the model and also associated with the Code System Version in which they were created.

Associated Scenario: Create Concept

	Name [M]
	Maintain Concept

	Description [M]
	Update Concept meta-data properties.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Id

2. Concept Code

3. Concept Id

4. Concept VersionId

5. Jurisdictional Domain Id (optional)

6. Concept Properties

7. (allowable) associations

8. Concept Designations

	Outputs [M]
	1. An acknowledgment indicating whether the concept was updated or not.

	Post-Conditions [O]
	1. The concept is updated appropriately.

	Exception Conditions [M]
	1. Code System does not exist.

2. Concept does not exist.

3. Unrecognized Jurisdictional Domain

4. Invalid Concept Properties

5. Invalid Concept Designation

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Updates include but is not limited to functionality such as:

1. making updates to the associated concept attributes,

2. changing the presentation

3. changing preferred name

4. changing synonymy

5. technical corrections to the concept

6. modifying the associations bound to concepts

7. in keeping with good vocabulary practice, codes or identifiers for concepts cannot be reused. Additionally, in hierarchical Code Systems, it may be necessary to re-associate any concepts related to the concept being deprecated to prevent a part of the code system hierarchy from being orphaned

Code System Version not input here. A set of Concept changes can be made then assigned as a new Code System Version before it is published (using Maintain Code System Version and then Update Code System Version Status) Note that Concept Version is NOT explicitly separately created and maintained. This would be automatic by the system. JurisdictionalDomain allows for localization. Entered Concept Properties and Relationships become the "Defined Concept Properties / Relationships" in the model and also associated with the Code System Version in which they were created. They can also be deprecated through use of status codes.

Associated Scenario: Maintain Concept

	Name [M]
	Update Concept Status

	Description [M]
	Changes the status of a code system concept (suspend, reinstate, cancel, remove).

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Code System Identifier

2. Concept Code

3. Concept VersionId

4. Status

	Outputs [M]
	1. An acknowledgment indicating whether the status revision request was successfully processed.

	Post-Conditions [O]
	1. Code System Concept status is updated appropriately.

	Exception Conditions [M]
	1. Code System Identifier does not exist.

2. Concept Code does not exist

3. Invalid state change

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Maintain Concept

	Name [M]
	Create Association Type

	Description [M]
	Create a new relationship type (as intended by the association type class of the conceptual model), an instance of which may be used to link two concepts. A list of code system IDs can be supplied if the intent is to restrict use to specific code systems. The default is availability to all code systems present on the server.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Association Type ID (optional)

2. Association Type Name

3. Association Type Properties

4. List of zero or more Code System IDs

	Outputs [M]
	1. An acknowledgment indicating whether the relationship type was created or not.

The ID will be generated if not supplied.

	Post-Conditions [O]
	1. The relationship type is available for use via the CTS 2 service functions.

	Exception Conditions [M]
	1. Association Type already exists.

2. Invalid Association Type properties

3. Unrecognized Code System ID

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Creating Associations types which can span across two different code systems is permitted by the interface, but should be used with care. It is not certain if semantic Associations can be reliably created/maintained at present even when a reference terminology (to which the queried terminologies are mapped) is available. Note that given that there will often be complex business rules associated at this level, this may also be handled by configuration rather than explicit interface operation.

Associated Scenario: Create Association Type

	Name [M]
	Maintain Association Type

	Description [M]
	Update or deprecate an Association type that may be used to link two concepts.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Association Type ID

2. Association Type Name

3. Association Type Properties

4. List of zero or more Code System IDs

5. Association Type Status

	Outputs [M]
	1. An acknowledgment indicating whether the Association type was modified or not.

	Post-Conditions [O]
	1. The updated Association type is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Association Type does not exist.

2. Invalid Association Type properties

3. Invalid Status

4. Unrecognized Code System ID

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Status change could be a separate operation, but seems unnecessary at this "meta" level.

Associated Scenario: Maintain Association Type

	Name [M]
	Create Value Set

	Description [M]
	Create a Value Set (extensional or intentional) that is defined by a computable expression that can be resolved to an exact list of coded concepts at any given point in time.

