

caBIG® Platform Independent Model and Service
Specification

LexEVS 6.0

Version 1.2

November 16, 2010

Architecture Inception
Team

Craig Stancl, Harold Solbrig,
Sridhar Dwarkanath, Scott Bauer,
Kevin Peterson, Traci St.Martin

Editor Craig Stancl, Traci St.Martin

Authors Craig Stancl, Scott Bauer, Kevin
Peterson, Traci St.Martin

Architecture Inception
Team

Craig Stancl, Harold Solbrig,
Sridhar Dwarkanath, Scott Bauer,
Kevin Peterson, Traci St.Martin

LexEVS Platform Independent Model and Service Specification v6.0

Version
Number

Date Contributor Description

1.0 Kevin Peterson Initial Draft

1.1 Russell Hamm Added:

 Overview

 Updated Assumptions
from CIM

 2.2.2 Deployment
Considerations

 Functional Profile

 Semantic Profile

 Appendix A

 Appendix B

1.2 Craig Stancl

Kevin Peterson

Finalize Document – completed
all remaining sections.

Type of text Color Font Style

Instructions Red Times New Roman
Size 12 pt.

Italics

Examples Blue Courier New
Size 12 pt.

Regular

Content Black Times New
Roman Size 12 pt.

Regular

 - 2 -

LexEVS Platform Independent Model and Service Specification v6.0

T A B L E O F C O N T E N T S

1 INTRODUCTION... 5

1.1 OVERVIEW ... 5
1.2 RELATIONSHIP TO STANDARDS .. 6
1.3 RELATION TO THE LEXEVS CONCEPTUAL FUNCTIONAL SERVICE SPECIFICATION 6

1.3.1 Conformance and Compliance ... 7

2 PLATFORM INDEPENDENT MODEL AND SERVICE SPECIFICATION............................. 9

2.1 OVERVIEW AND ARCHITECTURE .. 9
2.2 IMPLEMENTATION CONSIDERATIONS ... 9

2.2.1 Assumptions.. 10
2.2.2 Deployment Considerations.. 12

2.3 INFORMATION MODEL ... 13
2.3.1 LexGrid Model.. 13
2.3.2 LexBIG Model... 31
2.3.3 Error Implementation Model .. 41

2.4 CONTROL DATA TYPE DEFINITIONS... 42
2.4.1 Status/Return Values/Exceptions .. 42
2.4.2 Query Parameters and Result Sets ... 42

3 INTERFACES... 44

3.1 UML MODEL OF INTERFACES .. 44
3.1.1 LexBIGService .. 44
3.1.2 CodedNodeGraph... 44
3.1.3 CodedNodeSet .. 45
3.1.4 LexBIGServiceMetadata... 45
3.1.5 HistoryService .. 46

3.2 OPERATIONS (ENUMERATION) ... 47
3.3 OPERATION BEHAVIOR DESCRIPTIONS... 58

3.3.1 LexBIGService .. 58
3.3.2 CodedNodeGraph... 68
3.3.3 CodedNodeSet .. 85
3.3.4 LexBIGServiceMetadata... 102
3.3.5 HistoryService .. 105

4 DYNAMIC MODEL... 111

4.1 SEQUENCE DIAGRAM ... 111

5 PROFILES .. 112

5.1 FUNCTIONAL PROFILES .. 112
5.1.1 Service Query Functional Profile ... 112
5.1.2 Content Query Functional Profile .. 112

5.2 SEMANTIC PROFILES .. 112
5.2.1 CTS 2 Semantic Profile... 112

6 RELATIONSHIP WITH OTHER SERVICES ... 113

7 CONFORMANCE STATEMENTS.. 113

7.1 COMPLIANCE AND CONFORMANCE STATEMENTS .. 113

8 APPENDIX A - REFERENCES.. 115

9 APPENDIX B - GLOSSARY... 116

 - 3 -

LexEVS Platform Independent Model and Service Specification v6.0

10 APPENDIX C - CROSS REFERENCE TABLES ... 116

10.1 INTERFACE TO PROFILE MAPPING .. 116
10.2 INTERFACE OPERATIONS TO PROFILE OPERATIONS.. 117

 - 4 -

LexEVS Platform Independent Model and Service Specification v6.0

1 Introduction

1.1 Overview

LexEVS 6.0 represents the next generation of NCI Enterprise Vocabulary Services.
LexEVS is a mechanism for the standard storage of controlled vocabularies and
ontologies defining a flexible format for accurately representing a wide variety of
vocabularies and other lexically-based resources in several different server storage
repositories as well as a XML format.

LexEVS provides a powerful and robust API and tool suite which permits access to
controlled vocabulary content represented in the LexEVS model. This allows
terminologies from a wide variety of resources such as RRF, OWL, and OBO to be
represented and loaded to a single data base management system and accessed with a
common set of tools and interfaces.

LexEVS is based off the LexGRID database schema and LexBIG API objects, where
LexGRID defines how the terminologies are structured in the database and LexBIG
defines how the terminology service looks as objects to the user. LexEVS provides
optimizing query code that retrieves LexBIG objects, allows the user to tailor calls to the
terminology service in such a way that a discrete set of values is returned increasing
utility and interoperability.

One of the requirements of LexEVS 6.0 is to align the LexEVS Analytical Grid Services
component operations - including Search and Query Operations for Code Systems and
Associations but excluding other LexEVS capabilities for querying and loading Value
Sets, Concept Domains and Usage Contexts – to international efforts at developing
common terminology service interfaces, specifically, the Health Level Seven (HL7)
Common Terminology Services – Release 2 (CTS 2) standard.

NOTE: For the purpose of this document, the terms “Code System” and “Coding
Scheme” are synonymous.

 - 5 -

http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf
http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf

LexEVS Platform Independent Model and Service Specification v6.0

1.2 Relationship to Standards
Name Description Location
HL7 CTS 2 HL7’s CTS 2 specification

specifies functional model
(CIM) outlining HL7’s
consensus requirement for
terminology services.

For the LexEVS CIM, only
the terminology and
association query
components of HL7 CTS 2
is considered to be in scope.

LexEVS will ultimately
implement much of the CTS
2 functionality, and as such,
early identification of
potential points of alignment
is necessary.

Health Level Seven (HL7) Common
Terminology Services – Release 2
(CTS 2)

ISO 21090
Health
Informatics –
Harmonized
data types for
information
interchange

ISO 21090 data types
provide a harmonized set of
data type definitions for
representing and exchanging
healthcare related
information.

LexEVS 6.0 will
interchange information
using the 21090 data type
specifications

http://www.kith.no/upload/4414/ISODI
S21090.pdf

1.3 Relation to the LexEVS Conceptual Functional Service
Specification

This specification is derived from the LexEVS 6.0 Computationally Independent
Functional Model. It implements all profiles mentioned in that Specification.

Conceptual
Functional
Service
Specification

Conceptual
Functional Service
Specification
Version

Description & Link to the Conceptual
Functional Service Specification

 - 6 -

http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf
http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf
http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf
http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf
http://www.kith.no/upload/4414/ISODIS21090.pdf
http://www.kith.no/upload/4414/ISODIS21090.pdf

LexEVS Platform Independent Model and Service Specification v6.0

Name

Computationally
Independent
Model and
Service
Specification

1.3 https://wiki.nci.nih.gov/display/EVS/LexEVS
+6.0+ECCF+Artifacts

1.3.1 Conformance and Compliance

1.3.1.1 LexEVS 21090 Content Query Conformance Profile

This conformance profile defines the query capabilities for LexEVS coding schemes
Analytical Grid Services. The profile is invoked when LexEVS Analytical Grid Services
are called to query terminology content and return that content in ISO 21090 data types.

Conformance Profile
No.

QS-CP1

Conformance Profile
Name

LexEVS 21090 Content Query Conformance Profile

Functional Profiles Functional Profile No. Functional Profile Name

QS-PF2 QS Content Query

Semantic Profiles Semantic Profile No. Semantic Profile Name

QS-SP1 CTS 2 Semantic Profile

1.3.1.2 LexEVS 21090 Full Query Conformance Profile

This conformance profile defines the query capabilities for LexEVS coding scheme and
service related data for LexEVS Analytical Grid Services. This profile is invoked when
LexEVS Analytical Grid Services are called to query either service specific information
or terminology content and return that content in ISO 21090 data types.

Conformance Profile
No.

QS-CP2

Conformance Profile LexEVS 21090 Full Query Conformance Profile

 - 7 -

LexEVS Platform Independent Model and Service Specification v6.0

Name

Functional Profiles Functional Profile No. Functional Profile Name

QS-PF1 QS Service Query

QS-PF2 QS Content Query

Semantic Profiles Semantic Profile No. Semantic Profile Name

QS-SP1 CTS 2 Semantic Profile

 - 8 -

LexEVS Platform Independent Model and Service Specification v6.0

 - 9 -

2 Platform Independent Model and Service
Specification

2.1 Overview and Architecture
The sections below fully describe the operations and behavior of the LexEVS
terminology service. It is important to note that this structure is specifically defined for
the service provider as it pertains to Analytical Grid Services, and reflects a natural
structure of components that may provide LexEVS functionality. These are effectively
orthogonal to the groupings of capabilities defined in Functional Profiles that form the
basis for conformance and for consumption of the service by Clients. In some cases, the
functional profiles may approximate or match the interface structure.

2.2 Implementation Considerations

In the grid services environment, the client application makes calls the grid services
interfaces which in turn call the distributed LexEVS API to access content in LexEVS.
LexEVS for Analytical Grid Services consists of client system, caGrid Host Server,
Distributed LexEVS server and database server. The client system is responsible for
making calls to access controlled terminology content from the caGrid Host Server. The
caGrid Host Server is responsible for routing information both to and from the client
system from the LexEVS server. The LexEVS server is responsible for serving up
structured terminology content represented in the LexGrid enabled repository (database
server). Lastly, the database server houses the code systems available on LexEVS.

Implementation Considerations Impact

LexEVS Grid Services need the ability
to make stateful calls to the server.

Create a query on the server, add restrictions
and limits with subsequent calls, and finally
execute the query and retrieve the results.

2.2.1 Assumptions
Assumption Affects Source
It is assumed that this
service will be constrained
to the LexEVS Analytical
Grid Services

Terminology authoring, value
domain operations and
administrative operations will not
be supported.

This constrains the storyboards
and actors accordingly.

LexEVS Scope Document

https://wiki.nci.nih.gov/display/EVS/LexEVS+6.0+Scope+Docume
nt

When an Analytical Grid
Service functional
capability intersects with a
HL7 CTS 2 function
capability, the Analytical
Grid Service function will
conform to the CTS 2
functional capability.

Provides a limited standardized
interface to LexEVS Analytical
Grid Service functions.

LexEVS Scope Document

https://wiki.nci.nih.gov/display/EVS/LexEVS+6.0+Scope+Docume
nt

The ISO 21090 Health
Informatics – Harmonized
data types for information
interchange will be used for
data interoperability

ISO 21090 data types provide a
harmonized set of data type
definitions for representing and
exchanging healthcare related
information.

LexEVS 6.0 will interchange
information using the 21090 data
type specifications

http://www.kith.no/upload/4414/ISODIS21090.pdf

Access to Restricted
content (whether
vocabulary content,

There are two possible affects

1. Services utilizing LexEVS are
responsible for providing the

https://wiki.nci.nih.gov/display/EVS/LexEVS+6.0+Scope+Document
https://wiki.nci.nih.gov/display/EVS/LexEVS+6.0+Scope+Document
https://wiki.nci.nih.gov/display/EVS/LexEVS+6.0+Scope+Document
https://wiki.nci.nih.gov/display/EVS/LexEVS+6.0+Scope+Document
http://www.kith.no/upload/4414/ISODIS21090.pdf

LexEVS Platform Independent Model and Service Specification v6.0

 - 11 -

vocabulary or system
metadata, or otherwise) is
assumed be implemented
by client services utilizing
the LexEVS services, not
LexEVS itself

authentication, authorization,
and mechanism for restricting
content, if restriction is
necessary or desired.

2. Implementers will provide
such mechanisms as
appropriate to be included in
the implementation of the
LexEVS service. Note that
this will be implementation
specific, as the LexEVS
service does not explicitly
define or imply mechanisms
for authentication or
authorization.

2.2.2 Deployment Considerations
Following are the possible deployment modes for the LexEVS service. A service
implementation can be developed to support any or all of these. The exact deployment
mode supported by the service implementation should be properly documented in the
Platform Specific Model.

2.2.2.1 Local Deployment

The LexEVS service should be able to run locally in the same container as the client
application.

•The caGrid Service
consists of client
system, caGrid Host
Server, Distributed
LexEVS Server and
Database Server.

Database ServerDatabase ServerLexEVS on Local System

LexEVS Install

LexEVS on Local System

LexEVS Install

JDBC

2.2.2.2 Remote Deployment

The LexEVS service should run remotely and be able to support remote client
interfacing.

Distributed LexEVS Server

RMI

Database ServerDatabase Server

LexEVS InstallLexEVS Install

JDBC

LexBIG API Proxy

Client System Client System

LexEVS Client Proxy

2.2.2.3 caGrid Deployment

The LexEVS service should run as a caGrid compatible service.

Database ServerDatabase ServercaGrid Host ServerClient System Client System Distributed LexEVS Server

RMI

LexEVS InstallLexEVS Install

JDBCTCP

LexEVS ProxyLexEVS Client Proxy

LexEVS Platform Independent Model and Service Specification v6.0

2.3 Information Model

2.3.1 LexGrid Model

Diagram: DataTypes

pkg DataTypes

«Schema»
versions

+ Registry

+ changedEntry

+ changeType

+ codingSchemeVersion

+ editHistory

+ entityVersion

+ entryState

+ revision

+ systemRelease«Schema»
NCIHistory

+ changeType

+ NCIChangeEvent

«Schema»
v alueSets

+ propertyMatchValue

+ propertyReference

+ codingSchemeReference

+ definitionEntry

+ definitionOperator

+ entityReference

+ pickListDefinition

+ pickListDefinitions

+ pickListEntry

+ pickListEntryExclusion

+ pickListEntryNode

+ valueSetDefinition

+ valueSetDefinitionReference

+ valueSetDefinitions

«Schema»
codingSchemes

+ codingScheme

+ codingSchemes

«Schema»
relations

+ associationPredicate

+ associatableElement

+ associationData

+ associationEntity

+ associationQualification

+ associationSource

+ associationTarget

+ relations

+

«Schema»
concepts

+ comment

+ concept

+ definition

+ entities

+ entity

+ instance

+ presentation

+ propertyLink

«Schema»
naming

+ supportedConceptDomain

+ associationList

+ mappings

+ supportedAssociation

+ supportedAssociationQualifier

+ supportedCodingScheme

+ supportedContainerName

+ supportedContext

+ supportedDataType

+ supportedDegreeOfFidelity

+ supportedEntityType

+ supportedHierarchy

+ supportedLanguage

+ supportedNamespace

+ supportedProperty

+ supportedPropertyLink

+ supportedPropertyQualifier

+ supportedPropertyQualifierType

+ supportedPropertyType

+ supportedRepresentationalForm

+ supportedSortOrder

+ supportedSource

+ supportedSourceRole

+ supportedStatus

+ URIMap

«Schema»
commonTypes

+ conceptDomain

+ propertyTypes

+ associationName

+ associationQualifierName

+ changeSetId

+ codingSchemeName

+ containerName

+ context

+ dataType

+ degreeOfFidelity

+ describable

+ entityCode

+ entityDescription

+ entityType

+ entryOrder

+ language

+ namespaceName

+ nodeId

+ properties

+ property

+ propertyId

+ propertyLinkName

+ propertyName

+ propertyQualifier

+ propertyQualifierName

+ propertyQualifierType

+ propertyType

+ representationalForm

+ revisionId

+ sortOrder

+ source

+ sourceRole

+ status

+ text

+ URI

+ version

+ versionable

+ versionableAndDescribable

«Schema»
builtins

+ tsAnyType

+ tsBoolean

+ tsCaseIgnoreIA5String

+ tsCaseSensitiveDirectoryString

+ tsCaseSensitiveIA5String

+ tsInteger

+ tsLocalId

+ tsTimestamp

+ tsURI

 - 13 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: MainPackages

pkg MainPackages

«Schema»
NCIHistory

+ changeType

+ NCIChangeEvent

«Schema»
codingSchemes

+ codingScheme

+ codingSchemes

«Schema»
v ersions

+ Registry

+ changedEntry

+ changeType

+ codingSchemeVersion

+ editHistory

+ entityVersion

+ entryState

+ revision

+ systemRelease

«Schema»
concepts

+ comment

+ concept

+ definition

+ entities

+ entity

+ instance

+ presentation

+ propertyLink

«Schema»
v alueSets

+ propertyMatchValue

+ propertyReference

+ codingSchemeReference

+ definitionEntry

+ definitionOperator

+ entityReference

+ pickListDefinition

+ pickListDefinitions

+ pickListEntry

+ pickListEntryExclusion

+ pickListEntryNode

+ valueSetDefinition

+ valueSetDefinitionReference

+ valueSetDefinitions

«Schema»
relations

+ associationPredicate

+ associatableElement

+ associationData

+ associationEntity

+ associationQualification

+ associationSource

+ associationTarget

+ relations

+

«Schema»
naming

+ supportedConceptDomain

+ associationList

+ mappings

+ supportedAssociation

+ supportedAssociationQualifier

+ supportedCodingScheme

+ supportedContainerName

+ supportedContext

+ supportedDataType

+ supportedDegreeOfFidelity

+ supportedEntityType

+ supportedHierarchy

+ supportedLanguage

+ supportedNamespace

+ supportedProperty

+ supportedPropertyLink

+ supportedPropertyQualifier

+ supportedPropertyQualifierType

+ supportedPropertyType

+ supportedRepresentationalForm

+ supportedSortOrder

+ supportedSource

+ supportedSourceRole

+ supportedStatus

+ URIMap

 - 14 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: builtins

class builtins

Opaque type - can be string or
complex inner type

String types

IdentifiersBasic Types

«dataType»
tsLocalId

«Facet»

«dataType»
tsBoolean

+ minLength: int = 1

«dataType»
tsInteger

tsAnyType

«Any, Element»
+ wildcard: int [0..*]

«dataType»
tsCaseIgnoreIA5String

«Facet»
+ minLength: int = 1

«dataType»
tsCaseSensitiveDirectoryString

«Facet»
+ minLength: int = 1

«dataType»
tsCaseSensitiveIA5String

«Facet»
+ minLength: int = 1

«dataType»
tsTimestamp

«dataType»
tsURI

 - 15 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: codingScheme

class codingScheme

mappings

«EntryPoint»
codingSchemes

versionableAndDescribable

«EntryPoint»
codingScheme

+ copyright: text [0..1]
+ localName: tsCaseIgnoreIA5String [0..-1]
+ source: source [0..*]