	Pre-Conditions [M]
	1. A sequencer to provide the value set id, if not provided in the input.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Value Set Name (optional)

2. Value Set Id (mandatory)

3. Value Set Version

4. Value Set Properties

5. Value Set Rule Set (which may be an enumeration, i.e. an extensional value set)

6. Value Set Date Lock (boolean)

7. valueOverride (optional, for extensional definitions)

	Outputs [M]
	1. An acknowledgment indicating whether the value set was created or not.

2. Generated Value Set Id, if not input

	Post-Conditions [O]
	1. The value set is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Value Set already exists.

2. Invalid Value Set properties

3. Unrecognized/invalid rule set

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

1. Example rule set expression: an intensional value set might be expressed as, “SNOMED CT concepts that are children of the SNOMED CT concept “Diabetes Mellitus”. Note that identification of the target code set(s) is part of the rule set.

2. When creating an intensionally defined value set, the Terminology User may or may not lock the date of the evaluation (effectively binding the value set definition to a specific version of the Code System(s) from which the concepts are being drawn). This would ensure that the value set would always resolve to the same set of concept codes for any given version of the value set. If the value set expression is not locked in time, then it will resolve to a different set of concept codes as the version of the Code System changes.

3. Note that the model allows for the rule set to be defined at the overall Value Set level or at the Version level, to allow for flexibility. The Service consumer needs to be able to indicate which one is appropriate. Entering a new Version Id causes creation of a new version (assuming the state model allows it at the time)

4. The extent to which the rule set allows selection of specific designations would need to be defined (but is an implementation issue), e.g. could specify the language.

Associated Scenario: Create Value Set

	Name [M]
	Maintain Value Set

	Description [M]
	Update properties or expression of a value set definition (extensional and intentional value sets).

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Value Set Id (mandatory)

2. Value Set Name (optional)

3. Value Set Version

4. Value Set Properties

5. Value Set Rule Set (which may be an enumeration, i.e. an extensional value set)

6. Value Set Date Lock (boolean)

	Outputs [M]
	1. An acknowledgment indicating whether the value set was updated or not.

	Post-Conditions [O]
	1. The updated value set is available for access via the CTS 2 service functions.

2. A new value set version is created.

	Exception Conditions [M]
	1. Value Set does not exist.

2. Concept not found. Invalid Value Set properties

3. Unrecognized/invalid rule set

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

See notes on Create operation

Associated Scenario: Maintain Value Set, Maintain Value Set (meta-data)

	Name [M]
	Update Value Set Status

	Description [M]
	Changes the status of a value set version (suspend, reinstate, cancel, remove).

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Value Set Identifier

2. Value Set Version

3. Status

	Outputs [M]
	1. An acknowledgment indicating whether the status revision request was successfully processed.

	Post-Conditions [O]
	1. Value Set Version status is updated appropriately.

	Exception Conditions [M]
	1. Value Set Version Identifier does not exist.

2. Invalid state change

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Maintain Value Set

	Name [M]
	Create Concept Domain

	Description [M]
	Create a Concept Domain.

	Pre-Conditions [M]
	1. A sequencer to provide the concept domain id, if not provided in the input.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Concept Domain Name

2. Concept Domain Id (optional)

3. Concept Domain Properties

	Outputs [M]
	1. An acknowledgment indicating whether the concept domain was created or not.

2. Generated Concept Domain Id, if not input

	Post-Conditions [O]
	1. The concept domain is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Concept Domain already exists.

2. Invalid Concept Domain properties

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Create Concept Domain

	Name [M]
	Maintain Concept Domain

	Description [M]
	Update properties of a Concept Domain, including bindings to value sets within usage contexts

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Concept Domain Id

2. Concept Domain Name

3. Concept Domain Properties

4. Concept Domain Status

5. Set of zero or more pairs of Value Set Id and Usage Context Id

	Outputs [M]
	1. An acknowledgment indicating whether the concept domain was updated or not.

	Post-Conditions [O]
	1. The updated concept domain is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Concept Domain does not exists.

2. Invalid Concept Domain properties

3. Invalid state transition

4. Unrecognized/invalid value set

5. Unrecognized/invalid usage context

	Aspects left for Technical Bindings [O]
	Support for action code required for conformance with future HL7 behavioral profile, more specification in normative edition of this spec.

	Notes [O]
	CTS2 SFM

A binding of a value set to a concept domain or usage context is a function relating a Value Set to ConceptDomains and/or Usage Contexts.