«Attribute»
+ approxNumConcepts: tsInteger [0..1]
+ codingSchemeName: codingSchemeName
+ codingSchemeURI: URI
+ defaultLanguage: language [0..1]
+ formalName: tsCaseIgnoreIA5String [0..1]
+ representsVersion: version [0..1]

entities

versionableAndDescribable

relations

«Attribute»
+ containerName: containerName
+ isMapping: tsBoolean [0..1] = false
+ representsVersion: version [0..1]
+ sourceCodingScheme: codingSchemeName [0..1]
+ sourceCodingSchemeVersion: version [0 1]

properties

describable

«EntryPoint»
systemRelease

+codingSchemes 0..1

+codingScheme 1..*

+mappings

1..1

+properties

0..1

+entities 0..1

+relations 0..*

+properties 0..1

 - 16 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: commonTypes

class commonTypes

entityDescription

entityCode

entryOrder

propertyId revisionId

«dataType»
builtins::tsCaseIgnoreIA5String

«Facet»
+ minLength: int = 1

«dataType»
builtins::tsURI

«dataType»
builtins::tsInteger

text

«Attribute»
+ dataType: dataType [0..1]

nodeId

builtins::tsAnyType

«Any, Element»
+ wildcard: int [0..*]

changeSetId

URI

«dataType»
builtins::

tsCaseSensitiveIA5String

«Facet»
+ minLength: int = 1

version

 - 17 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: localids

class localids

«dataType»
builtins::tsLocalId

«Facet»
+ minLength: int = 1

context

language

propertyQualifierName

source

«Attribute»
+ role: sourceRole [0..1]
+ subRef: tsCaseIgnoreIA5String [0..1]

associationQualifierName

codingSchemeName

status

degreeOfFidelity

dataType

propertyName

representationalForm

propertyLinkName

entityType

propertyType

propertyQualifierType

sourceRole

sortOrder

namespaceName

containerName

associationName

conceptDomain

 - 18 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: mixins

class mixins

«Mixin»
describable

tsAnyType

entityDescription

«Mixin»
versionable

+ owner: tsCaseIgnoreIA5String [0..1]

«Attribute»
+ effectiveDate: tsTimestamp [0..1]
+ expirationDate: tsTimestamp [0..1]
+ isActive: tsBoolean [0..1]
+ status: status [0..1]

«Mixin»
versionableAndDescribable

+entityDescription +entityDescription

0..10..1

 - 19 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: properties

class properties

versionable

property

versionableAndDescribable

«EntryPoint»
valueSets::valueSetDefinition

versionableAndDescribable

relations::relations
versionableAndDescribable

«EntryPoint»
codingSchemes::codingScheme

+ source: source [0..*]
+ usageContext: context [0..*]
+ value: text [0..1]

«Attribute»
+ language: language [0..1]
+ propertyId: propertyId [0..1]
+ propertyName: propertyName
+ propertyType: propertyType [0..1]

concepts::propertyLink

«Attribute»
+ propertyLink: propertyLinkName
+ sourceProperty: propertyId
+ targetProperty: propertyId

properties

propertyQualifier

+ value: text [0..1]

«Attribute»
+ propertyQualifierName: propertyQualifierName
+ propertyQualifierType: propertyQualifierType [0..1]

versionableAndDescribable

concepts::entity

versionable

«Choice»
valueSets::pickListEntryNode

+properties

versionableAndDescribable

«EntryPoint»
valueSets::pickListDefinition

+property 0..*

+property

1..*

0..*

+/sourceProperty

1

0..*

+/targetProperty

1

+propertyLink 0..*

0..1 +properties +properties0..1

0..1+properties

0..1

+properties

0..1

0..*

+propertyQualifier

 - 20 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: property

class property

versionable

property

properties

+ source: source [0..*]
+ usageContext: context [0..*]
+ value: text [0..1]

«Attribute»
+ language: language [0..1]
+ propertyId: propertyId [0..1]
+ propertyName: propertyName
+ propertyType: propertyType [0..1]

+property 0..*

propertyQualifierconcepts::propertyLink

+ value: text [0..1]+/sourceProperty
«Attribute»
+ propertyLink: propertyLinkName
+ sourceProperty: propertyId
+ targetProperty: propertyId

+propertyQualifier

«Attribute»0..* 1
0..*+/targetProperty + propertyQualifierName: propertyQualifierName

+ propertyQualifierType: propertyQualifierType [0..1]0..* 1

concepts::comment concepts::definition

«Attribute»
+ isPreferred: tsBoolean [0..1]

{propertyType = presentation} {propertyType ={propertType = comment}
definition}

concepts::presentation

«Attribute»
+ degreeOfFidelity: degreeOfFidelity [0..1]
+ isPreferred: tsBoolean [0..1]
+ matchIfNoContext: tsBoolean [0..1]
+ representationalForm: representationalForm [0..1]

«enumeration»
propertyTypes

 comment
 definition
 presentation
 property

 - 21 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: entities

class entities

entities

versionableAndDescribable

entity

versionableAndDescribable

«EntryPoint»
codingSchemes::codingScheme

+entities 0..1

+entity 1..*

+ entityType: entityType [0..*]

«Attribute»
+ entityCode: entityCode
+ entityCodeNamespace: namespaceName [0..1]
+ isAnonymous: tsBoolean [0..1]
+ isDefined: tsBoolean [0..1]

relations::associationEntity

«Attribute»
+ forwardName: tsCaseIgnoreIA5String [0..1]
+ isNavigable: tsBoolean [0..1] = true
+ isTransitive: tsBoolean [0..1]
+ reverseName: tsCaseIgnoreIA5String [0..1]

 - 22 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: entity

class entity

versionableAndDescribable

entity

+ entityType: entityType [0..*]

«Attribute»
+ entityCode: entityCode
+ entityCodeNamespace: namespaceName [0..1]
+ isAnonymous: tsBoolean [0..1]
+ isDefined: tsBoolean [0..1]

versionable

commonTypes::property

propertyLink

«Attribute»
+ propertyLink: propertyLinkName
+ sourceProperty: propertyId
+ targetProperty: propertyId

comment definition

«Attribute»
+ isPreferred: tsBoolean [0..1]

presentation

«Attribute»
+ degreeOfFidelity: degreeOfFidelity [0..1]
+ isPreferred: tsBoolean [0..1]
+ matchIfNoContext: tsBoolean [0..1]
+ representationalForm: representationalForm [0..1]

+property

1..*

0..*

+/sourceProperty 1

0..*

+/targetProperty 1+propertyLink 0..*

{propertType = comment}

+comment 0..* +definition

{propertyType =
definition}

0..* +presentation 1..*

{propertyType = presentation}

 - 23 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: naming

class naming

tsCaseIgnoreIA5String

«dataType»
URIMap

«Attribute»
+ localId: tsLocalId
+ uri: tsURI [0..1]

«List»
associationList

supportedAssociation

«Attribute»
+ codingScheme: codingSchemeName [0..1]
+ entityCode: entityCode [0..1]
+ entityCodeNamespace: namespaceName [0..1]

supportedAssociationQualifier

supportedCodingScheme

«Attribute»
+ isImported: tsBoolean [0..1]

supportedStatus

supportedContext

supportedDegreeOfFidelity

supportedDataType

supportedHierarchy

«Attribute»
+ associationNames: associationList
+ isForwardNavigable: tsBoolean
+ rootCode: entityCode

supportedLanguage

supportedProperty

«Attribute»
+ propertyType: propertyTypes [0..1]

supportedPropertyLink

supportedPropertyQualifier

supportedRepresentationalForm

supportedSource

«Attribute»
+ assemblyRule: tsCaseIgnoreIA5String [0..1]

supportedPropertyType

supportedPropertyQualifierType
supportedEntityType

supportedSortOrder

mappings

+ supportedAssociation: supportedAssociation [0..*]
+ supportedAssociationQualifier: supportedAssociationQualifier [0..*]
+ supportedCodingScheme: supportedCodingScheme [0..*]
+ supportedConceptDomain: supportedConceptDomain [0..*]
+ supportedContainer: supportedContainerName [0..*]
+ supportedContext: supportedContext [0..*]
+ supportedDataType: supportedDataType [0..*]
+ supportedDegreeOfFidelity: supportedDegreeOfFidelity [0..*]
+ supportedEntityType: supportedEntityType [0..*]
+ supportedHierarchy: supportedHierarchy [0..*]
+ supportedLanguage: supportedLanguage [0..*]
+ supportedNamespace: supportedNamespace [0..*]
+ supportedProperty: supportedProperty [0..*]
+ supportedPropertyLink: supportedPropertyLink [0..*]
+ supportedPropertyQualifier: supportedPropertyQualifier [0..*]
+ supportedPropertyQualifierType: supportedPropertyQualifierType [0..*]
+ supportedPropertyType: supportedPropertyType [0..*]
+ supportedRepresentationalForm: supportedRepresentationalForm [0..*]
+ supportedSortOrder: supportedSortOrder [0..*]
+ supportedSource: supportedSource [0..*]
+ supportedSourceRole: supportedSourceRole [0..*]
+ supportedStatus: supportedStatus [0..*]

supportedNamespace

«Attribute»
+ equivalentCodingScheme: codingSchemeName [0..1]

supportedContainerName

supportedSourceRole

Note: This model shows URIMap as a subtype of
tsCaseIgnoreIA5String. The purpose of this string
is to provide space for an optional comment.
Unfortunately, however, tsCaseIgnoreIA5String
has a minimum length of 1, meaning that a li teral
interpretation of this model requires that *all*
URIMaps contain a comment. The XML Schema
has temporari ly corrected this problem by typing
URIMap to xs:string. The next version of this
model will correct this issue.

supportedConceptDomain

 - 24 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: NCIHistory

class NCIHistory

NCIChangeEvent

«Attribute»

«enumeration»
changeType

 create
 retire
 merge
 split
 modify

+ conceptcode: entityCode
+ conceptName: tsCaseSensitiveIA5String
+ editaction: changeType
+ referencecode: entityCode [0..1]
+ referencename: tsCaseSensitiveIA5String [0..1]

 - 25 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: association

class association

associationEntity

«Attribute»

versionableAndDescribable

«EntryPoint»
codingSchemes::codingScheme

+ forwardName: tsCaseIgnoreIA5String [0..1]
+ isNavigable: tsBoolean [0..1] = true
+ isTransitive: tsBoolean [0..1]
+ reverseName: tsCaseIgnoreIA5String [0..1]

versionableAndDescribable

relations

+relations 0..*

versionableAndDescribable

concepts::entity
«Attribute»
+ containerName: containerName
+ isMapping: tsBoolean [0..1] = false
+ representsVersion: version [0..1]
+ sourceCodingScheme: codingSchemeName [0..1]
+ sourceCodingSchemeVersion: version [0..1]
+ targetCodingScheme: codingSchemeName [0..1]
+ targetCodingSchemeVersion: version [0..1]

+ entityType: entityType [0..*]

«Attribute»
+ entityCode: entityCode
+ entityCodeNamespace: namespaceName [0..1]
+ isAnonymous: tsBoolean [0..1]
+ isDefined: tsBoolean [0..1]

«Choice»
associationSource

«Attribute»
+ sourceEntityCode: entityCode
+ sourceEntityCodeNamespace: namespaceName [0..1]

associationPredicate

«Attribute»
+ associationName: associationName

URIMap

naming::supportedAssociation

«Attribute»

::URIMap

+ codingScheme: codingSchemeName [0..1]
+ entityCode: entityCode [0..1]
+ entityCodeNamespace: namespaceName [0..1]

+ localId: tsLocalId
+ uri: tsURI [0..1]

«Facet»
::tsCaseIgnoreIA5String
+ minLength: int = 1

commonTypes::properties
+properties

0..1

+associationPredicate 1..*

+definedBy+defines+/references+/referencedBy

0..* 0..10..*0..1

1..*+source

 - 26 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: associationInstance

class associationInstance

entity

associationEntity

«Attribute»
+ forwardName: tsCaseIgnoreIA5String [0..1]
+ isNavigable: tsBoolean [0..1] = true
+ isTransitive: tsBoolean [0..1]
+ reverseName: tsCaseIgnoreIA5String [0..1]

«Choice»
associationSource

«Attribute»
+ sourceEntityCode: entityCode
+ sourceEntityCodeNamespace: namespaceName [0..1]

associationData

+ associationDataText: text [0..1]

associationTarget

«Attribute»
+ targetEntityCode: entityCode
+ targetEntityCodeNamespace: namespaceName [0..1]

versionable

associatableElement

+target +targetData 0..*0..*

+ usageContext: context [0..*]

«Attribute»
+ associationInstanceId: nodeId [0..1]
+ isDefining: tsBoolean [0..1]
+ isInferred: tsBoolean [0..1]

+associationQualification 0..*

associationQualification

+ qualifierText: text [0..1]

«Attribute»
+ associationQualifier: associationQualifierName

 - 27 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: systemRelease

class systemRelease

describable

«EntryPoint»
systemRelease

«Attribute»

+/basedOnRelease
0..1

+ basedOnRelease: URI [0..1]
+ releaseAgency: URI [0..1]
+ releaseDate: tsTimestamp
+ releaseId: tsCaseIgnoreIA5String [0..1]
+ releaseURI: URI

editHistory

describable

«EntryPoint»
revision

+ changeAgent: tsCaseIgnoreIA5String [0..1]
+ changeInstructions: text [0..1]

«Attribute»
+ editOrder: entryOrder
+ revisionDate: tsTimestamp [0..1]
+ revisionId: revisionId

valueSets::pickListDefinitions

«EntryPoint»
codingSchemes::codingSchemes0..1

+codingSchemes

0..1
valueSets::valueSetDefinitions

+valueDomains

0..1

+pickLists

+editHistory 0..1

+revision 1..* {ordered}

entryState

«Attribute»+/containingRevision
+ changeType: changeType
+ containingRevision: revisionId
+ prevRevision: revisionId [0..1]
+ relativeOrder: entryOrder

+/prevRevision
1

0..1

 - 28 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: versionableEntities

class versionableEntities

«Mixin»
commonTypes::versionable

+ owner: tsCaseIgnoreIA5String [0..1]

«Attribute»
+ effectiveDate: tsTimestamp [0..1]
+ expirationDate: tsTimestamp [0..1]
+ isActive: tsBoolean [0..1]
+ status: status [0..1]

«Mixin»
commonTypes::

versionableAndDescribable

«Choice»
valueSets::pickListEntryNode

relations::associatableElement

+ usageContext: context [0..*]

«Attribute»
+ associationInstanceId: nodeId [0..1]
+ isDefining: tsBoolean [0..1]
+ isInferred: tsBoolean [0..1]

commonTypes::property

+ source: source [0..*]
+ usageContext: context [0..*]
+ value: text [0..1]

«Attribute»
+ language: language [0..1]
+ propertyId: propertyId [0..1]
+ propertyName: propertyName
+ propertyType: propertyType [0..1]

concepts::entity

+ entityType: entityType [0..*]

«Attribute»
+ entityCode: entityCode
+ entityCodeNamespace: namespaceName [0..1]
+ isAnonymous: tsBoolean [0..1]
+ isDefined: tsBoolean [0..1]

«EntryPoint»
codingSchemes::codingScheme

+ copyright: text [0..1]
+ localName: tsCaseIgnoreIA5String [0..-1]
+ source: source [0..*]

«Attribute»
+ approxNumConcepts: tsInteger [0..1]
+ codingSchemeName: codingSchemeName
+ codingSchemeURI: URI
+ defaultLanguage: language [0..1]
+ formalName: tsCaseIgnoreIA5String [0..1]
+ representsVersion: version [0..1]

«EntryPoint»
valueSets::pickListDefinition

+ defaultPickContext: context [0..*]
+ source: source [0..*]

«Attribute»
+ completeSet: tsBoolean [0..1]
+ defaultEntityCodeNamespace: namespaceName [0..1]
+ defaultLanguage: language [0..1]
+ defaultSortOrder: sortOrder [0..1]
+ pickListId: nodeId
+ representsValueSetDefinition: URI

+ pickListEntryId: nodeId

«EntryPoint»
valueSets::valueSetDefinition

+ representsRealmOrContext: context [0..*]
+ source: source [0..*]

«Attribute»
+ conceptDomain: conceptDomain [0..1]
+ defaultCodingScheme: codingSchemeName [0..1]
+ valueSetDefinitionName: tsCaseIgnoreIA5String [0..1]
+ valueSetDefinitionURI: URI

relations::relations

«Attribute»
+ containerName: containerName
+ isMapping: tsBoolean [0..1] = false
+ representsVersion: version [0..1]
+ sourceCodingScheme: codingSchemeName [0..1]
+ sourceCodingSchemeVersion: version [0..1]
+ targetCodingScheme: codingSchemeName [0..1]
+ targetCodingSchemeVersion: version [0..1]

tsAnyType

commonTypes::
entityDescription

«Choice»
valueSets::definitionEntry

«Attribute»
+ operator: definitionOperator [0..1]
+ ruleOrder: entryOrder

+entityDescription

0..1

 - 29 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: versioning

class v ersioning

entryState

«Attribute»
+ changeType: changeType
+ containingRevision: revisionId
+ prevRevision: revisionId [0..1]
+ relativeOrder: entryOrder

describable

«EntryPoint»
revision

+ changeAgent: tsCaseIgnoreIA5String [0..1]
+ changeInstructions: text [0..1]

«Attribute»
+ editOrder: entryOrder
+ revisionDate: tsTimestamp [0..1]
+ revisionId: revisionId

«Mixin»
commonTypes::versionable

+ owner: tsCaseIgnoreIA5String [0..1]

«Attribute»
+ effectiveDate: tsTimestamp [0..1]
+ expirationDate: tsTimestamp [0..1]
+ isActive: tsBoolean [0..1]
+ status: status [0..1]

«enumeration»
changeType

 NEW
 MODIFY
 VERSIONABLE
 DEPENDENT
 REMOVE

editHistory

describable

«EntryPoint»
systemRelease

+editHistory 0..1

versionableAndDescribable

«EntryPoint»
valueSets::pickListDefinition

versionableAndDescribable

«EntryPoint»
codingSchemes::codingScheme

«Choice»
changedEntry

codingSchemeVersion

entityVersion and codingSchemeVersion
are sti ll in the model for backwards
compatibil i ty. In the new model, there is
no longer a codingScheme entity that is
independent of versioning.

entityVersion and codingSchemeVersion
wil l be removed from the model in an
upcoming release.

describable

entityVersion

+ changeDocumentation: text [0..1]
+ changeInstructions: text [0..1]

«Attribute»
+ effectiveDate: tsTimestamp [0..1]
+ isComplete: tsBoolean
+ releaseURN: URI [0..1]
+ version: revisionId
+ versionDate: tsTimestamp [0..1]
+ versionOrder: entryOrder

the changedEntry relationship is
derived For some reason this
doesn't show on the model

+/changedEntry

1..* {ordered}

1..*
+revision {ordered}

+entryState 0..1

+/containingRevision

+/prevRevision
1

0..1

1..*
+changedEntry {ordered}

versionableAndDescribable

«EntryPoint»
valueSets::valueSetDefinition

+changedPickListDefinitionEntry

+changedValueSetDefinitionEntry 1

1 +changedCodingSchemeEntry1

 - 30 -

LexEVS Platform Independent Model and Service Specification v6.0

2.3.2 LexBIG Model

Diagram: NCIHistory

class NCIHistory

«XSDcomplexType»
NCIChangeEv ent

«XSDattribute»

«enumeratio...
changeType

Attributes
+ create: string
+ retire: string
+ merge: string
+ split: string
+ modify: string

+editaction 1..1
«XSDattribute»

+ conceptcode: conceptCode
+ conceptName: conceptCode
+ editDate: tsTimestamp
+ referencecode: conceptCode
+ referencename: conceptCode

 - 31 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: TerminologyServiceMetadata

class TerminologyServ iceMetadata

«XSDcomplexType»
TerminologyServ iceInfoType

«XSDelement»

«XSDcomplexType»
ResearchCenterInfoType

«XSDelement»
+ researchCenterAddress: string
+ researchCenterBioDataType: string
+ researchCenterComments: string
+ researchCenterDescription: string
+ researchCenterFax: string
+ researchCenterName: string
+ researchCenterPhone: string
+ researchCenterPOCName: string
+ researchCenterType: string

«XSDextension»

+ codingScheme: localName
+ codingSchemeURN: tsURN
+ deactivateDate: tsTimestamp
+ formalName: tsCaseIgnoreIA5String
+ lastUpdateTime: tsTimestamp
+ representsVersion: version
+ versionStatus: CodingSchemeVersionStatus

1..1

«XSDcomplexType»
TerminologyServ iceMetadata

«XSDelement»
+ ext_ref_1: CodingSchemeRenderingList

 - 32 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: Core

class Core

Serv iceURL

string

ValueDomainURNorName

ValueDomainReference

«XSDattribute»
+ valueDomain: lgCommon:valueDomain

+valueDomainURN

ValueDomainEntryReference

«XSDattribute»
+ valueDomain: lgCommon:valueDomain

Resolv edValueDomainReference

«XSDelement»
+ entityDescription: entityDescription
+ referencedEntry: valueDomainEntry

«XSDattribute»
+ valueDomainURN: tsURN
+ valueDomainVersion: version

Resolv edValueDomainEntryReference

«XSDelement»
+ entityDescription: entityDescription
+ referencedEntry: valueDomainEntry

«XSDattribute»
+ valueDomainVersion: version
+ valueDURN: tsURN

CodingSchemeVersionOrTag

«XSDelement»
+ version: version

anyURI

GSH

string

CodingSchemeTag

+tag 1..1

«XSDextension»«XSDextension»

«XSDattribute»
+vdURN 1..11..1
«XSDattribute»

 - 33 -

LexEVS Platform Independent Model and Service Specification v6.0

class Core

ValueDomainVersionOrTag

«XSDelement»
+ version: version

AssociatedData

«XSDattribute»
+ dataType: localName
+ id: id

ModelGroup1
string

ValueDomainTag

LogLev el

Attributes
+ debug: string
+ info: string
+ warn: string
+ error: string
+ fatal: string

+tag

LogEntry

«XSDattribute»
+ associatedURL: anyURI
+ entryTime: tsTimestamp
+ messageNumber: int

«XSDelement»
+ message: tsCaseIgnoreIA5String
+ processUID: string
+ programName: string

+entryLevel
«XSDattribute»

1..1

1..11..1

 - 34 -

LexEVS Platform Independent Model and Service Specification v6.0

class Core

string

CodingSchemeURNorName

ConceptReference

«XSDattribute»
+ conceptCode: conceptCode

Resolv edConceptReference

«XSDattribute»
+ codingSchemeURN: tsURN
+ codingSchemeVersion: version

«XSDelement»
+ entityDescription: entityDescription
+ referencedEntry: codedEntry
+ sourceOf: AssociationList
+ targetOf: AssociationList

AssociatedConcept

«XSDelement»
+ associationQualifiers: LocalNameList

«XSDattribute»
+ isNavigable: boolean

Association

«XSDelement»
+ associatedConcepts: AssociatedConceptList
+ associatedData: AssociatedDataList

«XSDattribute»
+ associationName: localName
+ directionalName: tsCaseIgnoreIA5String

ReferenceLink

«XSDattribute»
+ href: anyURI

NameAndValue

«XSDattribute»
+ name: localName

«XSDextension»«XSDextension»

+codingScheme 1..1
«XSDattribute»

+associationReference 0..1

«XSDextension»

«XSDextension»

 - 35 -

LexEVS Platform Independent Model and Service Specification v6.0

class Core

CodingSchemeSummary ValueDomainSummary

«XSDelement» «XSDelement»
+ codingSchemeDescription: entityDescription
+ formalName: tsCaseIgnoreIA5String

+ formalName: tsCaseIgnoreIA5String
+ valueDomainDescription: entityDescription

«XSDattribute» «XSDattribute»
+ codingSchemeURN: tsURN
+ localName: localName
+ representsVersion: version

+ localName: localName
+ representsVersion: version
+ valueDomainURN: tsURN

AbsoluteCodingSchemeVersionReference
SupportedElement

«XSDattribute»
«XSDattribute» + codingSchemeURN: tsURN

+ codingSchemeVersion: version+ isComplete: boolean

MetadataProperty

CodingSchemeVersionStatus
«XSDattribute»
+ codingSchemeURN: tsURN
+ codingSchemeVersion: version
+ name: localName
+ value: string

Attributes
+ pending: string
+ active: string
+ inactive: string

 - 36 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: Collections

class Collections

CodingSchemeVersionList

«XSDelement»

SortDescriptionList
NCIChangeEv entListSortOptionList

«XSDelement»
«XSDelement»«XSDelement»+ ext_ref_16: SortDescription
+ entry: NCIChangeEvent+ entry: SortOption

ModuleDescriptionList

«XSDelement»
+ ext_ref_12: ModuleDescription

+ entry: codingSchemeVersion

AbsoluteCodingSchemeVersionReferenceList MetadataPropertyList

«XSDelement» «XSDelement»
+ ext_ref_18: AbsoluteCodingSchemeVersionReference + ext_ref_17: MetadataProperty

NameAndValueList ConceptReferenceList ExtensionDescriptionList

«XSDelement» «XSDelement» «XSDelement»
+ ext_ref_15: NameAndValue + ext_ref_14: ConceptReference + ext_ref_13: ExtensionDescription

 - 37 -

LexEVS Platform Independent Model and Service Specification v6.0

class Collections

AssociatedConceptList

«XSDelement»

SystemReleaseList ValueDomainRenderingList

«XSDelement» «XSDelement»
+ ext_ref_11: systemRelease + ext_ref_10: lbIfe:ValueDomainRendering

CodingSchemeRenderingList CodingSchemeTagList

«XSDelement» «XSDelement»
+ ext_ref_9: CodingSchemeRendering + tag: CodingSchemeTag

Resolv edValueDomainEntryReferenceList

«XSDelement»
+ ext_ref_8: ResolvedValueDomainEntryReference

«XSDattribute»
+ incomplete: boolean

Resolv edValueDomainReferenceList Resolv edConceptReferenceList

«XSDelement» «XSDelement»
+ ext_ref_7: ResolvedValueDomainReference + ext_ref_6: ResolvedConceptReference

«XSDattribute» «XSDattribute»
+ incomplete: boolean + incomplete: boolean

ConceptCodes AssociatedDataList

«XSDelement» «XSDelement»
+ entry: conceptCode + ext_ref_5: AssociatedData + ext_ref_4: AssociatedConcept

 - 38 -

LexEVS Platform Independent Model and Service Specification v6.0

class Collections

CodingSchemeSummaryList

«XSDelement»

AssociationList SupportedElementList

«XSDelement» «XSDelement»
+ ext_ref_3: Association + ext_ref_2: SupportedElement

LocalNameList

«XSDelement»
+ entry: localName + ext_ref_1: CodingSchemeSummary

 - 39 -

LexEVS Platform Independent Model and Service Specification v6.0

 Diagram: InterfaceElements

class InterfaceElements

string

«XSDsimple...
ProcessState

«XSDcomplexType»
ProcessStatus

«XSDattribute»

«XSDcomplexType»
RenderingDetail

«XSDcomplexTy...
ModuleDescription «XSDcomplexType»

SortOption«XSDcomplexType»
SystemReleaseDetail«XSDattribute»

«XSDelement»
+ deactivateDate: tsTimestamp
+ lastUpdateTime: tsTimestamp
+ versionStatus: CodingSchemeVersionStatus

+ description: string «XSDattribute»
«XSDelement» + ascending: boolean

+ extensionName: string
«XSDattribute» + entityVersions: entityVersion
+ name: string
+ version: string

«XSDelement»+state 1..1
+ versionTags: CodingSchemeTagList«XSDattribute»

+ endTime: tsTimestamp
+ errorsLogged: tsBoolean
+ message: tsCaseIgnoreIA5String
+ startTime: tsTimestamp
+ warningsLogged: tsBoolean

«XSDcomplexType»
LoadStatus

«XSDelement»
+ loadSource: anyURI

«XSDattribute»
+ numConceptsLoaded: int
+ numRelationsLoaded: int

«XSDcomplexType»
ExportStatus

«XSDelement»
+ destination: anyURI

«XSDcomplexType»
CodingSchemeRendering

«XSDelement»
+ codingSchemeSummary: CodingSchemeSummary
+ referenceLink: ReferenceLink
+ serviceHandle: ReferenceLink

«XSDcomplexType»
ValueDomainRendering

«XSDelement»
+ referenceLink: ReferenceLink
+ serviceHandle: ReferenceLink
+ valueDomainSummary: ValueDomainSummary

+renderingDetail +renderingDetail

«XSDcomplexType»
ExtensionDescription

«XSDelement»
+ extensionBaseClass: string
+ extensionClass: string

«XSDattribute»
+ extensionProvider: source

«XSDcomplexT...
SortDescription

«enumeration»
SortContext

Attributes
+ graph: string
+ set: string
+ setIteration: string

+restrictToContext 0..*

«XSDextension»

«XSDextension»

1..11..1

«XSDextension»
«XSDextension»

 - 40 -

LexEVS Platform Independent Model and Service Specification v6.0

2.3.3 Error Implementation Model
class LexBIGServ ice

Exception

Exceptions::LBException

- serialVersionUID: long = -75449144535908... {readOnly}

+ LBException(String)
+ LBException(String, Throwable)

Exceptions::LBInv ocationExceptionExceptions::LBParameterException

- logId: String
- serialVersionUID: long = 3030886891325779414L {readOnly}

~ parameterName: String
~ parameterValue: String
- serialVersionUID: long = 5108177540505924442L {readOnly}

+ getLogId() : String
+ LBInvocationException(String, String)+ getParameterName() : String

+ getParameterValue() : String
+ LBParameterException(String, String, String)
+ LBParameterException(String, String)
+ LBParameterException(String)

Exceptions::LBUnsupportedOperationException
RuntimeException

Exceptions::LBRuntimeException - serialVersionUID: long = -77169549559820... {readOnly}

- serialVersionUID: long = 4347639326985296334L {readOnly} + LBUnsupportedOperationException(String, String)

+ LBRuntimeException(String)
+ LBRuntimeException(String, Throwable)

Exceptions::LBResourceUnav ailableException

- serialVersionUID: long = -690663064337397771L {readOnly}

+ LBResourceUnavailableException(String, Throwable)
+ LBResourceUnavailableException(String)

 - 41 -

LexEVS Platform Independent Model and Service Specification v6.0

2.4 Control Data Type Definitions

2.4.1 Status/Return Values/Exceptions

Data Type Type (Status / Return
Value / Exception)

Data Type Description

LBException Exception Superclass for checked
exceptions issued by the
LexBIG runtime.

LBInvocationException Exception The exception to throw when
invocation of a LexBIG service
fails due to an unexpected
problem captured and logged
for administrative action. The
logID will contain information
that the LexBIG admins can use
to track down the details of the
internal error.

LBParameterException Exception The exception to throw when
invalid input is provided to a
LexBIG service.

LBResourceUnavailableException Exception Thrown when a resource
required by the requested
LexBIG operation cannot be
located or resolved.

LBRuntimeException Exception Superclass for unchecked
exceptions issued by the
LexBIG runtime.

LBUnsupportedOperationException Exception The exception to throw when an
unsupported operation is
attempated against a LexBIG
service.

2.4.2 Query Parameters and Result Sets

Data Type Type (Query Search
Criteria / Search

Data Type Description

 - 42 -

LexEVS Platform Independent Model and Service Specification v6.0

Result Limiter /
Query Result Set)

ResolvedConceptReferenceList Query Result Set A list of
ResolvedConceptReferences,
resolved as a whole from the
underlying store.

ResolvedConceptReferencesIterator Query Result Set An iterator for retrieving
Resolved coding scheme
references. Results will be
requested from the
underlying store on demand.

CodedNodeSet Query Search Criteria A coded node set represents
a flat list of coded entries.

CodedNodeGraph Query Search Criteria A virtual graph where the
edges represent associations
and the nodes represent
coded entries. A
CodedNodeGraph describes
a graph that can be combined
with other graphs, queried or
resolved into an actual graph
rendering.

SortOptionList Query Search Criteria A list describing the sort
algorithms to be applied, as
well as the directionality of
the sort.

 - 43 -

LexEVS Platform Independent Model and Service Specification v6.0

3 Interfaces

3.1 UML Model of Interfaces

3.1.1 LexBIGService

This interface represents the core interface to a LexBIG service.

3.1.2 CodedNodeGraph

A virtual graph where the edges represent associations and the nodes represent concept
codes. A CodedNodeGraph describes a graph that can be combined with other graphs,
queried or resolved into an actual graph rendering.

 - 44 -

LexEVS Platform Independent Model and Service Specification v6.0

class LexBIGServ ice

Serializable

«interface»
CodedNodeGraph

+ areCodesRelated(NameAndValue, ConceptReference, ConceptReference, boolean) : Boolean
+ intersect(CodedNodeGraph) : CodedNodeGraph
+ isCodeInGraph(ConceptReference) : Boolean
+ listCodeRelationships(ConceptReference, ConceptReference, boolean) : ConceptReferenceList
+ l istCodeRelationships(ConceptReference, ConceptReference, int) : ConceptReferenceList
+ resolveAsList(ConceptReference, boolean, boolean, int, int, LocalNameList, PropertyType[], SortOptionList, int) : ResolvedConceptReferenceList
+ resolveAsList(ConceptReference, boolean, boolean, int, int, LocalNameList, PropertyType[], SortOptionList, LocalNameList, int) : ResolvedConceptReferenceList
+ resolveAsList(ConceptReference, boolean, boolean, int, int, LocalNameList, PropertyType[], SortOptionList, LocalNameList, int, boolean) : ResolvedConceptReferenceList
+ restrictToAssociations(NameAndValueList, NameAndValueList) : CodedNodeGraph
+ restrictToCodes(CodedNodeSet) : CodedNodeGraph
+ restrictToCodeSystem(String) : CodedNodeGraph
+ restrictToDirectionalNames(NameAndValueList, NameAndValueList) : CodedNodeGraph
+ restrictToSourceCodes(CodedNodeSet) : CodedNodeGraph
+ restrictToSourceCodeSystem(String) : CodedNodeGraph
+ restrictToTargetCodes(CodedNodeSet) : CodedNodeGraph
+ restrictToTargetCodeSystem(String) : CodedNodeGraph
+ toNodeList(ConceptReference, boolean, boolean, int, int) : CodedNodeSet
+ union(CodedNodeGraph) : CodedNodeGraph

3.1.3 CodedNodeSet

A coded node set represents a flat list of coded entries.

class LexBIGServ ice

Serializable

«interface»
CodedNodeSet

+ difference(CodedNodeSet) : CodedNodeSet
+ intersect(CodedNodeSet) : CodedNodeSet
+ isCodeInSet(ConceptReference) : Boolean
+ resolve(SortOptionList, LocalNameList, PropertyType[]) : ResolvedConceptReferencesIterator
+ resolve(SortOptionList, LocalNameList, LocalNameList, PropertyType[]) : ResolvedConceptReferencesIterator
+ resolveToList(SortOptionList, LocalNameList, PropertyType[], int) : ResolvedConceptReferenceList
+ resolveToList(SortOptionList, LocalNameList, LocalNameList, PropertyType[], int) : ResolvedConceptReferenceList
+ restrictToCodes(ConceptReferenceList) : CodedNodeSet
+ restrictToMatchingDesignations(String, boolean, String, String) : CodedNodeSet
+ restrictToMatchingDesignations(String, SearchDesignationOption, String, String) : CodedNodeSet
+ restrictToMatchingProperties(LocalNameList, PropertyType[], String, String, String) : CodedNodeSet
+ restrictToMatchingProperties(LocalNameList, PropertyType[], LocalNameList, LocalNameList, NameAndValueList, String, String, String) : CodedNodeSet
+ restrictToProperties(LocalNameList, PropertyType[]) : CodedNodeSet
+ restrictToProperties(LocalNameList, PropertyType[], LocalNameList, LocalNameList, NameAndValueList) : CodedNodeSet
+ restrictToStatus(ActiveOption, String[]) : CodedNodeSet
+ union(CodedNodeSet) : CodedNodeSet

3.1.4 LexBIGServiceMetadata

Interface to perform system-wide query over optionally loaded metadata for loaded code
systems and providers.

 - 45 -

LexEVS Platform Independent Model and Service Specification v6.0

class LexBIGServ ice

Serializable

«interface»
LexBIGServ iceMetadata

+ listCodingSchemes() : AbsoluteCodingSchemeVersionReferenceList
+ resolve() : MetadataPropertyList
+ restrictToCodingScheme(AbsoluteCodingSchemeVersionReference) : LexBIGServiceMetadata<?>
+ restrictToProperties(String[]) : LexBIGServiceMetadata<?>
+ restrictToPropertyParents(String[]) : LexBIGServiceMetadata<?>
+ restrictToValue(String, String) : LexBIGServiceMetadata<?>

3.1.5 HistoryService

The history service returns information about the change history of a coding scheme.

class LexBIGServ ice

Serializable

«interface»
History::HistoryServ ice

+ getAncestors(ConceptReference) : NCIChangeEventList
+ getBaselines(Date, Date) : SystemReleaseList
+ getConceptChangeVersions(ConceptReference, Date, Date) : CodingSchemeVersionList
+ getConceptCreationVersion(ConceptReference) : CodingSchemeVersion
+ getDescendants(ConceptReference) : NCIChangeEventList
+ getEarliestBaseline() : SystemRelease
+ getEditActionList(ConceptReference, CodingSchemeVersion) : NCIChangeEventList
+ getEditActionList(ConceptReference, Date, Date) : NCIChangeEventList
+ getEditActionList(ConceptReference, URI) : NCIChangeEventList
+ getLatestBaseline() : SystemRelease
+ getSystemRelease(URI) : SystemReleaseDetail

Interface No Interface Name Interface Description

LE_I_01 LexBIGService This interface represents the core
interface to a LexBIG service.

LE_I_02 CodedNodeSet A coded node set represents a flat list of
coded entries.

LE_I_03 CodedNodeGraph A virtual graph where the edges
represent associations and the nodes
represent coded entries. A
CodedNodeGraph describes a graph
that can be combined with other graphs,

 - 46 -

LexEVS Platform Independent Model and Service Specification v6.0

queried or resolved into an actual graph
rendering.

LE_I_05 LexBIGServiceMetadata Interface to perform system-wide query
over metadata for loaded code systems
and providers.

LE_I_06 HistoryService The history service returns information
about the change history of a coding
scheme.

3.2 Operations (Enumeration)

Operation
No.