Associated Scenario: Maintain Concept Domain

	Name [M]
	Create Usage Context

	Description [M]
	Create a Usage Context.

	Pre-Conditions [M]
	1. A sequencer to provide the usage context id, if not provided in the input.

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Usage Context Name

2. Usage Context Id (optional)

3. Usage Context Properties

	Outputs [M]
	1. An acknowledgment indicating whether the usage context was created or not.

2. Generated Usage Context Id, if not input

	Post-Conditions [O]
	1. The usage context is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Usage Context already exists.

2. Invalid Usage Context properties

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Create Usage Context

	Name [M]
	Maintain Usage Context

	Description [M]
	Update properties of a Usage Context

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Usage Context Id

2. Usage Context Name

3. Usage Context Properties

4. Usage Context Status

	Outputs [M]
	1. An acknowledgment indicating whether the usage context was updated or not.

	Post-Conditions [O]
	1. The updated usage context is available for access via the CTS 2 service functions.

	Exception Conditions [M]
	1. Usage Context does not exists.

2. Invalid Usage Context properties

3. Invalid State transition

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Maintain Usage Context

	Name [M]
	Update Association Status

	Description [M]
	Update the status of a association (active, inactive, cancelled etc). This allows a Terminology User to activate or inactivate a given ssociation, thus changing its availability for access by other terminology service functions

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Association identifier.

2. Association version Id

3. Status

	Outputs [M]
	An acknowledgment indicating whether the association status has been successfully updated.

	Post-Conditions [O]
	None

	Exception Conditions [M]
	1. Association ID invalid or non existent

2. Status invalid or non existent

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

Associated Scenario: Create / Maintain an Association between Coded Concepts, Remove Associations

	Name [M]
	Create Association

	Description [M]
	Relates a single specific coded concept within a specified code system (source) to a corresponding single specific coded concept (target) within the same or another code system, including identification of a specified Association type.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Source code system identifier.

2. Target Code system identifier.

3. Source Concept code/identifier.

4. Target Concept code/identifier.

5. Association Type

6. Association Properties

	Outputs [M]
	Association Id

	Post-Conditions [O]
	A concept relationship of the specified type is created between two coded concepts

	Exception Conditions [M]
	1. Source Code System does not exist.

2. Target Code System does not exist.

3. Source Coded concept not found.

4. Target Coded concept not found.

5. Unrecognized Association Type

6. Invalid Association properties

7. Info: the following association(s) already exist on the supplied concepts (list associations)

	Aspects left for Technical Bindings [O]
	NA

	Notes [O]
	CTS2 SFM

See notes under "Import Terminology Revision" for a list of sample properties for Association

Associated Scenario: Create/Maintain an Association between Coded Concepts

	Name [M]
	Create Lexical Association between Coded Concepts

	Description [M]
	Relates a set of one or more coded concepts within a specified code system (source)to a corresponding set of one or more coded concepts (target) within that system or another code system using a set of lexical rules (matching algorithms) to generate the Association. The "Source Search Criteria" allows for identification of a subset of the Source Code System to apply the matching algorithm to, if required (this may include limiting the version of the code system).

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Source Code System Identifier

2. Target Code System Identifier

3. Source Search Criteria (optional)

4. Match Algorithm Code

	Outputs [M]
	List of zero or more Association Ids (together with identification of each pair of Concepts that were linked as a result of the matching.

	Post-Conditions [O]
	A set of zero or more Associations are created, each between a coded concept from the source code system and a coded concept in the target code system.

	Exception Conditions [M]
	1. Source Code System does not exist.

2. Target Code System does not exist.

3. Unrecognized / Invalid algorithm.

4. Unrecognized / Invalid search criteria.

5. (Warning) No Associations matched the input algorithm.

	Aspects left for Technical Bindings [O]
	This may be a very time consuming operation across large code sets, and may potentially produce large result sets. Management of result set size is envisaged to require further consideration and probably additional input parameters.

	Notes [O]
	CTS2 SFM

Even though this is expressed as a "create" operation, it is essentially also a "return" operation in that it identifies which concepts are related by the input rules.

Match Algorithm Code

Description

IdenticalIgnoreCase

The lower case representation of the target text must match the lower case representation matchText exactly.