Operation Name Interface Name Operation Description

LE_I_01_
01

getCodingSchemeConcepts LexBIGService Returns the set of all
concepts in the specified
coding scheme.

LE_I_01_
02

getFilter LexBIGService Returns an instance of the
filter extension registered
with the given name.
Event

LE_I_01_
03

getFilter LexBIGService Returns an instance of the
filter extension registered
with the given name.

LE_I_01_
04

getFilterExtensions LexBIGService Returns a description of
all registered extensions
used to provide additional
filtering of query results.

LE_I_01_
05

getGenericExtension LexBIGService Returns an instance of the
application-specific
extension registered with
the given name.

LE_I_01_
06

getGenericExtensions LexBIGService Returns a description of
all registered extensions
used to implement

application-specific
behavior that is centrally

 - 47 -

LexEVS Platform Independent Model and Service Specification v6.0

accessible from a

LexBIGService

LE_I_01_
07

getHistoryService LexBIGService Resolve a reference to the
history api servicing the
given coding scheme.

LE_I_01_
08

getLastUpdateTime LexBIGService Return the last time that
the content of this service
was changed; null if no
changes have occurred.
Tag assignments do not
count as service changes
for this purpose.

LE_I_01_
09

getMatchAlgorithms LexBIGService Returns the full
description of all
supported match
algorithms.

LE_I_01_
10

getNodeGraph LexBIGService Returns the node graph as
represented in the
particular relationship set
in the coding scheme.

LE_I_01_
11

getNodeSet LexBIGService Returns the set of all
entities in the specified
coding scheme

scheme of the given
types. This method can
be used to resolve
instances or other non-
concept codes.

LE_I_01_
12

getServiceManager LexBIGService Validate the credentials
and return an interface to
the LexBig service
manager.

LE_I_01_
13

getServiceMetadata LexBIGService Return an interface to
perform system-wide
query over metadata for
loaded code systems and
providers.

LE_I_01_ getSortAlgorithm LexBIGService Returns an instance of the

 - 48 -

LexEVS Platform Independent Model and Service Specification v6.0

14 sort extension registered
with the given name.

LE_I_01_
15

getSortAlgorithms LexBIGService Returns a description of
all registered extensions
used to provide additional
sorting of query results in
the given context.

LE_I_01_
16

getSupportedCodingSchemes LexBIGService Return a list of coding
schemes and versions that
are supported by this
service, along with their
status.

LE_I_01_
17

resolveCodingScheme LexBIGService Return detailed coding
scheme information given
a specific tag or version
identifier.

LE_I_01_
18

resolveCodingSchemeCopyright LexBIGService Return coding scheme
copyright given a specific
tag or version identifier.

LE_I_03_
01

areCodesRelated CodedNodeGraph Determine whether there
is an directed edge (or
transitive closure of an
edge) from the source
code to the target code in
this graph. The last
parameter determines
whether only direct
associations are
considered or whether the
transitive closure of the
edge is used.

LE_I_03_
02

intersect CodedNodeGraph Return the set of nodes
and associations that are
present in both graphs.

LE_I_03_
03

isCodeInGraph CodedNodeGraph Determine whether the
supplied code is in the
graph.

LE_I_03_
04

listCodeRelationships CodedNodeGraph Return a list of all of the
associations in the graph

 - 49 -

LexEVS Platform Independent Model and Service Specification v6.0

that have the supplied
source and target codes
or, if directOnly is false,
all associations whose
transitive closure has the
supplied associations.

LE_I_03_
05

listCodeRelationships CodedNodeGraph Return a list of all of the
associations in the graph
that have the supplied
source and target codes
based on distance
between them. Distance
(or the No. of edges) for a
direct association between
a source and target codes
is 1. Values if distance
should be equal or greater
than 1, otherwise
exception is thrown.
Resulting list is not based
on associations source &
target have, but on
distance only.

LE_I_03_
06

resolveAsList CodedNodeGraph Resolve all of the coded
nodes in the list, sorting
by the supplied property
(if any), resolving the
supplied properties,
resolving coded entries to
the supplied depth and
resolving associations to
the supplied depth.

LE_I_03_
07

resolveAsList CodedNodeGraph Resolve all of the coded
nodes in the list, sorting
by the supplied property
(if any), resolving the
supplied properties,
resolving coded entries to
the supplied depth,
resolving associations to
the supplied depth, and
allowing for additional
filters to be applied

 - 50 -

LexEVS Platform Independent Model and Service Specification v6.0

against the returned items.

LE_I_03_
08

restrictToAssociations CodedNodeGraph Restrict the graph to the
nodes that participate as a
source or target of the
named association and, if
supplied, the named
association qualifiers.

LE_I_03_
09

restrictToDirectionalNames CodedNodeGraph Restrict the graph to the
nodes that participate as a
source or target of an
association whose
directional name matches
the one provided and, if
supplied, the named
association qualifiers. A
directional name is
considered to be either the
forward or reverse label
registered to an
association defined by the
ontology. Forward and
reverse names are
optionally assigned to
each association. For
example, an association
'lineage' may have a
forward name 'ancestorOf'
and reverse name
'descendantOf'.

LE_I_03_
10

restrictToCodes CodedNodeGraph Return a graph that
contains only the codes
that are present in the
supplied list, and all edges
that still have a source
and target code
remaining.

LE_I_03_
11

restrictToCodeSystem CodedNodeGraph Restrict the graph to
codes (source and target)
that originate from the
supplied code system.
Note: edges defined by
other code systems will
still be resolved if

 - 51 -

LexEVS Platform Independent Model and Service Specification v6.0

associated with both
source and target nodes
for the restricted code
system.

LE_I_03_
12

restrictToSourceCodes CodedNodeGraph Restrict the graph to
associations that have one
of the codes in the
supplied list as source
codes.

LE_I_03_
13

restrictToSourceCodeSystem CodedNodeGraph Restrict the graph to
edges that have codes
from the specified code
system as a source.

LE_I_03_
14

restrictToTargetCodes CodedNodeGraph Restrict the graph to
associations that have one
of the codes in the
supplied list as target
codes.

LE_I_03_
15

restrictToTargetCodeSystem CodedNodeGraph Restrict the graph to
edges that have codes
from the specified code
system as a target.

LE_I_03_
16

toNodeList CodedNodeGraph Transform the graph into
a simple of list of code
references, removing all
association information.

LE_I_03_
17

union CodedNodeGraph Return the union of the
two graphs. Union, in this
context, means that the
resulting graph contains
the unique set of coded
entries (String

independent) that are
present in one or both of
the graphs, and the unique
combination of edges
(associations) present in
one or both of the graphs.

LE_I_02_ difference CodedNodeSet Return a coded node set
that represents the set of

 - 52 -

LexEVS Platform Independent Model and Service Specification v6.0

01 nodes in this set that are
not included by the given
set.

LE_I_02_
02

intersect CodedNodeSet Return a coded node set
that represents the set of
nodes this set and the
provided node set have in
common.

LE_I_02_
03

isCodeInSet CodedNodeSet Return true if the supplied
code reference is
contained within this
coded node set.

LE_I_02_
04

resolve CodedNodeSet Resolve an iterator over
nodes matching the given
criteria.

LE_I_02_
05

resolve CodedNodeSet Resolve an iterator over
nodes matching the given
criteria, allowing for
additional filters to be
applied against the
returned items.

LE_I_02_
06

resolve CodedNodeSet Resolve an iterator over
nodes matching the given
criteria, allowing for
additional filters and
optionally populating full
objects (e.g. concept or
instance) for each
returned reference.

LE_I_02_
07

resolveToList CodedNodeSet Resolve the set to a list of
nodes sorted by the
supplied parameters,
resolving all of the
properties named in the
list.

LE_I_02_
08

resolveToList CodedNodeSet Resolve the set to a list of
nodes sorted by the
supplied parameters,
resolving all of the
properties named in the

 - 53 -

LexEVS Platform Independent Model and Service Specification v6.0

list, and allowing for
additional filters to be
applied against the
returned items.

LE_I_02_
09

resolveToList CodedNodeSet Resolve the set to a list of
nodes sorted by the
supplied parameters,
resolving all of the
properties named in the
list, and allowing for
additional filters to be
applied against the
returned items.

LE_I_02_
10

restrictToCodes CodedNodeSet Restrict the set to the list
of codes in the supplied
reference list

LE_I_02_
11

restrictToMatchingDesignations CodedNodeSet Restrict the list to the set
of nodes with
designations matching
the supplied text,
interpreted using the
supplied matching
algorithm and language.

LE_I_02_
12

restrictToMatchingProperties CodedNodeSet Remove all elements from
the set that do not have
one or more properties
that match the supplied
property names, type, and
text. Text values are
compared using the
provided matching
algorithm and language.

LE_I_02_
13

restrictToMatchingProperties CodedNodeSet Remove all elements from
the set that do not have
one or more properties
that match the given
criteria.

LE_I_02_
14

restrictToProperties CodedNodeSet Remove all elements from
the set that do not have
one or more properties
that match the supplied

 - 54 -

LexEVS Platform Independent Model and Service Specification v6.0

property list.

LE_I_02_
15

restrictToProperties CodedNodeSet Remove all elements from
the set that do not have
one or more properties
that match the given
criteria.

LE_I_02_
16

restrictToStatus CodedNodeSet Restrict the set to nodes
matching the given status
criteria.

LE_I_02_
17

union CodedNodeSet Return the set union of all
of the codes in the
containing or the

referenced set

LE_I_05_
01

listCodingSchemes LexBIGServiceMetad
ata

List the coding schemes
that are represented in the
metadata index.

LE_I_05_
02

restrictToCodingScheme LexBIGServiceMetad
ata

Restrict the search to a
particular coding scheme.

LE_I_05_
03

restrictToProperties LexBIGServiceMetad
ata

Restrict the search to a
particular property.
Currently, this can be any
element or attribute name
from the OBO metadata
schema. When we move
to the 2006 version of the
schema, there will be a
method to get the
available properties.

LE_I_05_
04

restrictToPropertyParents LexBIGServiceMetad
ata

Restrict the search by the
parents of the metadata
elements. The OBO
MetaData format is
hierarchial - if you wish
to restrict your search to
properties that are under
another property, provide
the required property
containers here.

 - 55 -

LexEVS Platform Independent Model and Service Specification v6.0

LE_I_05_
05

restrictToValue LexBIGServiceMetad
ata

Restrict the result to the
metadata elements that
match the supplied string,
using the supplied
matching algorithm

LE_I_05_
06

resolve LexBIGServiceMetad
ata

Apply all of the
restrictions, and return the
result.

LE_I_06_
01

getAncestors HistoryService Return the list of change
events identifying the
immediate ancestors of
the given concept
reference.

LE_I_06_
02

getBaselines HistoryService Return a list of baselines
supported by this service
that were released on or
after the first supplied
date and were released on
or before the second date.
Returned baselines are
arranged in sequential
order, from earliest to
latest.

LE_I_06_
03

getConceptChangeVersions HistoryService Return a list of all of the
coding scheme versions in
which the supplied
concept changed between
the two supplied times
(inclusive).

LE_I_06_
04

getConceptCreationVersion HistoryService Return the coding scheme
version in which the
supplied concept was
created.

LE_I_06_
05

getDescendants HistoryService Return the list of change
events identifying the
immediate descendants of
the given concept
reference.

LE_I_06_ getEarliestBaseline HistoryService Return the earliest
baseline version in the

 - 56 -

LexEVS Platform Independent Model and Service Specification v6.0

06 list.

LE_I_06_
07

getEditActionList HistoryService Return the list of
available NCI-defined
change events for the
given concept and coding
scheme version.

LE_I_06_
08

getEditActionList HistoryService Return the list of
available NCI-defined
change events for the
given concept and date
range.

LE_I_06_
09

getEditActionList HistoryService Return the list of NCI-
defined change events for
the given concept and
release; empty if not
applicable.

LE_I_06_
10

getLatestBaseline HistoryService Get the latest baseline in
the list.

LE_I_06_
11

getSystemRelease HistoryService Return detailed
information about the
particular system release.

 - 57 -

LexEVS Platform Independent Model and Service Specification v6.0

3.3 Operation Behavior Descriptions

3.3.1 LexBIGService
This interface represents the core interface to a LexEVS service.

3.3.1.1 getCodingSchemeConcepts

Returns the set of all concepts in the specified coding scheme

Behavior
Description

 The starting point for Lexical based matching and queries
 Validation will ensure that:

o The Requested Coding Scheme exists in the System
o The specified version of the Coding Scheme is

available
o The specified Coding Scheme is Active

 The returned CodedNodeSet is the starting point for
building a lexical query.

Pre-Conditions  The requested CodingScheme is available and Active in the
System.

Inputs  codingScheme - The local name, URI, or formal name of
the requested CodingScheme

 versionOrTag - A LexGrid:CodingSchemeVersionOrTag
indicating the Version or Tag of the Requested
CodingScheme.

o If not provided, and there exists only one
CodingScheme in the system matching the
‘codingScheme’ input, that CodingScheme will be
used.

o If more than one CodingScheme in the system
matches the ‘codingScheme’ input, the
CodingScheme tagged as “PRODUCTION” will be
used.

Outputs  A CodedNodeSet, the starting point for lexical queries.

Post-Conditions  A CodedNodeSet for the requested CodingScheme is
initialized

Exception
Conditions

 The requested CodingScheme is not available in the system
 The requested CodingScheme is not Active
 There are more than one CodingScheme matching the

‘codingScheme’ input, and no ‘versionOrTag’ input is
provided

Note  The resulting CodedNodeSet will include codes only of
‘concept’ type. For all other types, see the operation
‘getNodeSet’

 - 58 -

LexEVS Platform Independent Model and Service Specification v6.0

3.3.1.2 getFilter
Returns an instance of the filter extension registered with the given name

Behavior
Description

 Returns a Filter Extension, which may be used to restrict a
set of results

 Validation is carried out to ensure that:
o A Filter Extension with the given name is available

and registered correctly in the system
 If all conditions are met, the Filter Extension is returned to

the consumer

Pre-Conditions  The Filter must have been properly registered as an
Extension in the system

Inputs  name – The Extension name of the requested Filter

Outputs  The Filter Extension

Post-Conditions  The Filter Extension will be initialized and returned to the
user, given the state and logic provided by the author of the
Extension itself.

Exception
Conditions

 The requested Filter Extension does not exist, or has not
been registered properly.

3.3.1.3 getFilterExtensions
Returns a description of all registered extensions used to provide additional
filtering of query results.

Behavior
Description

 Returns a list of Filter Extension that have been registered
in the system

Pre-Conditions  Any Filter Extensions must be correctly registered as
Extensions to be listed

Inputs  none

Outputs  An ExtensionDescriptionList, which is a list describing
each Filter Extension registered within the system.

Post-Conditions  The populated ExtensionDescriptionList will be available
to the user, and each of the Extensions listed will be
available to the user.

Exception
Conditions

 none

 - 59 -

LexEVS Platform Independent Model and Service Specification v6.0

3.3.1.4 getGenericExtension
Returns an instance of the application-specific extension registered with the
given name.

Behavior
Description

 Returns an application-specific Generic Extension that
hasbeen registered in the system

 Validation is carried out to ensure that:
o A Generic Extension with the given name is

available and registered correction in the system
 If all conditions are met, the Generic Extension is returned

to the consumer

Pre-Conditions  Any Generic Extensions must be correctly registered as
Extensions to be available during the execution of this
operation

Inputs  name – the name of the requested Extension as it has be
registered in the system

Outputs  The Generic Extension

Post-Conditions  The Generic Extension will be initialized and returned to
the user, given the state and logic provided by the author of
the Extension itself.

Exception
Conditions

 The given ‘name’ input is:
o Not registered correction in the system
o Does not exist in the system

3.3.1.5 getGenericExtensions
Returns a description of all registered extensions used to implement application-
specific behavior that is centrally accessible from a LexBIGService.

Behavior
Description

 Returns a list of Generic Extensions that have been
registered in the system

 Note: Only Generic Extensions (base class
GenericExtension) will be listed here. All other classes are
retrievable at the appropriate interface point (filter, sort,
etc).

Pre-Conditions  Any Generic Extensions must be correctly registered as
Extensions to be listed

Inputs  none

Outputs  An ExtensionDescriptionList, which is a list describing
each Filter Extension registered within the system.

Post-Conditions  The populated ExtensionDescriptionList will be available
to the user, and each of the Extensions listed will be
available to the user.

 - 60 -

LexEVS Platform Independent Model and Service Specification v6.0

Exception
Conditions

 none

3.3.1.6 getHistoryService
Resolve a reference to the History Interface servicing the given coding scheme.

Behavior
Description

 The entry point to the History Interface, given a requested
CodingScheme

 Validation is carried out to ensure that:
o There has been History content loaded for the

requested CodingScheme
 If all conditions are met, a reference to the History

Interface is returned to the consumer

Pre-Conditions  History content must have been loaded and registered in
the system for the requested CodingScheme

Inputs  codingScheme – the localName or URI of the requested
CodingScheme

Outputs  A reference to the History Interface for the requested
CodingScheme

Post-Conditions  The History Interface returned to the user will be initialized
for the requested CodingScheme

Exception
Conditions

 If the no History exists for the requested CodingScheme

3.3.1.7 getLastUpdateTime
Return the last time that the content of this service was changed

Behavior
Description

 Returns the time of the last content change of the system. A
content change consists of any change to the vocabulary
metadata or the vocabulary itself in the system.

 Note: A Tag assignment does not constitute a content
change

Pre-Conditions  History content must have been loaded and registered in
the system for the requested CodingScheme

Inputs  none

Outputs  The time of the last content change
 Note: if the system has had no registered content changes,

nothing will be returned

Post-Conditions  none

Exception
Conditions

 The system has not been initialized correctly

 - 61 -

LexEVS Platform Independent Model and Service Specification v6.0

3.3.1.8 getMatchAlgorithms
Returns the full description of all supported match algorithms.

Behavior
Description

 A description of all Match Algorithms (if any) is returned.

Pre-Conditions  Any Match Algorithms must be available and registered in
the system to be returned

Inputs  none

Outputs  The full description of all Match Algorithms in the system.

Post-Conditions  none

Exception
Conditions

 The system has not been initialized correctly

3.3.1.9 getNodeGraph
Returns the node graph as represented in the particular relationship set in the
coding scheme

Behavior
Description

 The starting point for relation based matching and queries
 Validation will ensure that:

o The Requested Coding Scheme exists in the System
o The specified version of the Coding Scheme is

available
o The specified Coding Scheme is Active

 The returned NodeGraph is the starting point for building a
relation based query.

Pre-Conditions  The requested CodingScheme is available and Active in the
System.

Inputs  codingScheme - The local name, URI, or formal name of
the requested CodingScheme

 versionOrTag - A LexGrid:CodingSchemeVersionOrTag
indicating the Version or Tag of the Requested
CodingScheme.

o If not provided, and there exists only one
CodingScheme in the system matching the
‘codingScheme’ input, that CodingScheme will be
used.

o If more than one CodingScheme in the system
matches the ‘codingScheme’ input, the
CodingScheme tagged as “PRODUCTION” will be
used.

 relationContainerName - The name of the relations

 - 62 -

LexEVS Platform Independent Model and Service Specification v6.0

container to reference when generating the graph. If
omitted, all native relation containers for the code system
will be queried.