Identical

The target text must match the matchText exactly.

StartsWithIgnoreCase

The lower case representation of target text must begin with the lower case representation of matchText.

StartsWith

The target text must begin with the matchText.

EndsWithIgnoreCase

The lower case representation of the target text must end with the lower case representation of matchText.

EndsWith

The target text must end with the matchText.

ContainsPhraseIgnoreCase

The lower case representation of the target text must contain the lower case representation of the matchText.

ContainsPhrase

The target text must contain the matchText.

WordsAnyOrderIgnoreCase

The target text must contain all of the words in the match text, but in any order.

WildCardsIgnoreCase

The match text may contain zero or more 'wild cards', designated by an asterisk (*). Wild cards match 0 of more characters in the target string. The escape character is a backslash('\') meaning that the matchText "a*b*' would match any string that begins with the string "a*b".

RegularExpression

The match text may contain regular expressions, as defined in XML Schema Part 2: Datatypes.

NYSIIS

New York State Identification and Intelligence System phonetic encoding

Associated Scenario: Create Lexical Association

	Name [M]
	Create Rules Based Association between Coded Concepts

	Description [M]
	Relates a set of zero or more coded concepts within a specified code system (source)to a corresponding set of zero or more coded concepts (target) within that system or another code system using a set of description logic or inference rules that either assert or infer Associations. The "Source Search Criteria" allows for identification of a subset of the Source Code System to apply the matching algorithm too, if required (this may include limiting the version of the code system).

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	NA

	Inputs [M]
	1. Source Code System Identifier

2. Target Code System Identifier

3. Source Search Criteria (optional)

4. Description Logic

5. Inference Rules

	Outputs [M]
	List of zero or more Association Ids (together with identification of each pair of Concepts that were linked as a result of the matching.

	Post-Conditions [O]
	A set of zero or more Associations are created, each between a coded concept from the source code system and a coded concept in the target code system.

	Exception Conditions [M]
	1. Source Code System does not exist.

2. Target Code System does not exist.

3. Unrecognized / Invalid description logic.

4. Unrecognized / invalid inference rules.

5. Unrecognized / Invalid search criteria.

6. (Warning) No coded concepts satisfy the description logic or inference rules.

	Aspects left for Technical Bindings [O]
	This may be a very time consuming operation across large code sets, and may potentially produce large result sets. Management of result set size is envisaged to require further consideration and probably additional input parameters.

	Notes [O]
	CTS2 SFM

Even though this is expressed as a "create" operation, it is essentially also a "return" operation in that it identifies which concepts are related by the input rules.

These Associations are subject to human review to verify validity.

Associated Scenario: Create Rules Based Association

4 Profiles

Use the following sources to identify the profiles: (Architectural Documents/Diagrams, Business Case Document, Analysis Model, Other Conceptual Models, Information Model, Use Case Model, Standards Documents)
Define Functional Profiles, Semantic Profiles and Conformance Profiles.

Semantic Profile: identification of a named set of information descriptions (constrained information models) that are supported by one or more operations.

Conformance Profile: this is a combination of a set of functional and semantic profiles taken together, optionally with additional usage context information to give a complete coherent set of capabilities against which conformance can be claimed.

4.1 Functional Profiles
Functional Profiles are simply a Grouping of capabilities for conformance management purposes. Functional Profile: a named list of a subset of the operations defined within this specification which must be supported in order to claim conformance to the profile.

This grouping is generally done based on the consumer of the operations. All similar operations which are to be consumed by a singular or similar clients / users should be exposed collectively as a functional profile. Eg. All the reporting operations can be clubbed into a Report Profile or all the Administrative functions to be used by the admins can be clubbed into a

Complete the table below for each Functional Profile. Briefly describe each profile and the business context in which it may be used. Also provide a grouping of the capabilities that will be included in each of the profile. NOTE: A capability can appear in more than one profile.
	Functional Profile No.
	Functional Profile Name
	Functional Profile Description
	Capability Name

	LE-FP1
	CTS2 Query Profile
	The CTS 2 Query Profile specifies basic query only functional coverage necessary for a service to declare itself as being a minimally conformant CTS 2 service. The CTS 2 Query Profile includes capabilities for searching and query terminology content. If only this profile were supported, other means would be necessary for defining and structuring code systems and concepts, metadata, importing and exporting code systems and so on.

	· List Code Systems
· Return Code System Details

· List Code System Concepts

· Return Concept Details

· List Value Sets

· Return Value Sets

· List Value Set Contents

· Check Concept Value Set Membership

· List Concept Domains

· Return Concept Domain Details

· List Concept Domain Bindings

· Check Concept Domain Membership

· List Usage Contexts

· Return Usage Context Details

· List Associations

· Return Association Type Details

· Check Value Set Subsumption

· Check Concept to Concept Domain Association

· Determine Transitive Concept Relationship

· Compute Subsumption Relationship

	LE-FP2
	Terminology Administration Profile
	The Terminology Administration profile builds on the minimal profile and is intended to provide the functional operations necessary for terminology administrators to be able to access and make available terminology content obtained from a Terminology Provider. Terminology Administrators are required to interface with Terminology Provider systems in order to obtain the terminology content, then load that terminology content on local Terminology Servers.

	· Import Code Ssytem
· Import Code System Revision

· Import Value Set Version

· Import Association Version

· Export Association

· Export Code System Content

· Change Code System Status

· Register for Notification

· Update Notification Registration

· Update Notification Registration Status

· CTS2 Query Profile

	LE-FP3
	Terminology Authoring Profile
	Terminology authors require the capability to robustly query and access terminology content, as well as directly modify the terminology content. The Terminology Authoring profile is intended to provide the functional operations necessary for terminology authors to analyze the existing terminology content, as well as directly edit terminology content.

	· Create Code System
· Maintain Code System Version

· Update Code System Version Status

· Create Concept

· Maintain Concept

· Update Concept Status

· Create Value Set

· Maintain Value Set

· Update Value Set Status

· Create Concept Domain

· Maintain Concept Domain

· Create Usage Context

· Maintain Usage Context

· Terminology Administration Profile

· Create Association

· Update Association Status

· Create Association Type

· Maintain Association Type

· Create Lexical Association Between Coded Concepts (optional for this profile)

· Create Rules Based Association Between Coded Concepts (optional for this profile)

· Create Code System Supplement

· Maintain Code System Supplement

4.2 Semantic Profiles
	Semantic Profile No.
	Semantic Profile Name
	Constrained Information Model
	Semantic Profile Description

	LE-SP1
	HL7 Terminology Profile
	HL7 V3 Terminology

	The HL7 Terminology Profile specifies an implementation specific to the interoperability requirements outlined by HL7 Version 3. It outlines the specificity necessary for a service to declare itself as being an HL7 conformant CTS 2 service. The HL7 Profile includes capabilities for searching terminology content, representing terminology content in a form supporting the structures required by and specific HL7v3.

	LE-SP2
	Mature Terminology Profile
	· SNOMED CT, all versions

· ICD 10 CM

· LOINC

· RxNorm

· MEDCIN

· NDF / NDF-RT

· CPT
	Terminologies in the Mature Terminology Profile make an attempt to conform to many of terminology best practices that are, for example outlined in Desiderata for Controlled Medical Vocabularies in the Twenty-First Century, James J. Cimino.

	LE-SP3
	Developing Terminology Profile
	· Some HL7 Vocabulary tables (where the additional identifier may refer to a concept domain)

· Some of the locally developed terminology sources or code sets
	Terminologies in the Developing Terminology Profile are either developed using ad hoc techniques, or have degraded over time.

4.3 Conformance Profiles

	Conformance No
	LE-CP1

	Conformance Name
	CTS 2 Query - Mature Terminology Conformance Profile

	Description
	

	Usage Context
	

	Mandatory
	Yes

	Functional Profile(s)
	LE-FP1 : CTS2 Query Functional Profile

	Semantic Profile(s)
	LE-SP2 : Mature Terminology Semantic Profile

	Conformance No
	LE-CP2

	Conformance Name
	CTS 2 Query - Developing Terminology Conformance Profile

	Description
	

	Usage Context
	

	Mandatory
	Yes

	Functional Profile(s)
	LE-FP1 : CTS2 Query Functional Profile

	Semantic Profile(s)
	LE-SP3 : Developing Terminology Semantic Profile

	Conformance No
	LE-CP3

	Conformance Name
	CTS 2 Query – HL7 Terminology Conformance Profile

	Description
	

	Usage Context
	

	Mandatory
	Yes

	Functional Profile(s)
	LE-FP1 : CTS2 Query Functional Profile

	Semantic Profile(s)
	LE-SP1 : HL7 Terminology Semantic Profile

	Conformance No
	LE-CP4

	Conformance Name
	Terminology Administration - Mature Terminology Conformance Profile