Outputs  A NodeGraph, the starting point for relation queries.

Post-Conditions  A NodeGraph for the requested CodingScheme is
initialized

Exception
Conditions

 The requested CodingScheme is not available in the system
 The requested CodingScheme is not Active
 There are more than one CodingScheme matching the

‘codingScheme’ input, and no ‘versionOrTag’ input is
provided

Notes  A 'native' container contains a set of associations defined
by the coding scheme curators.

3.3.1.10 getNodeSet
Returns the set of all entities in the specified coding scheme

Behavior
Description

 The starting point for Lexical based matching and queries
 Validation will ensure that:

o The Requested Coding Scheme exists in the System
o The specified version of the Coding Scheme is

available
o The specified Coding Scheme is Active

 The returned CodedNodeSet is the starting point for
building a lexical query.

Pre-Conditions  The requested CodingScheme is available and Active in the
System.

Inputs  codingScheme - The local name, URI, or formal name of
the requested CodingScheme

 versionOrTag - A LexGrid:CodingSchemeVersionOrTag
indicating the Version or Tag of the Requested
CodingScheme.

o If not provided, and there exists only one
CodingScheme in the system matching the
‘codingScheme’ input, that CodingScheme will be
used.

o If more than one CodingScheme in the system
matches the ‘codingScheme’ input, the
CodingScheme tagged as “PRODUCTION” will be
used.

Outputs  A CodedNodeSet, the starting point for lexical queries.

Post-Conditions  A CodedNodeSet for the requested CodingScheme is
initialized

 - 63 -

LexEVS Platform Independent Model and Service Specification v6.0

Exception
Conditions

 The requested CodingScheme is not available in the system
 The requested CodingScheme is not Active
 There are more than one CodingScheme matching the

‘codingScheme’ input, and no ‘versionOrTag’ input is
provided

Note  The resulting CodedNodeSet will include codes of ALL
entity types. For only ‘concept’ types, see the operation
‘getCodingSchemeConcepts’

3.3.1.11 getServiceManager
Validate the credentials and return an interface to the LexEVS service manager.

Behavior
Description

 The entry point to the LexBIGServiceManager Interface
 Security is provided by an optional credentials parameter.

The implementation and behavior of the credentials and/or
security of this method is controlled by the underlying
implementation. LexEVS does not imply any specific
security mechanism or credential object type for this
operation.

Pre-Conditions  The LexEVS system is correctly initialized, and any
security implementation has been correctly configured

 The user credentials will be processed, if applicable

Inputs  codingScheme – the localName or URI of the requested
CodingScheme

Outputs  A reference to the LexBIGServiceManager

Post-Conditions  The LexBIGServiceManager returned to the user will be
initialized for the underlying system

Exception
Conditions

 Depending on the security implementation, an error
condition will be reached if the given user credentials are
not appropriate for this operation. Exception types and
exact Exception conditions will be dependent on the
underlying implementation

3.3.1.12 getServiceMetadata
Return an interface to perform system-wide query over metadata for loaded code
systems and providers.

Behavior
Description

 The entry point to the LexBIGServiceMetadata Interface

Pre-Conditions  The LexEVS system is correctly initialized
 Any Service Metadata has be loaded and registered to the

system

Inputs  none

 - 64 -

LexEVS Platform Independent Model and Service Specification v6.0

Outputs  A reference to the LexBIGServiceMetadata Interface

Post-Conditions  The LexBIGServiceMetadata Interface is returned to the
user will be initialized for the underlying system, with all
loaded and registered metadata available for queries

Exception
Conditions

 Exceptions will occur if:
o The underlying system fails to initialize
o The LexBIGServiceMetadata Interface fails to

initialize
o There has be invalid metadata loaded to the system

3.3.1.13 getSortAlgorithm
Returns an instance of the sort extension registered with the given name

Behavior
Description

 Returns a Sort Interface, which may be used to sort a set of
results

 Validation is carried out to ensure that:
o A Sort algorithm with the given name is available

and registered in the system
 If all conditions are met, the Sort Algorithm is returned to

the consumer

Pre-Conditions  Any Sort Algorithms must be available and registered in
the system to be returned

Inputs  name – the Sort Algorithm name, as it has be registered in
the system

Outputs  The full description of all Match Algorithms in the system

Post-Conditions  The fully initialized Sort Algorithm is returned to the
consumer

Exception
Conditions

 The input ‘name’ does not pass validation as noted above

3.3.1.14 getSortAlgorithms
Returns a description of all registered extensions used to provide additional
sorting of query results in the given context.

Behavior
Description

 Returns a list of Sort Algorithms that have been registered
in the system

 Validation is carried out to ensure that:
o The context provided (if any) is a valid SortContext

 If all conditions are met, the list of descriptions of the
registered Sort Algoritms is returned to the user

Pre-Conditions  Any Sort Algorithms must be available and registered in
the system to be returned

Inputs  context – the SortContext to restrict results to. If not
provided, no SortContext restriction will be considered

 - 65 -

LexEVS Platform Independent Model and Service Specification v6.0

Outputs  The list of descriptions of the registered Sort Algoritms in
the system

Post-Conditions  none

Exception
Conditions

 The input ‘context’ does not pass validation as noted above

3.3.1.15 getSupportedCodingSchemes
Return a list of coding schemes and versions that are supported by this service,
along with their status

Behavior
Description

 Returns a list of CodingSchemes that have been registered
in the system

Pre-Conditions  CodingSchemes available to be returned via this operation
must be loaded and registered correctly in the system

Inputs  none

Outputs  The list of CodingScheme descriptions for every correctly
loaded and registered CodingScheme in the system

Post-Conditions  none

Exception
Conditions

 The underlying system fails to initialize

3.3.1.16 resolveCodingScheme
Return detailed coding scheme information given a specific tag or version
identifier.

Behavior
Description

 Returns the LexGrid:CodingScheme given the input
parameters

 Validation will ensure that:
o The Requested Coding Scheme exists in the System
o The specified version of the Coding Scheme is

available
o The specified Coding Scheme is Active

Pre-Conditions  The requested CodingScheme:
o Has been loaded and registered in the system
o Is Active

Inputs  codingScheme - The local name, URI, or formal name of
the requested CodingScheme

 versionOrTag - A LexGrid:CodingSchemeVersionOrTag
indicating the Version or Tag of the Requested
CodingScheme.

o If not provided, and there exists only one

 - 66 -

LexEVS Platform Independent Model and Service Specification v6.0

CodingScheme in the system matching the
‘codingScheme’ input, that CodingScheme will be
used.

 If more than one CodingScheme in the system matches the
‘codingScheme’ input, the CodingScheme tagged as
“PRODUCTION” will be used.

Outputs  The LexGrid:CodingScheme give the requested inputs

Post-Conditions  A LexGrid:CodingScheme matching the requested
parameters is returned

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

Note  Because of size concerns, the LexGrid:CodingScheme may
or may not be fully populated, based on the underlying
implementation. For example, all LexGrid:Entities may not
be returned, as the size would be prohibitive for the the
intent of this operation

3.3.1.17 resolveCodingSchemeCopyright
Return coding scheme copyright given a specific tag or version identifier

Behavior
Description

 Returns the Copyright representation of the requested
CodingScheme

 Validation will ensure that:
o The Requested Coding Scheme exists in the System
o The specified version of the Coding Scheme is

available
o The specified Coding Scheme is Active

Pre-Conditions  The requested CodingScheme:
o Has been loaded and registered in the system
o Is Active

Inputs  codingScheme - The local name, URI, or formal name of
the requested CodingScheme

 versionOrTag - A LexGrid:CodingSchemeVersionOrTag
indicating the Version or Tag of the Requested
CodingScheme.

o If not provided, and there exists only one
CodingScheme in the system matching the
‘codingScheme’ input, that CodingScheme will be
used.

 If more than one CodingScheme in the system matches the
‘codingScheme’ input, the CodingScheme tagged as
“PRODUCTION” will be used.

Outputs  The LexGrid:CodingScheme give the requested inputs

 - 67 -

LexEVS Platform Independent Model and Service Specification v6.0

Post-Conditions  A representation of the Copyright of the requested
CodingScheme is returned and available to the user

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

Note  If the implementation provides any security measures to
restrict access to CodingSchemes (for example, restrict
CodingScheme access based on the license of the
CodingScheme), this operation should not be constrained
by these security measures. The intent is to show
Copyrights even for security protected CodingSchemes

3.3.2 CodedNodeGraph
A virtual graph where the edges represent associations and the nodes represent
coded entries. A CodedNodeGraph describes a graph that can be combined with
other graphs, queried or resolved into an actual graph rendering

3.3.2.1 areCodesRelated
Determine whether there is an directed edge (or transitive closure of an edge)
from the source code to the target code in this graph. The last parameter
determines whether only direct associations are considered or whether the
transitive closure of the edge is used.

Behavior
Description

 Returns whether or not a relationship exists between two
nodes, given the input criteria

 Validation will ensure that:
o The ‘association’ exists, and is valid for the

CodedNodeGraph

Pre-Conditions  The CodedNodeGraph has been initialized for the given
CodingScheme

Inputs  association
Identifies the association to be tested. The name and value
will be compared against the id and URI of supported
associations for participating coding schemes.

 sourceCode
Source code system/code to be tested.

 targetCode
Target code system/code to be tested.

 directOnly
True means only asserted association instances are tested.
False means that, if the association is defined as transitive,
the transitive closure of the association instances are tested.

Outputs  True if a directed edge exists; otherwise False.

Post-Conditions  none

 - 68 -

LexEVS Platform Independent Model and Service Specification v6.0

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.2.2 intersect
Return the set of nodes and associations that are present in both graphs.

Behavior
Description

 Adds a Intersect Restriction to the CodedNodeGraph

Pre-Conditions  Both the target CodedNodeGraph and the source
CodedNodeGraph involved in the Intersection have been
properly initialized.

Inputs  graph
Identifies the CodedNodeGraph to be intersected with.

Outputs  A new CodedNodeGraph representing the intersection
result.

Post-Conditions  The resulting CodedNodeGraph is properly initialized and
able to be resolved.

 Any restrictions placed on the CodedNodeGraphs involved
in the restriction are preserved

Exception
Conditions

 The underlying system fails to initialize

3.3.2.3 isCodeInGraph
Determine whether the supplied code is in the graph.

Behavior
Description

 Returns whether or not, given the restrictions that have
currently been place on the CodedNodeGraph, the given
node exists in the graph

Pre-Conditions  The CodedNodeGraph has been initialized, and all
appropriated Restrictions have been placed on the graph
prior to invoking this operation

Inputs  code
Identifies the coding scheme and code to test.

Outputs  True if the code is present; otherwise False.

Post-Conditions  The original CodedNodeGraph is unchanged, and maybe
be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize

 - 69 -

LexEVS Platform Independent Model and Service Specification v6.0

3.3.2.4 listCodeRelationships
Return a list of all of the associations in the graph that have the supplied source
and target codes or, if directOnly is false, all associations whose transitive closure
has the supplied associations.

Behavior
Description

 Computes node edges, as described above.
 Note: all Restrictions placed on the graph (if any) will be

respected and incorporated into node relationship
calculations

Pre-Conditions  The CodedNodeGraph has been initialized, and all
appropriated Restrictions have been placed on the graph
prior to invoking this operation

Inputs  sourceCode
Source end of the association. If null, all sources for
the specified target are included.

 targetCode
Target end of the association. If null, all targets for
the specified source are included.

 directOnly
True means only direct associations are tested.
False means that the transitive closure of transitive
(and undefined) associations are tested for
membership.

Outputs  The list of code references for matching associations

Post-Conditions  The original CodedNodeGraph is unchanged, and maybe
be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
graph.

3.3.2.5 listCodeRelationships
Return a list of all of the associations in the graph that have the supplied source
and target codes based on distance between them. Distance (or the No. of edges)
for a direct association between a source and target codes is 1. Values if distance
should be equal or greater than 1, otherwise exception is thrown. Resulting list is
not based on associations source & target have, but on distance only.

Behavior
Description

 Computes node edges, as described above.
 Note: all Restrictions placed on the graph (if any) will be

respected and incorporated into node relationship

 - 70 -

LexEVS Platform Independent Model and Service Specification v6.0

calculations

Pre-Conditions  The CodedNodeGraph has been initialized, and all
appropriated Restrictions have been placed on the graph
prior to invoking this operation

Inputs  sourceCode
Source end of the association. If null, all sources for
the specified target are included.

 targetCode
Target end of the association. If null, all targets for
the specified source are included.

 distance
Distance (# of edges) source and target codes must
have in between. Must be positive & greater than
zero.

Outputs  The list of code references for matching associations

Post-Conditions  The original CodedNodeGraph is unchanged, and maybe
be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
graph.

3.3.2.6 resolveAsList
Resolve all of the coded nodes in the list, sorting by the supplied property (if
any), resolving the supplied properties, resolving coded entries to the supplied
depth and resolving associations to the supplied depth.

Behavior
Description

 Returns the underlying graph, given any placed
Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o If no focus is provided, parameters

‘resolveForward’ OR ‘resolveBackward’ may be
True, or neither may be True, but both may not be
True

o ‘propertyNames’ are valid for the CodingScheme
o ‘sortOptions’ are registered and available as Sort

Extensions

 - 71 -

LexEVS Platform Independent Model and Service Specification v6.0

Pre-Conditions  The CodedNodeGraph has been initialized, and all
appropriated Restrictions have been placed on the graph
prior to invoking this operation

Inputs  graphFocus
Set the top or "focus" node of the graph. If present,
only the nodes that are reachable via this node will
be returned. If null, nodes with no incoming or
outgoing associations are used as starting points for
navigation of forward and reverse relationships,
respectively.

 resolveForward
True means resolve in the direction of source to
target.

 resolveBackward
True means resolve in the direction of target to
source.

 resolveCodedEntryDepth
Depth in the graph to resolve coded entries. - 1
means don't resolve anything - just return code
references, 0 means resolve just the root nodes, 1
means resolve 1 deep, etc.

 resolveAssociationDepth
Number of hops to resolve associations. 0 means
leave all associations unresolved, 1 means
immediate neighbors, etc. -1 means follow the
entire closure of the graph.

 propertyNames
Local names of properties to resolve. If not empty
and not, only properties matching the given names
are included for resolved nodes.

 propertyTypes
Indicates whether to resolve only specific property
categories, of the assigned name. Any of the
enumerated PropertyType values can be specified.
If not empty and not null, only properties matching
the given types are included for resolved nodes.

 sortOptions
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be
retrieved through the LexBIGService
getSortExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 - 72 -

LexEVS Platform Independent Model and Service Specification v6.0

 maxToReturn
Maximum number of entries to return; a value less
than 1 indicates to return unlimited entries (to the
limit specified in the runtime configuration file).

Outputs  A list of code references, up to the maximum
number specified. Note that in the event that a maximum
number 'n' is specified and exactly 'n' items are returned,
there is currently no flag or notification provided to
indicate whether all available items were returned. Each
entry will include basic information for the node along
with an embedded object (e.g. concept) populated with
requested properties.

Post-Conditions  The original CodedNodeGraph is unchanged, and maybe
be Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
graph.

3.3.2.7 resolveAsList
Resolve all of the coded nodes in the list, sorting by the supplied property (if
any), resolving the supplied properties, resolving coded entries to the supplied
depth and resolving associations to the supplied depth.

Behavior
Description

 Returns the underlying graph, given any placed
Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o If no focus is provided, parameters

‘resolveForward’ OR ‘resolveBackward’ may be
True, or neither may be True, but both may not be
True

o ‘propertyNames’ are valid for the CodingScheme
o ‘sortOptions’ are registered and available as Sort

Extensions
o filterOptions’ are registered and available as Filter

Extensions

Pre-Conditions  The CodedNodeGraph has been initialized, and all
appropriated Restrictions have been placed on the graph

 - 73 -

LexEVS Platform Independent Model and Service Specification v6.0

prior to invoking this operation

Inputs  graphFocus
Set the top or "focus" node of the graph. If present,
only the nodes that are reachable via this node will
be returned. If null, nodes with no incoming or
outgoing associations are used as starting points for
navigation of forward and reverse relationships,
respectively.

 resolveForward
True means resolve in the direction of source to
target.

 resolveBackward
True means resolve in the direction of target to
source.

 resolveCodedEntryDepth
Depth in the graph to resolve coded entries. - 1
means don't resolve anything - just return code
references, 0 means resolve just the root nodes, 1
means resolve 1 deep, etc.

 resolveAssociationDepth
Number of hops to resolve associations. 0 means
leave all associations unresolved, 1 means
immediate neighbors, etc. -1 means follow the
entire closure of the graph.

 propertyNames
Local names of properties to resolve. If not empty
and not, only properties matching the given names
are included for resolved nodes.

 propertyTypes
Indicates whether to resolve only specific property
categories, of the assigned name. Any of the
enumerated PropertyType values can be specified.
If not empty and not null, only properties matching
the given types are included for resolved nodes.

 sortOptions
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be
retrieved through the LexBIGService
getSortExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 filterOptions
List of Filter extensions to apply during resolution.

 - 74 -

LexEVS Platform Independent Model and Service Specification v6.0

If supplied, filters are applied in the order provided.
Each name in the list must correspond to the name
of a Filter description as registered to the associated
service. Available Filter descriptions can be
retrieved through the LexBIGService
getFilterExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 maxToReturn
Maximum number of entries to return; a value less
than 1 indicates to return unlimited entries (to the
limit specified in the runtime configuration file).

Outputs  A list of code references, up to the maximum
number specified. Note that in the event that a maximum
number 'n' is specified and exactly 'n' items are returned,
there is currently no flag or notification provided to
indicate whether all available items were returned. Each
entry will include basic information for the node along
with an embedded object (e.g. concept) populated with
requested properties.

Post-Conditions  The original CodedNodeGraph is unchanged, and maybe
be Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
graph.

3.3.2.8 resolveAsList
Resolve all of the coded nodes in the list, sorting by the supplied property (if
any), resolving the supplied properties, resolving coded entries to the supplied
depth and resolving associations to the supplied depth.

Behavior
Description

 Returns the underlying graph, given any placed
Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o If no focus is provided, parameters

‘resolveForward’ OR ‘resolveBackward’ may be
True, or neither may be True, but both may not be
True

 - 75 -

LexEVS Platform Independent Model and Service Specification v6.0

o ‘propertyNames’ are valid for the CodingScheme
o ‘sortOptions’ are registered and available as Sort

Extensions

Pre-Conditions  The CodedNodeGraph has been initialized, and all
appropriated Restrictions have been placed on the graph
prior to invoking this operation

Inputs  graphFocus
Set the top or "focus" node of the graph. If present,
only the nodes that are reachable via this node will
be returned. If null, nodes with no incoming or
outgoing associations are used as starting points for
navigation of forward and reverse relationships,
respectively.

 resolveForward
True means resolve in the direction of source to
target.

 resolveBackward
True means resolve in the direction of target to
source.

 resolveCodedEntryDepth
Depth in the graph to resolve coded entries. - 1
means don't resolve anything - just return code
references, 0 means resolve just the root nodes, 1
means resolve 1 deep, etc.

 resolveAssociationDepth
Number of hops to resolve associations. 0 means
leave all associations unresolved, 1 means
immediate neighbors, etc. -1 means follow the
entire closure of the graph.

 propertyNames
Local names of properties to resolve. If not empty
and not, only properties matching the given names
are included for resolved nodes.

 propertyTypes
Indicates whether to resolve only specific property
categories, of the assigned name. Any of the
enumerated PropertyType values can be specified.
If not empty and not null, only properties matching
the given types are included for resolved nodes.

 sortOptions
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be

 - 76 -

LexEVS Platform Independent Model and Service Specification v6.0

retrieved through the LexBIGService
getSortExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 maxToReturn
Maximum number of entries to return; a value less
than 1 indicates to return unlimited entries (to the
limit specified in the runtime configuration file).