	Description
	

	Usage Context
	

	Mandatory
	Yes

	Functional Profile(s)
	LE-FP2 : Terminology Administration Functional Profile

	Semantic Profile(s)
	LE-SP2 : Mature Terminology Semantic Profile

	Conformance No
	LE-CP5

	Conformance Name
	Terminology Administration - Developing Terminology Conformance Profile

	Description
	

	Usage Context
	

	Mandatory
	Yes

	Functional Profile(s)
	LE-FP2 : Terminology Administration Profile

	Semantic Profile(s)
	LE-SP3 : Developing Terminology Semantic Profile

	Conformance No
	LE-CP6

	Conformance Name
	Terminology Administration – HL7 Terminology Conformance Profile

	Description
	

	Usage Context
	

	Mandatory
	Yes

	Functional Profile(s)
	LE-FP1 : Terminology Administration Functional Profile

	Semantic Profile(s)
	LE-SP1 : HL7 Terminology Semantic Profile

	Conformance No
	LE-CP7

	Conformance Name
	Terminology Authoring - Mature Terminology Conformance Profile

	Description
	

	Usage Context
	

	Mandatory
	Yes

	Functional Profile(s)
	LE-FP3 : Terminology Authoring Functional Profile

	Semantic Profile(s)
	LE-SP2 : Mature Terminology Semantic Profile

	Conformance No
	LE-CP8

	Conformance Name
	Terminology Authoring - Developing Terminology Conformance Profile

	Description
	

	Usage Context
	

	Mandatory
	Yes

	Functional Profile(s)
	LE-FP3 : Terminology Authoring Functional Profile

	Semantic Profile(s)
	LE-SP3 : Developing Terminology Semantic Profile

	Conformance No
	LE-CP9

	Conformance Name
	Terminology Authoring – HL7 Terminology Conformance Profile

	Description
	

	Usage Context
	

	Mandatory
	Yes

	Functional Profile(s)
	LE-FP3 : Terminology Authoring Functional Profile

	Semantic Profile(s)
	LE-SP1 : HL7 Terminology Semantic Profile

5 System Implementation Details

5.1 System Runtime Interaction Details

5.2 Implementation/Deployment Considerations

	Implementation Considerations
	Impacts

	Optimization
	Structured terminologies can be quite large in nature in both the number of concepts, designations, associations, and other attributes that further describe terminology content. As such, efficiently accessing and querying terminology content is critical.

	Versioning mechanisms
	To ensure consistent representation of vocabulary versions, the CTS 2 committee recognizes the following approaches to versioning vocabulary entities:

· A vocabulary specification may use a numeric or decimal representation of the version number, that is, the version identifier may be that string containing only numeric digits and decimal points.

· A vocabulary specification may use a release date to represent the version.

	Versionable Elements
	Many different terminology elements are subject to change and as such need to be versioned. Examples of terminology versioning use cases include:

· Get the current state of a terminology element (the default behavior today).

· Get the state of a terminology element on date D.

· Get the state of a terminology element in Version V.

· Get a trace (date/versions) of terminology element changes.

· Get a trace of terminology element attribute changes, e.g. a specific Property Type.

	Internationalization
	Effects of localization and internationalization of terminologies

6 Conformance and Compliance
6.1 Compliance and Conformance Statements
	Name
	Type
	Viewpoint
	Description
	Test method

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

7 Appendix A - Relevant Standards

	Name
	Description
	Location

	HL7v3
	Health Level 7 version 3
	http://www.hl7.org/implement/standards/v3messages.cfm

	
	
	

	
	
	

	
	
	

8 Appendix B - References

	Name
	Description
	Location

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

9 Appendix C - Glossary

	Term
	Description

	Code System
	A Code System is a managed collection of concept identifiers, usually codes, but sometimes more complex sets of rules and references. They are often described as collections of uniquely identifiable concepts with associated representations, designations, associations, and meanings. Examples of Code Systems include ICD-9 CM, SNOMED CT, LOINC, and CPT. To meet the requirements of a Code System as defined by HL7, a given concept representation must resolve to one and only one meaning within the Code System. In the terminology model, a Code System is represented by the Code System class.

NOTE: For the purposes of this document, the terms code system; terminology and vocabulary are treated as synonyms.

	Code System Concept
	A Code System Concept defines a unitary mental representation of a real or abstract thing within the context of a specific Code System; an atomic unit of thought. Generic representations of concepts outside of the bounds of a code system are not included in the model, although their effect can be approximated by setting up Associations (maps) across code systems. Concepts should be unique within a given code system, but may have synonyms in terms of both the codes used (e.g. “l” and “L” in UCUM for Liter) and in textual representation (as Designations). Concepts may be simple or compositional in nature. A compositional concept is one that contains more than one concept concatenated within it – for example “severe hypertension” – a combination of “hypertension” and a qualifier for severity. Each CodeSystem will have a set of Concepts associated with it. Terminology best practices dictate that concepts are not deleted from code systems, but are instead deprecated or retired from use, although nothing in the model prevents this

	Concept
	A Concept defines a unitary mental representation of a real or abstract thing; an atomic unit of thought. It should be unique in a given Code System. A concept may have synonyms in terms of representation and it may be a primitive or compositional term

Concepts as abstract, designation-independent representations of meaning are important for the design and interpretation of HL7v3 models. They constitute the smallest semantic entities on which HL7v3 models are built. The authors and the readers of a model use concepts and their relationships to build and understand the models; these are what matters to the human user of HL7v3 based models. The rest of the vocabulary machinery exists to permit software manipulation of these units of thought.

	Concept Domain
	An HL7 Concept Domain is a named category of like concepts (a semantic type) that will be bound to one or more attributes in a static model whose datatypes are coded. Concept Domains exist to constrain the intent of the coded element while deferring the association of the element to a specific coded terminology until later in the model development process. Thus, Concept Domains are independent of any specific vocabulary or code system.

Concept Domains represents an abstract conceptual space such as "countries of the world", "the gender of a person used for administrative purposes", “languages of the world”, etc.

	Association
	Associations define binary relationships or linkages between concepts. The endpoints of an association are source and target concepts, often implying a direction of the association from a source to a target, which has bearing on the meaning of the association and the concepts it connects. An association is definitional, in that the association gives meaning to the concepts associated. For example, an association between a parent and child concept indicates that the child concept is a refinement or an example of the parent concept in a concept hierarchy. An association can also define other characteristics of a concept, as in associations between concepts in different parent-child hierarchies where the child may have a different set of associations than that one or more of its hierarchical parents.

For example, in SNOMED CT, the concept of “pneumonia” has an “is-a” association to the concept of “lung consolidation,” and “lung consolidation” has an “is-a” association to the concept of “disorder of lung.” This represents the logical conclusion that “pneumonia” is a “disorder of lung.”

In the case of Concept Maps (where the source and target concepts are from different code systems) the direction and designation of the association have similar restrictions, except in the case where the Concept Map indicates semantic equivalence. The equal association in this case obviates the requirement for interpreting the association direction. An association links a source Concept to a target Concept. As with DefinedConceptProperty, there is a separate Concept Version level representation (CodeSystemVersionConceptAssociation) to identify the Associations supported within a specific version of a Code System.

	Designations
	Designations are representations of concepts. The designation identifier must uniquely map to a given text string, bitmap, etc. within the context of the containing concept. In some terminologies, every unique text string will have exactly one identifier, which means that the same identifier may occur under more than one concept. In other terminologies, there may be more than one identifier for a given text string, meaning that the identifier is unique to the concept. Service software must not assume either model. For example, in SNOMED CT, the concept of “fever” has the fully specified name of “fever (finding),” a preferred name of “fever,” and synonyms of “febrile” and “pyrexia.” These are all designations for the concept of “fever.”

	Binding Realm
	In HL7, the broadest binding context is the Binding Realm
. All model instances must declare a particular Binding Realm (or sub-Binding Realm) based on the jurisdiction from which they originate, for which they are destined, or for some third jurisdiction by site-specific agreement. The declared Binding Realm applies to the entire model or specification artifact: it is not specific to individual elements of that model or artifact.