Outputs  A list of code references, up to the maximum
number specified. Note that in the event that a maximum
number 'n' is specified and exactly 'n' items are returned,
there is currently no flag or notification provided to
indicate whether all available items were returned. Each
entry will include basic information for the node along
with an embedded object (e.g. concept) populated with
requested properties.

Post-Conditions  The original CodedNodeGraph is unchanged, and maybe
be Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
graph.

3.3.2.9 resolveAsList
Resolve all of the coded nodes in the list, sorting by the supplied property (if
any), resolving the supplied properties, resolving coded entries to the supplied
depth and resolving associations to the supplied depth.

Behavior
Description

 Returns the underlying graph, given any placed
Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o If no focus is provided, parameters

‘resolveForward’ OR ‘resolveBackward’ may be
True, or neither may be True, but both may not be
True

o ‘propertyNames’ are valid for the CodingScheme
o ‘sortOptions’ are registered and available as Sort

Extensions
o filterOptions’ are registered and available as Filter

 - 77 -

LexEVS Platform Independent Model and Service Specification v6.0

Extensions

Pre-Conditions  The CodedNodeGraph has been initialized, and all
appropriated Restrictions have been placed on the graph
prior to invoking this operation

Inputs  graphFocus
Set the top or "focus" node of the graph. If present,
only the nodes that are reachable via this node will
be returned. If null, nodes with no incoming or
outgoing associations are used as starting points for
navigation of forward and reverse relationships,
respectively.

 resolveForward
True means resolve in the direction of source to
target.

 resolveBackward
True means resolve in the direction of target to
source.

 resolveCodedEntryDepth
Depth in the graph to resolve coded entries. - 1
means don't resolve anything - just return code
references, 0 means resolve just the root nodes, 1
means resolve 1 deep, etc.

 resolveAssociationDepth
Number of hops to resolve associations. 0 means
leave all associations unresolved, 1 means
immediate neighbors, etc. -1 means follow the
entire closure of the graph.

 propertyNames
Local names of properties to resolve. If not empty
and not, only properties matching the given names
are included for resolved nodes.

 propertyTypes
Indicates whether to resolve only specific property
categories, of the assigned name. Any of the
enumerated PropertyType values can be specified.
If not empty and not null, only properties matching
the given types are included for resolved nodes.

 sortOptions
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be
retrieved through the LexBIGService
getSortExtensions() method after being defined to

 - 78 -

LexEVS Platform Independent Model and Service Specification v6.0

the LexBIGServiceManager extension registry.
 filterOptions

List of Filter extensions to apply during resolution.
If supplied, filters are applied in the order provided.
Each name in the list must correspond to the name
of a Filter description as registered to the associated
service. Available Filter descriptions can be
retrieved through the LexBIGService
getFilterExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 maxToReturn
Maximum number of entries to return; a value less
than 1 indicates to return unlimited entries (to the
limit specified in the runtime configuration file).

 keepLastAssociationLevelUnresolved

Keep the last hop while resolving associations to
the resolveAssociationDepth unresolved. This is
useful while drawing trees of an ontology and we
need a quick way to tell if the tree can be expanded
further.

Outputs  A list of code references, up to the maximum
number specified. Note that in the event that a maximum
number 'n' is specified and exactly 'n' items are returned,
there is currently no flag or notification provided to
indicate whether all available items were returned. Each
entry will include basic information for the node along
with an embedded object (e.g. concept) populated with
requested properties.

Post-Conditions  The original CodedNodeGraph is unchanged, and maybe
be Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
graph.

3.3.2.10 restrictToAssociations
Restrict the graph to the nodes that participate as a source or target of the named
association and, if supplied, the named association qualifiers.

Behavior  Places an association specific Restriction on the graph, as

 - 79 -

LexEVS Platform Independent Model and Service Specification v6.0

Description described above
 Validation will ensure that:

o The associations provided are valid associations for
the CodingScheme

o The association qualifiers provided (if any) are
valid association qualifiers for the CodingScheme

 Returns a new CodedNodeGraph representing the filtered
result.

Pre-Conditions  The CodedNodeGraph has been initialized

Inputs  association
List of associations used to restrict the graph. The
name and value for each item in the list will be
compared against the id and URI of supported
associations for participating coding schemes.

 associationQualifiers
If supplied, restriction only applies to associations
that are qualified by one or more of the supplied
qualifiers. The name and value for each item in the
list will be compared against the id and URI of
supported association qualifiers for participating
coding schemes.

Outputs  A new CodedNodeGraph representing the filtered result

Post-Conditions  The CodedNodeGraph may be Restricted further, or
Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.2.11 restrictToDirectionalNames
Restrict the graph to the nodes that participate as a source or target of an
association whose directional name matches the one provided and, if supplied,
the named association qualifiers. A directional name is considered to be either
the forward or reverse label registered to an association defined by the ontology.
Forward and reverse names are optionally assigned to each association. For
example, an association 'lineage' may have a forward name 'ancestorOf' and
reverse name 'descendantOf'

Behavior
Description

 Places an association specific Restriction on the graph, as
described above

 Validation will ensure that:
o The associations provided are valid associations for

the CodingScheme
o The association qualifiers provided (if any) are

valid association qualifiers for the CodingScheme

 - 80 -

LexEVS Platform Independent Model and Service Specification v6.0

 Returns a new CodedNodeGraph representing the filtered
result.

Pre-Conditions  The CodedNodeGraph has been initialized

Inputs  directionalNames
List of directionalNames used to restrict the graph.
A directional name is compared against the forward
and reverse names for defined associations. If a
given name matches more than one forward or
reverse label, all corresponding associations are
included in the restriction.

 associationQualifiers
If supplied, restriction only applies to associations
that are qualified by one or more of the supplied
qualifiers. The name and value for each item in the
list will be compared against the id and URI of
supported association qualifiers for participating
coding schemes.

Outputs  A new CodedNodeGraph representing the filtered result

Post-Conditions  The CodedNodeGraph may be Restricted further, or
Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.2.12 restrictToCodes
Return a graph that contains only the codes that are present in the supplied list,
and all edges that still have a source and target code remaining.

Behavior
Description

 Places an association specific Restriction on the graph, as
described above

 Returns a new CodedNodeGraph representing the filtered
result.

Pre-Conditions  The CodedNodeGraph has been initialized

Inputs  codes
Codes to filter on.

Outputs  A new CodedNodeGraph representing the filtered result

Post-Conditions  The CodedNodeGraph may be Restricted further, or
Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

 - 81 -

LexEVS Platform Independent Model and Service Specification v6.0

3.3.2.13 restrictToCodeSystem
Restrict the graph to codes (source and target) that originate from the supplied
code system. Note: edges defined by other code systems will still be resolved if
associated with both source and target nodes for the restricted code system.

Behavior
Description

 Places an association specific Restriction on the graph, as
described above

 Returns a new CodedNodeGraph representing the filtered
result.

Pre-Conditions  The CodedNodeGraph has been initialized

Inputs  codingScheme
The local name or URI of the coding scheme to
filter on.

Outputs  A new CodedNodeGraph representing the filtered result

Post-Conditions  The CodedNodeGraph may be Restricted further, or
Resolved.

Exception
Conditions

 The underlying system fails to initialize

3.3.2.14 restrictToSourceCodes
Restrict the graph to associations that have one of the codes in the supplied list as
source codes.

Behavior
Description

 Places an association specific Restriction on the graph, as
described above

 Returns a new CodedNodeGraph representing the filtered
result.

Pre-Conditions  The CodedNodeGraph has been initialized

Inputs  codes
Codes to filter on.

Outputs  A new CodedNodeGraph representing the filtered result

Post-Conditions  The CodedNodeGraph may be Restricted further, or
Resolved.

Exception
Conditions

 The underlying system fails to initialize

3.3.2.15 restrictToSourceCodeSystem
Restrict the graph to edges that have codes from the specified code system as a
source.

Behavior  Places an association specific Restriction on the graph, as
described above

 - 82 -

LexEVS Platform Independent Model and Service Specification v6.0

Description  Returns a new CodedNodeGraph representing the filtered
result.

Pre-Conditions  The CodedNodeGraph has been initialized

Inputs  codingScheme
The local name or URI of the coding scheme to
filter on.

Outputs  A new CodedNodeGraph representing the filtered result

Post-Conditions  The CodedNodeGraph may be Restricted further, or
Resolved.

Exception
Conditions

 The underlying system fails to initialize

3.3.2.16 restrictToTargetCodes
Restrict the graph to associations that have one of the codes in the supplied list as
target codes.

Behavior
Description

 Places an association specific Restriction on the graph, as
described above

 Returns a new CodedNodeGraph representing the filtered
result.

Pre-Conditions  The CodedNodeGraph has been initialized

Inputs  codes
Codes to filter on.

Outputs  A new CodedNodeGraph representing the filtered result

Post-Conditions  The CodedNodeGraph may be Restricted further, or
Resolved.

Exception
Conditions

 The underlying system fails to initialize

3.3.2.17 restrictToTargetCodeSystem
Restrict the graph to edges that have codes from the specified code system as a
target.

Behavior
Description

 Places an association specific Restriction on the graph, as
described above

 Returns a new CodedNodeGraph representing the filtered
result.

Pre-Conditions  The CodedNodeGraph has been initialized

Inputs  codingScheme
The local name or URI of the coding scheme to

 - 83 -

LexEVS Platform Independent Model and Service Specification v6.0

filter on.

Outputs  A new CodedNodeGraph representing the filtered result

Post-Conditions  The CodedNodeGraph may be Restricted further, or
Resolved.

Exception
Conditions

 The underlying system fails to initialize

3.3.2.18 toNodeList
Transform the graph into a simple of list of code references, removing all
association information.

Behavior
Description

 Returns the underlying graph as a list of nodes, given any
placed Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o If no focus is provided, parameters

‘resolveForward’ OR ‘resolveBackward’ may be
True, or neither may be True, but both may not be
True

Pre-Conditions  The CodedNodeGraph has been initialized, and all
appropriated Restrictions have been placed on the graph
prior to invoking this operation

Inputs  graphFocus
Set the top or "focus" node of the graph. If present,
only the nodes that are reachable via this node will
be returned. If null, nodes with no incoming or
outgoing associations are used as starting points for
navigation of forward and reverse relationships,
respectively.

 resolveForward
True means resolve in the direction of source to
target.

 resolveBackward
True means resolve in the direction of target to
source.

 resolveAssociationDepth
Number of hops to resolve associations. 0 means
leave all associations unresolved, 1 means
immediate neighbors, etc. -1 means follow the
entire closure of the graph.

Outputs A set with matching items, up to the maximum

 - 84 -

LexEVS Platform Independent Model and Service Specification v6.0

number specified. Note that in the event that a maximum
number 'n' is specified and exactly 'n' items are returned,
there is currently no flag or notification provided to
indicate whether all available items were returned.

Post-Conditions  The original CodedNodeGraph is unchanged, and maybe
be Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.2.19 union
Return the union of the two graphs. Union, in this context, means that the
resulting graph contains the unique set of coded entries (String independent)
that are present in one or both of the graphs, and the unique combination of
edges (associations) present in one or both of the graphs.

Behavior
Description

 Adds a Union Restriction to the CodedNodeGraph

Pre-Conditions  Both the target CodedNodeGraph and the source
CodedNodeGraph involved in the Union have been
properly initialized.

Inputs  graph
Identifies the CodedNodeGraph to be unioned.

Outputs  A new CodedNodeGraph representing the merged result.

Post-Conditions  The resulting CodedNodeGraph is properly initialized and
able to be resolved.

 Any restrictions placed on the CodedNodeGraphs involved
in the restriction are preserved

Exception
Conditions

 The underlying system fails to initialize

3.3.3 CodedNodeSet
A coded node set represents a flat list of coded entries.

3.3.3.1 difference
Return a coded node set that represents the set of nodes in this set that are not
included by the given set.

Behavior
Description

 Returns the difference of two CodedNodeSets, given the
input criteria

Pre-Conditions  Both CodedNodeSets participating in the difference
operation have been initialized for the given
CodingScheme

 - 85 -

LexEVS Platform Independent Model and Service Specification v6.0

Inputs  codesToRemove –
List of codes to remove from the surrounding set.

Outputs  A new CodedNodeSet representing the difference.

Post-Conditions  The resulting CodedNodeSet is properly initialized and
able to be resolved.

 Any restrictions placed on the CodedNodeSets involved in
the restriction are preserved

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.3.2 intersect
Return a coded node set that represents the set of nodes this set and the provided
node set have in common.

Behavior
Description

 Returns the intersection of two CodedNodeSets, given the
input criteria

Pre-Conditions  Both CodedNodeSets participating in the intersection
operation have been initialized for the given
CodingScheme

Inputs  codes –
Set of codes to intersect

Outputs  A new CodedNodeSet representing the intersection result

Post-Conditions  The resulting CodedNodeSet is properly initialized and
able to be resolved.

 Any restrictions placed on the CodedNodeSets involved in
the restriction are preserved

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.3.3 isCodeInSet
Return true if the supplied code reference is contained within this coded node
set.

Behavior
Description

 Returns whether or not, given the restrictions that have
currently been place on the CodedNodeSet, the given node
exists in the graph

Pre-Conditions  The CodedNodeSet has been initialized, and all
appropriated Restrictions have been placed on the set prior
to invoking this operation

Inputs  code
Coding scheme and code to test

 - 86 -

LexEVS Platform Independent Model and Service Specification v6.0

Outputs  True if the code is present; otherwise False.

Post-Conditions  The original CodedNodeSet is unchanged, and maybe be
Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize

3.3.3.4 resolve
Resolve an iterator over nodes matching the given criteria.

Behavior
Description

 Returns the underlying node set, given any placed
Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o ‘sortOptions’ are valid and registered in the system
o ‘propertyNames’ are valid for the CodingScheme

Pre-Conditions  The CodedNodeSet has been initialized, and all
appropriated Restrictions have been placed on the set prior
to invoking this operation

Inputs  sortOptions –
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be
retrieved through the LexBIGService
getSortExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 propertyNames –
Local names of properties to resolve. If not empty
and not null, only properties matching the given
names are included for resolved nodes.

 propertyTypes –
Indicates whether to resolve only specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If not empty and not null, only properties
matching the given types are included for resolved
nodes.

Outputs  An iterator over matching entries. Each entry will include
basic information for the node along with an embedded

 - 87 -

LexEVS Platform Independent Model and Service Specification v6.0

object (e.g. concept) populated with requested properties.

Post-Conditions  The original CodedNodeSet is unchanged, and may be be
Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
set.

3.3.3.5 resolve
Resolve an iterator over nodes matching the given criteria, allowing for
additional filters to be applied against the returned items.

Behavior
Description

 Returns the underlying node set, given any placed
Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o ‘sortOptions’ are valid and registered in the system
o ‘propertyNames’ are valid for the CodingScheme

Pre-Conditions  The CodedNodeSet has been initialized, and all
appropriated Restrictions have been placed on the set prior
to invoking this operation

Inputs  sortOptions –
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be
retrieved through the LexBIGService
getSortExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 propertyNames –
Local names of properties to resolve. If not empty
and not null, only properties matching the given
names are included for resolved nodes.

 propertyTypes –
Indicates whether to resolve only specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If not empty and not null, only properties

 - 88 -

LexEVS Platform Independent Model and Service Specification v6.0

matching the given types are included for resolved
nodes.

Outputs  An iterator over matching entries. Each entry will include
basic information for the node along with an embedded
object (e.g. concept) populated with requested properties.

Post-Conditions  The original CodedNodeSet is unchanged, and may be be
Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
set.

3.3.3.6 resolve
Resolve an iterator over nodes matching the given criteria, allowing for
additional filters and optionally populating full objects (e.g. concept or instance)
for each returned reference.

Behavior
Description

 Returns the underlying node set, given any placed
Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o ‘sortOptions’ are valid and registered in the system
o ‘propertyNames’ are valid for the CodingScheme

Pre-Conditions  The CodedNodeSet has been initialized, and all
appropriated Restrictions have been placed on the set prior
to invoking this operation

Inputs  sortOptions –
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be
retrieved through the LexBIGService
getSortExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 propertyNames –
Local names of properties to resolve. If not empty
and not null, only properties matching the given

 - 89 -

LexEVS Platform Independent Model and Service Specification v6.0

names are included for resolved nodes.
 propertyTypes –

Indicates whether to resolve only specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If not empty and not null, only properties
matching the given types are included for resolved
nodes.

 resolveObjects –
True to build and embed a full object (e.g. concept)
for each referenced node in the returned results;
false to return only basic identifying information
(e.g. code, coding scheme, and description). If
false, additional properties for referenced entries
can be resolved on an item-by-item basis as
controlled by the application.

Outputs  An iterator over matching entries. Each entry will include
basic information for the node along with an embedded
object (e.g. concept) populated with requested properties.

Post-Conditions  The original CodedNodeSet is unchanged, and may be be
Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
set.

3.3.3.7 resolveToList
Resolve the set to a list of nodes sorted by the supplied parameters, resolving all
of the properties named in the list.

Behavior
Description

 Returns the underlying node set, given any placed
Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o ‘sortOptions’ are valid and registered in the system
o ‘propertyNames’ are valid for the CodingScheme

Pre-Conditions  The CodedNodeSet has been initialized, and all
appropriated Restrictions have been placed on the set prior
to invoking this operation

 - 90 -

LexEVS Platform Independent Model and Service Specification v6.0

Inputs  sortOptions –
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be
retrieved through the LexBIGService
getSortExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 propertyNames –
Local names of properties to resolve. If not empty
and not null, only properties matching the given
names are included for resolved nodes.

 propertyTypes –
Indicates whether to resolve only specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If not empty and not null, only properties
matching the given types are included for resolved
nodes.

 maxToReturn –
Maximum number of entries to return.

Outputs  A list of node references, up to the maximum number
specified. Note that in the event that a maximum number 'n'
is specified and exactly 'n' items are resolved, there is
currently no flag or notification provided to indicate the
requested list is fully resolved.

Post-Conditions  The original CodedNodeSet is unchanged, and may be be
Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
set.

3.3.3.8 resolveToList
Resolve the set to a list of nodes sorted by the supplied parameters, resolving all
of the properties named in the list, and allowing for additional filters to be
applied against the returned items.