A Binding Realm refers to a named interoperability conformance space, meaning that all static models within a particular Binding Realm share the same conformance bindings. In nontechnical terms, it can be considered a dialect where speakers use the semantics of the language but agree to use certain terms that are specific to their community. A Binding Realm has a unique code: the Binding Realm Germany has a code of DE, and the steward is HL7 Germany. In order to enable conformance, the name of the Binding Realm is carried in the model instance.

In the interest of maximizing interoperability, interoperability spaces should be as large as possible: Binding Realms are preferred to be large-grained. A Binding Realm is used to provide and manage the bindings of Value Sets to reflect rules within a conformance space—e.g., a country.

 A Binding Realm is represented as a JurisdictionalDomain in the CTS2 model

	Jurisdictional Domain
	A Jurisdictional Domain identifies any body that may define and manage its own code systems or concepts, including localization of a broader code system. It is specifically to allow for localization of certain concept elements. A Jurisdictional Domain could be a country, group of countries, a territory (e.g. state), an SDO, an individual organization or even department within an organization.

Jurisdictional Domain is intended to encompass the HL7 concept of Realm, however is broader in scope than an HL7 Realm. HL7 rules prohibit new codes being added to a code system locally, but do allow for additional concept relationships, concept properties and designations. (However, any organization could use the same model, interfaces etc. to define its own code systems for internal use.) This class provides the link to those classes to enable the localization to be recorded and managed.

	Value Set
	A Value Set represents a uniquely identifiable set of valid concept representations, where any concept representation can be tested to determine whether or not it is a member of the value set.

Value set complexity may range from a simple flat list of concept codes drawn from a single code system, to an unbounded hierarchical set of possibly post-coordinated expressions drawn from multiple code systems.

A value set has a definition, which describes a set of codes referencing a collection of unique concept identifiers, and can be resolved to an expansion, which is a set of concept designations defined by the concept identifier. The collection of unique identifiers referenced by a value set are drawn from one or more code systems. Each of these identifiers is represented by a code.

Value sets can be specified in two ways, either by enumeration (extension), or definition (intention). Extensional Value Set Representation (Enumeration)
An extensionally defined, enumerated set consists of a list of unique identifiers and the corresponding globally unique id. Whenever possible, it is strongly recommended that the value set identifier match the code used in the code system itself.

Note, that while all of the entries in a value set may be valid at the time that the value set was defined, it is quite possible that subsequent versions of a code system to retire some of the codes in the value set. For this reason, it is important that both explicit and implicit undergo the “value set binding” set described in a subsequent section.

Value sets defined by extension are comprised of an explicitly enumerated set of codes. The simplest case is when the value set consists of only one code.

An intensional value set definition describes the contents of a value set in a way that the definition can be resolved (ideally computationally) to a set of permissible values and unique identifiers. While the construction rules can potentially be quite elaborate and possible specific to individual coding schemes, HL7 has identified a core set of rules that appear to be useful in most circumstances. For the sake of value set definition interoperability, HL7 strongly recommends that these algorithms be used whenever possible.

For example, an intensional value set definition might be defined as, “ SNOMED CT concepts that are children of the SNOMED CT concept “Diabetes Mellitus.”

Implicit definitions can specify:

· All active unique identifiers from a given coding system.

· All unique identifiers that participate in a specified relationship with a given local code in a coding system, which may or may not include the specified code itself.

· The transitive closure of a specified transitive relationship with a given code, including or excluding the code itself.

· A reference to another value set

· Other mechanisms that have to have external human or computational resolution.

· Unions, intersections and exclusions of any of the above

· Nested value set definition in which a value set entry references another value set (a child value set). There is no preset limit to the level of nesting allowed within value sets. Value sets cannot contain themselves, or any of their ancestors (i.e., they cannot be defined recursively). Nested value sets are always intensionally defined in HL7.

10 Appendix D – Cross Reference Tables

10.1 List of Storyboards

	#
	Name
	Description
	Source

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

10.2 Storyboards to Capabilities Mapping
	#
	Storyboard
	Capabilities
	Functional Profiles

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

10.3 Actors
	Actors
	Functional Profile
	Type
	Operations used

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

- 2 -