Behavior  Returns the underlying node set, given any placed
Restrictions, as described above

 - 91 -

LexEVS Platform Independent Model and Service Specification v6.0

Description  Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o ‘sortOptions’ are valid and registered in the system
o ‘filterOptions’ are valid and registered in the

system
o ‘propertyNames’ are valid for the CodingScheme

Pre-Conditions  The CodedNodeSet has been initialized, and all
appropriated Restrictions have been placed on the set prior
to invoking this operation

Inputs  sortOptions –
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be
retrieved through the LexBIGService
getSortExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 filterOptions –
 List of Filter extensions to apply during resolution.
If supplied, filters are applied in the order provided.
Each name in the list must correspond to the name
of a Filter description as registered to the associated
service. Available Filter descriptions can be
retrieved through the LexBIGService
getFilterExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 propertyNames –
Local names of properties to resolve. If not empty
and not null, only properties matching the given
names are included for resolved nodes.

 propertyTypes –
Indicates whether to resolve only specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If not empty and not null, only properties
matching the given types are included for resolved
nodes.

 maxToReturn –
Maximum number of entries to return.

Outputs  A list of node references, up to the maximum number
specified. Note that in the event that a maximum number 'n'
is specified and exactly 'n' items are resolved, there is

 - 92 -

LexEVS Platform Independent Model and Service Specification v6.0

currently no flag or notification provided to indicate the
requested list is fully resolved.

Post-Conditions  The original CodedNodeSet is unchanged, and may be be
Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
set.

3.3.3.9 resolveToList
Resolve the set to a list of nodes sorted by the supplied parameters, resolving all
of the properties named in the list, and allowing for additional filters to be
applied against the returned items.

Behavior
Description

 Returns the underlying node set, given any placed
Restrictions, as described above

 Validation will ensure that:
o The Requested CodingScheme exists in the system
o The Requested CodingScheme is not Active within

the system.
o ‘sortOptions’ are valid and registered in the system
o ‘filterOptions’ are valid and registered in the

system
o ‘propertyNames’ are valid for the CodingScheme

Pre-Conditions  The CodedNodeSet has been initialized, and all
appropriated Restrictions have been placed on the set prior
to invoking this operation

Inputs  sortOptions –
List of sort options to apply during resolution. If
supplied, the sort algorithms will be applied in the
order provided. Any algorithms not valid to be
applied in context of node set iteration, as specified
in the sort extension description, will result in a
parameter exception. Available algorithms can be
retrieved through the LexBIGService
getSortExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 filterOptions –
 List of Filter extensions to apply during resolution.
If supplied, filters are applied in the order provided.
Each name in the list must correspond to the name
of a Filter description as registered to the associated

 - 93 -

LexEVS Platform Independent Model and Service Specification v6.0

service. Available Filter descriptions can be
retrieved through the LexBIGService
getFilterExtensions() method after being defined to
the LexBIGServiceManager extension registry.

 propertyNames –
Local names of properties to resolve. If not empty
and not null, only properties matching the given
names are included for resolved nodes.

 propertyTypes –
Indicates whether to resolve only specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If not empty and not null, only properties
matching the given types are included for resolved
nodes.

 resolveObjects –
True to build and embed a full object (e.g.
concept) for each referenced node in the
returned results; false to return only basic
identifying information (e.g. code, coding
scheme, and description). If false, additional
properties for referenced entries can be
resolved on an item-by-item basis as controlled
by the application.

 maxToReturn –
Maximum number of entries to return.

Outputs  A list of node references, up to the maximum number
specified. Note that in the event that a maximum number 'n'
is specified and exactly 'n' items are resolved, there is
currently no flag or notification provided to indicate the
requested list is fully resolved.

Post-Conditions  The original CodedNodeSet is unchanged, and may be be
Restricted further, or Resolved again.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

Note  Note that while the class of the returned value appears to
imply concepts only, each contained reference inherits
from the more general CodedNodeReference and is
capable of representing any type of node contained by the
set.

3.3.3.10 restrictToCodes
Restrict the set to the list of codes in the supplied reference list

 - 94 -

LexEVS Platform Independent Model and Service Specification v6.0

Behavior
Description

 Places an association specific Restriction on the node set,
as described above

 Returns a new CodedNodeSet representing the filtered
result.

Pre-Conditions  The CodedNodeSet has been initialized

Inputs
 codeList –

Restrict the set to the list of codes in the supplied
reference list

Outputs  A new CodedNodeSet representing the filtered result

Post-Conditions  The CodedNodeSet may be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.3.11 restrictToMatchingDesignations
Restrict the list to the set of nodes with designations matching the supplied text,
interpreted using the supplied matching algorithm and language.

Behavior
Description

 Places an association specific Restriction on the node set,
as described above

 Returns a new CodedNodeSet representing the filtered
result.

 Validation will ensure that:
o ‘matchAlgorithm’ is valid and registered in the

system

Pre-Conditions  The CodedNodeSet has been initialized

Inputs
 matchText –

Filter String - syntax is determined by the match
algorithm

 option –
Indicates the designations to search (one of the
enumerated type SearchDesignationOption).

 matchAlgorithm –
Local name of the match algorithm - possible
algorithms are returned in
LexBigService.getMatchAlgorithms().

 language –
Language of search string. If missing, use the
default language specified in the context.

 - 95 -

LexEVS Platform Independent Model and Service Specification v6.0

Outputs  A new CodedNodeSet representing the filtered result

Post-Conditions  The CodedNodeSet may be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.3.12 restrictToMatchingProperties
Remove all elements from the set that do not have one or more properties that
match the supplied property names, type, and text. Text values are compared
using the provided matching algorithm and language.
Note that while property name and type can be the same, the API allows for
them to differ. While property name can vary from source to source, all
properties are mapped to normalized property types or categories as established
by the LexGrid model ('Presentations', 'Definitions', 'Comments', and 'Generic'
properties). As an example, a Presentation property may be named
'displayText').
This method allows for query based on property name, type, or both. However,
at least one name or type must be specified.

Behavior
Description

 Places an association specific Restriction on the node set,
as described above

 Returns a new CodedNodeSet representing the filtered
result.

 Validation will ensure that:
o ‘propertyNames’ are valid and registered in the

system
o ‘matchAlgorithm’ is valid and registered in the

system

Pre-Conditions  The CodedNodeSet has been initialized

Inputs  propertyNames –
Indicates the local names of properties to match. To
be recognized, each provided name must be defined
in the coding scheme metadata as part of the
registered supported properties. If empty or null, all
names are evaluated for the specified property
types.
Note that the meta-property 'conceptCode' can be
specified in addition to specific named properties
defined by the code system.
If 'conceptCode' is specified, the matchAlgorithms
'exactMatch', 'contains' and 'luceneQuery' are
allowed. Any other request results in 'luceneQuery'

 - 96 -

LexEVS Platform Independent Model and Service Specification v6.0

being used.
 propertyTypes –

Indicates whether to match specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If empty or null, properties of all types
are evaluated.

 matchText –
Filter String - syntax is determined by the match
algorithm

 matchAlgorithm –
Local name of the match algorithm - possible
algorithms are returned in
LexBigService.getMatchAlgorithms().

 language –
Language of search string. If missing, use the
default language specified in the context.

Outputs  A new CodedNodeSet representing the filtered result

Post-Conditions  The CodedNodeSet may be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.3.13 restrictToMatchingProperties
Remove all elements from the set that do not have one or more properties that
match the given criteria.

Note that while property name and type can be the same, the API allows for
them to differ. While property name can vary from source to source, all
properties are mapped to normalized property types or categories as established
by the LexGrid model ('Presentations', 'Definitions', 'Comments', and 'Generic'
properties). As an example, a Presentation property may be named
'displayText').

This method allows for query based on property name, type, or both. However,
at least one name or type must be specified.

Behavior
Description

 Places an association specific Restriction on the node set,
as described above

 Returns a new CodedNodeSet representing the filtered
result.

 Validation will ensure that:

 - 97 -

LexEVS Platform Independent Model and Service Specification v6.0

o ‘propertyNames’ are valid and registered in the
system

o ‘matchAlgorithm’ is valid and registered in the
system

Pre-Conditions  The CodedNodeSet has been initialized

Inputs  propertyNames –
Indicates the local names of properties to match. To
be recognized, each provided name must be defined
in the coding scheme metadata as part of the
registered supported properties. If empty or null, all
names are evaluated for the specified property
types.
Note that the meta-property 'conceptCode' can be
specified in addition to specific named properties
defined by the code system.
If 'conceptCode' is specified, the matchAlgorithms
'exactMatch', 'contains' and 'luceneQuery' are
allowed. Any other request results in 'luceneQuery'
being used.

 propertyTypes –
Indicates whether to match specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If empty or null, properties of all types
are evaluated.

 sourceList –
Local names of sources to match; each must be
defined in the supported sources for the coding
scheme. Returned values must match at least one of
the specified values. A null or empty value
indicates to match against all available sources.

 contextList –
Local names of usage contexts to match; each must
be defined in the supported contexts for the coding
scheme. Returned values must match at least one of
the specified values. A null or empty value
indicates to match against all available contexts.

 qualifierList –
Name/value pairings of property qualifiers to
match. Each name must be defined in the supported
property qualifiers for the coding scheme. Returned
values must match at least one of the name/value
combinations. A null or empty value indicates to
match against all property qualifiers.

 matchText –

 - 98 -

LexEVS Platform Independent Model and Service Specification v6.0

Filter String - syntax is determined by the match
algorithm

 matchAlgorithm –
Local name of the match algorithm - possible
algorithms are returned in
LexBigService.getMatchAlgorithms().

 language –
Language of search string. If missing, use the
default language specified in the context.

Outputs  A new CodedNodeSet representing the filtered result

Post-Conditions  The CodedNodeSet may be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.3.14 restrictToProperties
Remove all elements from the set that do not have one or more properties that
match the supplied property list.

Note that while property name and type can be the same, the API allows for
them to differ. While property name can vary from source to source, all
properties are mapped to normalized property types or categories as established
by the LexGrid model ('Presentations', 'Definitions', 'Comments', and 'Generic'
properties). As an example, a Presentation property may be named
'displayText').

This method allows for query based on property name, type, or both. However,
at least one name or type must be specified.

Behavior
Description

 Places an association specific Restriction on the node set,
as described above

 Returns a new CodedNodeSet representing the filtered
result.

 Validation will ensure that:
o ‘propertyNames’ are valid and registered in the

system

Pre-Conditions  The CodedNodeSet has been initialized

Inputs  propertyList –
Local names of properties to use in restriction; each
must be defined in the supported properties for the
coding scheme.

 - 99 -

LexEVS Platform Independent Model and Service Specification v6.0

 propertyTypes –
Indicates whether to match specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If empty or null, properties of all types
are evaluated.

Outputs  A new CodedNodeSet representing the filtered result

Post-Conditions  The CodedNodeSet may be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.3.15 restrictToProperties
Remove all elements from the set that do not have one or more properties that
match the given criteria.

Note that while property name and type can be the same, the API allows for
them to differ. While property name can vary from source to source, all
properties are mapped to normalized property types or categories as established
by the LexGrid model ('Presentations', 'Definitions', 'Comments', and 'Generic'
properties). As an example, a Presentation property may be named
'displayText').

This method allows for query based on property name, type, or both. However,
at least one name or type must be specified.

Behavior
Description

 Places an association specific Restriction on the node set,
as described above

 Returns a new CodedNodeSet representing the filtered
result.

 Validation will ensure that:
o ‘propertyList’ are valid and registered in the system
o ‘sourceList’ are valid and registered in the system
o ‘contextList’ are valid and registered in the system
o ‘qualifiertList’ are valid and registered in the

system

Pre-Conditions  The CodedNodeSet has been initialized

Inputs  propertyList –
Local names of properties to use in restriction; each
must be defined in the supported properties for the
coding scheme.

 propertyTypes –

 - 100 -

LexEVS Platform Independent Model and Service Specification v6.0

Indicates whether to match specific property
categories, regardless of the assigned name. Any of
the enumerated PropertyType values can be
specified. If empty or null, properties of all types
are evaluated.

 contextList –
Local names of usage contexts to match; each must
be defined in the supported contexts for the coding
scheme. Returned values must match at least one of
the specified values. A null or empty value
indicates to match against all available contexts.

 qualifierList –
Name/value pairings of property qualifiers to
match. Each name must be defined in the supported
property qualifiers for the coding scheme. Returned
values must match at least one of the name/value
combinations. A null or empty value indicates to
match against all property qualifiers.

Outputs  A new CodedNodeSet representing the filtered result

Post-Conditions  The CodedNodeSet may be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.3.16 restrictToStatus
Restrict the set to the list of codes in the supplied reference list

Behavior
Description

 Places an association specific Restriction on the node set,
as described above

 Returns a new CodedNodeSet representing the filtered
result.

Pre-Conditions  The CodedNodeSet has been initialized

Inputs  activeOption –
Indicates whether to include active codes, inactive
codes, or both in the resolved result set (one of the
enumerated type ActiveOption). This is matched
against the 'isActive' field for CodedEntry instances
in the code system.

 status –
Indicates zero or more status values to match.
Provided values are compared using an exact match
algorithm against the 'status' field for matching
entities. If null or empty, the restriction is evaluated
based only on the specified activeOption.

 - 101 -

LexEVS Platform Independent Model and Service Specification v6.0

Outputs  A new CodedNodeSet representing the filtered result

Post-Conditions  The CodedNodeSet may be Restricted further, or Resolved.

Exception
Conditions

 The underlying system fails to initialize, or the input
parameters fail to validate as described above

3.3.3.17 union
Return the set union of all of the codes in the containing or the referenced set

Behavior
Description

 Adds a Union Restriction to the CodedNodeSet

Pre-Conditions  Both the target CodedNodeSet and the source
CodedNodeSet involved in the Union have been properly
initialized.

Inputs  codes
Codes to add to the union

Outputs  A new CodedNodeSet representing the merged result.

Post-Conditions  The resulting CodedNodeSet is properly initialized and
able to be resolved.

 Any restrictions placed on the CodedNodeSets involved in
the restriction are preserved

Exception
Conditions

 The underlying system fails to initialize

3.3.4 LexBIGServiceMetadata
Interface to perform system-wide query over metadata for loaded code systems
and providers.

3.3.4.1 listCodingSchemes
List the coding schemes that are represented in the metadata index.

Behavior
Description

 Query the available service metadata, as described above

Pre-Conditions  The LexBIGServiceMetadata service has been initialized
correctly

Inputs  none

Outputs  A LexBIG:AbsoluteCodingSchemeVersionReferenceList
indicating the loaded service metadata

Post-Conditions  none

 - 102 -

LexEVS Platform Independent Model and Service Specification v6.0

Exception
Conditions

 The LexBIGServiceMetadata service, or underlying
LexEVS service fail to initialize

3.3.4.2 restrictToCodingScheme
Restrict the search to a particular coding scheme.

Behavior
Description

 Add a Restriction to the available service metadata, as
described above

Pre-Conditions  The LexBIGServiceMetadata service has been initialized
correctly

Inputs  acsvr –
The coding scheme to restrict the search to. You
may provide the URN, the version, or both.

Outputs  A new LexBIGServiceMetadata representing the restricted
result.

Post-Conditions  The LexBIGServiceMetadata may be Restricted further, or
Resolved

Exception
Conditions

 The LexBIGServiceMetadata service, or underlying
LexEVS service fail to initialize

3.3.4.3 restrictToProperties
Restrict the search to a particular property. Currently, this can be any element or attribute
name from the OBO metadata schema

Behavior
Description

 Add a Restriction to the available service metadata, as
described above

Pre-Conditions  The LexBIGServiceMetadata service has been initialized
correctly

Inputs  properties –
The set of properties to restrict the search to. If you
provide multiple properties, it is treated as an OR
search.

Outputs  A new LexBIGServiceMetadata representing the restricted
result.

Post-Conditions  The LexBIGServiceMetadata may be Restricted further, or
Resolved

Exception
Conditions

 The LexBIGServiceMetadata service, or underlying
LexEVS service fail to initialize

 - 103 -

LexEVS Platform Independent Model and Service Specification v6.0

3.3.4.4 restrictToPropertyParents
Restrict the search by the parents of the metadata elements. The OBO MetaData
format is hierarchial - if you wish to restrict your search to properties that are
under another property, provide the required property containers here.

Behavior
Description

 Add a Restriction to the available service metadata, as
described above

Pre-Conditions  The LexBIGServiceMetadata service has been initialized
correctly

Inputs  propertyParents –
The containers to require as parents. For
example, to restrict the search to "contacts" that
are under "about" that is under "authority" -
provide "authority" and "about". The order of
the parents does not matter. Multiple parents
are treated as an AND - so the result is
required to be under each of the parents going
up the parent tree.

Outputs  A new LexBIGServiceMetadata representing the restricted
result.

Post-Conditions  The LexBIGServiceMetadata may be Restricted further, or
Resolved

Exception
Conditions

 The LexBIGServiceMetadata service, or underlying
LexEVS service fail to initialize

3.3.4.5 restrictToValue
Restrict the result to the metadata elements that match the supplied string, using
the supplied matching algorithm

Behavior
Description

 Add a Restriction to the available service metadata, as
described above

 Validation will ensure that:
o ‘matchAlgorithm’ is valid and registered in the

system

Pre-Conditions  The LexBIGServiceMetadata service has been initialized
correctly

Inputs
 matchText –

The match text. Format is determined by
the match algorithm.

 matchAlgorithm –
Local name of the match algorithm -
possible algorithms are returned in
LexBigService.getMatchAlgorithms().

 - 104 -

LexEVS Platform Independent Model and Service Specification v6.0

Outputs  A new LexBIGServiceMetadata representing the restricted
result.

Post-Conditions  The LexBIGServiceMetadata may be Restricted further, or
Resolved

Exception
Conditions

 The LexBIGServiceMetadata service, or underlying
LexEVS service fail to initialize, or the input parameters
fail to validate as described above

3.3.4.6 resolve
Apply all of the restrictions, and return the result

Behavior
Description

 Returns the underlying MetadataPropertyList, given any
placed Restrictions, as described above

Pre-Conditions  The LexBIGServiceMetadata service has been initialized
correctly

Inputs
 none

Outputs  The resulting MetadataPropertyList

Post-Conditions  The LexBIGServiceMetadata may be Restricted further, or
Resolved again

Exception
Conditions

 The LexBIGServiceMetadata service, or underlying
LexEVS service fail to initialize

3.3.5 HistoryService
The history service returns information about the change history of a coding
cheme.

3.3.5.1 getAncestors

Return a list of baselines supported by this service that were released on or after the first
supplied date and were released on or before the second date. Returned baselines are
arranged in sequential order, from earliest to latest.

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs  conceptReference–
The reference from which to begin the query.

Outputs  A LexBIG:NCIChangeEventList containing the ancestors
of the given ‘conceptReference’ parameter

Post-Conditions  The HistoryService service state is maintained and may be
queried again

 - 105 -

LexEVS Platform Independent Model and Service Specification v6.0

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.2 getBaselines
Return a list of baselines supported by this service that were released on or after
the first supplied date and were released on or before the second date. Returned
baselines are arranged in sequential order, from earliest to latest.

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs
 releasedAfter

If present, only return baselines
released on or after the supplied date.

 releasedBefore
If present, only return baselines that
were released before the specified date

Outputs  A LexBIG:SystemReleaseList containing the baselines of
the given parameters

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.3 getConceptChangeVersions

Return a list of all of the coding scheme versions in which the supplied concept changed
between the two supplied times (inclusive).

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs
 conceptReference

The concept to pull the versions out of
 beginDate

Begin date (inclusive) to check for
version changes. If omitted, go to
earliest recorded date

 endDate
Last date to check for changes in
(inclusive). If omitted include all dates
past and including beginDate

Outputs  A LexBIG:NCIChangeEventList containing the ancestors
of the given ‘conceptReference’ parameter

 - 106 -

LexEVS Platform Independent Model and Service Specification v6.0

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.4 getConceptCreationVersion
Return the coding scheme version in which the supplied concept was created.

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs
 conceptReference

The concept to pull the creation version
of

Outputs  A CodingSchemeVersion

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.5 getDescendants
Return the list of change events identifying the immediate descendants of the
given concept reference.

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs
 conceptReference

The concept focus of the query

Outputs  A NCIChangeEventList containing the immediate
descendants of the ‘conceptReference’ parameter

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.6 getEarliestBaseline
Return the earliest baseline version in the list.

 - 107 -

LexEVS Platform Independent Model and Service Specification v6.0

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs
 none

Outputs  A SystemRelease containing earliest baselines of the
History service

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.7 getEditActionList
Return the list of available NCI-defined change events for the given concept and
coding scheme version.

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs
 conceptReference

Optional concept to get the action list
for. If omitted, all events for the given
change set (represented by a coding
scheme version) are returned.

 codingSchemeVersion
Version to get the action list for

Outputs  A NCIChangeEventList containing the change events as
described above.

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.8 getEditActionList
Return the list of available NCI-defined change events for the given concept and
date range.

Behavior
Description

 Query the available History service, as described above

 - 108 -

LexEVS Platform Independent Model and Service Specification v6.0

Pre-Conditions  The History service has been initialized correctly

Inputs
 conceptReference

Optional concept to get the action list
for. If omitted, all events for the given
date range are returned.

 beginDate
Begin date (inclusive) to check for
version changes. If omitted, go to
earliest recorded date.

 endDate
Last date to check for changes in
(inclusive). If omitted include all dates
past and including beginDate.

Outputs  A NCIChangeEventList containing the change events as
described above.

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.9 getEditActionList
Return the list of NCI-defined change events for the given concept and release;
empty if not applicable.

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs
 conceptReference

Optional concept to get the action list
for. If omitted the actions for all
registered concepts for the specified
system release are returned.

 releaseURN
URN of the system release to retrieve the
action list for.

Outputs  A NCIChangeEventList containing the change events as
described above.

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.10 getLatestBaseline
Get the latest baseline in the list.

 - 109 -

LexEVS Platform Independent Model and Service Specification v6.0

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs
 none

Outputs  A SystemRelease containing latest baselines of the History
service

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

3.3.5.11 getSystemRelease
Return detailed information about the particular system release.

Behavior
Description

 Query the available History service, as described above

Pre-Conditions  The History service has been initialized correctly

Inputs
 releaseURN

The URN of the system release to
retrieve.

Outputs  A SystemReleaseDetail of the Release URN specified by
the ‘releaseURN’ parambet

Post-Conditions  The HistoryService service state is maintained and may be
queried again

Exception
Conditions

 The History service, or underlying LexEVS service fail to
initialize

 - 110 -

LexEVS Platform Independent Model and Service Specification v6.0

4 Dynamic Model
Describe the interactions of the service with sequence diagrams or collaboration
diagrams.

4.1 Sequence Diagram

 - 111 -

LexEVS Platform Independent Model and Service Specification v6.0

5 Profiles

5.1 Functional Profiles
A Functional Profile is a grouping of capabilities for conformance management
purposes. Essentially, a FP is a named list of operations that are subset to define
conformance.

5.1.1 Service Query Functional Profile
The LexEVS 6.0 CIM specifies one Service Query functional profile to support
analytical grid services.

Functional
Profile No.

Functional
Profile Name

Functional Profile Description

QS-FP1 QS Service
Query

This profile contains query operations specific to
determining information specific to the service.

5.1.2 Content Query Functional Profile
The LexEVS 6.0 CIM specifies one Content Query functional profile to support
analytical grid services.

Functional
Profile No.

Functional
Profile Name

Functional Profile Description

QS-FP2 QS Content
Query

This profile contains query operations specific to
determining information pertaining to terminology
content loaded in the service.

5.2 Semantic Profiles

5.2.1 CTS 2 Semantic Profile
The LexEVS 6.0 CIM specifies one CTS2 semantic profile to support analytical
grid services.

Semantic
Profile No.

Semantic
Profile Name

Constrained
Information Model

Semantic Profile
Description

QS-SP1 CTS 2
Semantic
Profile

HL7 CTS 2 Query
Mature Terminology
Conformance Profile

This semantic profile aligns
with a subset of the CTS 2
Query Mature Terminology
Conformance Profile (omitting
value set and concept domain
query). This profile permits

 - 112 -

LexEVS Platform Independent Model and Service Specification v6.0

definition and implementation
of any desired datatype
specification (i.e. ISO 21090).

6 Relationship with other services

Service Relationship Description
Index
Service

Service
Registration

LexEVS utilizes the caGrid Globus-provided Index
Service for the purpose of advertisement and discovery
of LexEVS services.

7 Conformance Statements

7.1 Compliance and Conformance Statements

Name Type Viewpoint Description Test method
Grid
Deployment

Obligation Technology The LexEVS profile
should be deployed
only within
organization
boundary restricting
access and visibility
to the external world

1. Test cases to be
defined to test for
network access

Secured Access Obligation Engineering The LexEVS
Content Query FP
should be deployed
only within
organizational
boundaries that
restrict access to the
terminology content
to licensed
terminology users
where applicable

1. Design review
2. Test cases to be
defined for security

Standardized
Functionality

Permission Informational The LexEVS 6.0
service will provide
standardized
interfaces to code
system query
functionality as
specified in the HL7

1. Design Review

 - 113 -

LexEVS Platform Independent Model and Service Specification v6.0

Name Type Viewpoint Description Test method
CTS 2 standard
where such an
interface exists

Semantic Model Obligation Informational The LexEVS service
must support all
terminologies
represented in the
LexGrid Model for
all code system
operations

1. Design Review

 - 114 -

LexEVS Platform Independent Model and Service Specification v6.0

8 Appendix A - References

Name Description Location
LexEVS 5.x
Analytical Grid
Services API

API for LexEVS Analytical
Grid Services Version 5.x

https://cabig-
kc.nci.nih.gov/Vocab/KC/index.php/Le
xEVS_5.x_Analytical_Grid_Service_A
PI

LexEVS Project
http://gforge.nci.nih.gov/projects/lexevs

Design and
Implementation
Specification
1.1
for
LexEVS Grid
service for
caGrid 1.2

The detailed design and
implementation of LexBIG
Enterprise Vocabulary
Service (LexEVS) caGrid
Service

https://gforge.nci.nih.gov/docman/view
.php/491/13735/LexEVS%20Grid%20
Service%204.2%20Design%20and%20
Implementation

LexEVS 6.0
Scope
Document

The high-level needs and
features of the National
Cancer Institute Center for
Biomedical Informatics and
Information Technology
(NCI CBIIT) caCORE
LexEVS Release 6.0,
focusing on the
functionalities proposed by
the product stakeholders and
target users.

https://wiki.nci.nih.gov/display/EVS/Le
xEVS+6.0+Scope+Document

HL7 CTS 2 HL7’s CTS 2 specification
specifies functional model
(CIM) outlining HL7’s
consensus requirement for
terminology services.

For the LexEVS CIM, only
the terminology and
association query
components of HL7 CTS 2
is considered to be in scope.

LexEVS will ultimately
implement much of the CTS
2 functionality, and as such,

Health Level Seven (HL7) Common
Terminology Services – Release 2
(CTS 2)

 - 115 -

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Analytical_Grid_Service_API
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Analytical_Grid_Service_API
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Analytical_Grid_Service_API
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Analytical_Grid_Service_API
http://gforge.nci.nih.gov/projects/lexevs
https://gforge.nci.nih.gov/docman/view.php/491/13735/LexEVS%20Grid%20Service%204.2%20Design%20and%20Implementation
https://gforge.nci.nih.gov/docman/view.php/491/13735/LexEVS%20Grid%20Service%204.2%20Design%20and%20Implementation
https://gforge.nci.nih.gov/docman/view.php/491/13735/LexEVS%20Grid%20Service%204.2%20Design%20and%20Implementation
https://gforge.nci.nih.gov/docman/view.php/491/13735/LexEVS%20Grid%20Service%204.2%20Design%20and%20Implementation
https://wiki.nci.nih.gov/display/EVS/LexEVS+6.0+Scope+Document
https://wiki.nci.nih.gov/display/EVS/LexEVS+6.0+Scope+Document
http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf
http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf
http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf
http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3_CTS_R2_DSTU_2009OCT.pdf

LexEVS Platform Independent Model and Service Specification v6.0

early identification of
potential points of
alignment is necessary.

ISO 21090
Health
Informatics –
Harmonized
data types for
information
interchange

ISO 21090 data types
provide a harmonized set of
data type definitions for
representing and
exchanging healthcare
related information.

LexEVS 6.0 will
interchange information
using the 21090 data type
specifications

http://www.kith.no/upload/4414/ISODI
S21090.pdf

9 Appendix B - Glossary
Term Description
Association A binary relation from a set of entities to a set of entities

and/or data.
Coding
Scheme

A resource that makes assertions about a collection of
terminological entities.

Property A description, definition, annotation or other attribute that
serves to further define or identify an resource.

10 Appendix C - Cross Reference Tables

10.1 Interface to Profile Mapping

Interface No. Interface Profile No. Profile

LE_I_01 LexBIGService QS-FP1, QS-
FP2

QS Service Query,
QS Content Query

LE_I_02 CodedNodeSet QS-FP2 QS Content Query

LE_I_03 CodedNodeGraph QS-FP2 QS Content Query

LE_I_05 LexBIGServiceMetadata QS-FP2 QS Content Query

LE_I_06 HistoryService QS-FP2 QS Content Query

 - 116 -

http://www.kith.no/upload/4414/ISODIS21090.pdf
http://www.kith.no/upload/4414/ISODIS21090.pdf

LexEVS Platform Independent Model and Service Specification v6.0

10.2 Interface Operations to Profile Operations

Operation
No.

Operation Name Capability
No.

Profile
Capability

LE_I_01_01 getCodingSchemeConcepts Get Code
System
Concepts

QS-FP2

LE_I_01_02 getFilter Get Filter QS-FP2

LE_I_01_03 getFilter Get Filter QS-FP2

LE_I_01_04 getFilterExtensions Get Filter
Extensions

QS-FP2

LE_I_01_05 getGenericExtension Get
Generic
Extension

QS-FP2

LE_I_01_06 getGenericExtensions Get
Generic
Extensions

QS-FP2

LE_I_01_07 getHistoryService Get History
Service

QS-FP2

LE_I_01_08 getLastUpdateTime Get Last
Update
Time

QS-FP1

LE_I_01_09 getMatchAlgorithms Get Match
Algorithms

QS-FP2

LE_I_01_10 getNodeGraph Get Node
Graph

QS-FP2

LE_I_01_11 getNodeSet Get Node
Set

QS-FP2

LE_I_01_12 getServiceManager Get Service
Metadata

QS-FP1

LE_I_01_13 getServiceMetadata Get Service
Metadata

QS-FP1

LE_I_01_14 getSortAlgorithm Get Sort
Algorithms

QS-FP2

 - 117 -

LexEVS Platform Independent Model and Service Specification v6.0

LE_I_01_15 getSortAlgorithms Get Sort
Algorithms

QS-FP2

LE_I_01_16 getSupportedCodingSchemes Get
Supported
Coding
Schemes

QS-FP2

LE_I_01_17 resolveCodingScheme Resolve
Coding
Scheme

QS-FP2

LE_I_01_18 resolveCodingSchemeCopyright Resolve
Coding
Scheme
Copyright

QS-FP2

LE_I_03_01 areCodesRelated Get Node
Graph

QS-FP2

LE_I_03_02 intersect Get Node
Graph

QS-FP2

LE_I_03_03 isCodeInGraph Get Node
Graph

QS-FP2

LE_I_03_04 listCodeRelationships Get Node
Graph

QS-FP2

LE_I_03_05 listCodeRelationships Get Node
Graph

QS-FP2

LE_I_03_06 resolveAsList Get Node
Graph

QS-FP2

LE_I_03_07 resolveAsList Get Node
Graph

QS-FP2

LE_I_03_08 restrictToAssociations Get Node
Graph

QS-FP2

LE_I_03_09 restrictToDirectionalNames Get Node
Graph

QS-FP2

LE_I_03_10 restrictToCodes Get Node
Graph

QS-FP2

 - 118 -

LexEVS Platform Independent Model and Service Specification v6.0

LE_I_03_11 restrictToCodeSystem Get Node
Graph

QS-FP2

LE_I_03_12 restrictToSourceCodes Get Node
Graph

QS-FP2

LE_I_03_13 restrictToSourceCodeSystem Get Node
Graph

QS-FP2

LE_I_03_14 restrictToTargetCodes Get Node
Graph

QS-FP2

LE_I_03_15 restrictToTargetCodeSystem Get Node
Graph

QS-FP2

LE_I_03_16 toNodeList Get Node
Graph

QS-FP2

LE_I_03_17 union Get Code
System
Concepts

QS-FP2

LE_I_02_01 difference Get Code
System
Concepts

QS-FP2

LE_I_02_02 intersect Get Code
System
Concepts

QS-FP2

LE_I_02_03 isCodeInSet Get Code
System
Concepts

QS-FP2

LE_I_02_04 resolve Resolve
Coding
Scheme

QS-FP2

LE_I_02_05 resolve Resolve
Coding
Scheme

QS-FP2

LE_I_02_06 resolve Resolve
Coding
Scheme

QS-FP2

LE_I_02_07 resolveToList Resolve QS-FP2

 - 119 -

LexEVS Platform Independent Model and Service Specification v6.0

Coding
Scheme

LE_I_02_08 resolveToList Resolve
Coding
Scheme

QS-FP2

LE_I_02_09 resolveToList Resolve
Coding
Scheme

QS-FP2

LE_I_02_10 restrictToCodes Get Node
Set

QS-FP2

LE_I_02_11 restrictToMatchingDesignations Get Node
Set

QS-FP2

LE_I_02_12 restrictToMatchingProperties Get Node
Set

QS-FP2

LE_I_02_13 restrictToMatchingProperties Get Node
Set

QS-FP2

LE_I_02_14 restrictToProperties Get Node
Set

QS-FP2

LE_I_02_15 restrictToProperties Get Node
Set

QS-FP2

LE_I_02_16 restrictToStatus Get Node
Set

QS-FP2

LE_I_02_17 union Get Node
Set

QS-FP2

LE_I_05_01 listCodingSchemes Get Service
Metadata

QS-FP1

LE_I_05_02 restrictToCodingScheme Get Service
Metadata

QS-FP1

LE_I_05_03 restrictToProperties Get Service
Metadata

QS-FP1

LE_I_05_04 restrictToPropertyParents Get Service
Metadata

QS-FP1

 - 120 -

LexEVS Platform Independent Model and Service Specification v6.0

 - 121 -

LE_I_05_05 restrictToValue Get Service
Metadata

QS-FP1

LE_I_05_06 resolve Get Service
Metadata

QS-FP1

LE_I_06_01 getAncestors Get History
Service

QS-FP2

LE_I_06_02 getBaselines Get History
Service

QS-FP2

LE_I_06_03 getConceptChangeVersions Get History
Service

QS-FP2

LE_I_06_04 getConceptCreationVersion Get History
Service

QS-FP2

LE_I_06_05 getDescendants Get History
Service

QS-FP2

LE_I_06_06 getEarliestBaseline Get History
Service

QS-FP2

LE_I_06_07 getEditActionList Get History
Service

QS-FP2

LE_I_06_08 getEditActionList Get History
Service

QS-FP2

LE_I_06_09 getEditActionList Get History
Service

QS-FP2

LE_I_06_10 getLatestBaseline Get History
Service

QS-FP2

LE_I_06_11 getSystemRelease Get History
Service

QS-FP2

	1 Introduction
	1.1 Overview
	1.2 Relationship to Standards
	1.3 Relation to the LexEVS Conceptual Functional Service Specification
	1.3.1 Conformance and Compliance
	1.3.1.1 LexEVS 21090 Content Query Conformance Profile
	1.3.1.2 LexEVS 21090 Full Query Conformance Profile

	2 Platform Independent Model and Service Specification
	2.1 Overview and Architecture
	2.2 Implementation Considerations
	2.2.1 Assumptions
	2.2.2 Deployment Considerations
	2.2.2.1 Local Deployment
	2.2.2.2 Remote Deployment
	2.2.2.3 caGrid Deployment

	2.3 Information Model
	2.3.1 LexGrid Model
	2.3.2 LexBIG Model
	2.3.3 Error Implementation Model

	2.4 Control Data Type Definitions
	2.4.1 Status/Return Values/Exceptions
	2.4.2 Query Parameters and Result Sets

	3 Interfaces
	3.1 UML Model of Interfaces
	3.1.1 LexBIGService
	3.1.2 CodedNodeGraph
	3.1.3 CodedNodeSet
	3.1.4 LexBIGServiceMetadata
	3.1.5 HistoryService

	3.2 Operations (Enumeration)
	3.3 Operation Behavior Descriptions
	3.3.1 LexBIGService
	3.3.1.1 getCodingSchemeConcepts
	3.3.1.2 getFilter
	3.3.1.3 getFilterExtensions
	3.3.1.4 getGenericExtension
	3.3.1.5 getGenericExtensions
	3.3.1.6 getHistoryService
	3.3.1.7 getLastUpdateTime
	3.3.1.8 getMatchAlgorithms
	3.3.1.9 getNodeGraph
	3.3.1.10 getNodeSet
	3.3.1.11 getServiceManager
	3.3.1.12 getServiceMetadata
	3.3.1.13 getSortAlgorithm
	3.3.1.14 getSortAlgorithms
	3.3.1.15 getSupportedCodingSchemes
	3.3.1.16 resolveCodingScheme
	3.3.1.17 resolveCodingSchemeCopyright

	3.3.2 CodedNodeGraph
	3.3.2.1 areCodesRelated
	3.3.2.2 intersect
	3.3.2.3 isCodeInGraph
	3.3.2.4 listCodeRelationships
	3.3.2.5 listCodeRelationships
	3.3.2.6 resolveAsList
	3.3.2.7 resolveAsList
	3.3.2.8 resolveAsList
	3.3.2.9 resolveAsList
	3.3.2.10 restrictToAssociations
	3.3.2.11 restrictToDirectionalNames
	3.3.2.12 restrictToCodes
	3.3.2.13 restrictToCodeSystem
	3.3.2.14 restrictToSourceCodes
	3.3.2.15 restrictToSourceCodeSystem
	3.3.2.16 restrictToTargetCodes
	3.3.2.17 restrictToTargetCodeSystem
	3.3.2.18 toNodeList
	3.3.2.19 union

	3.3.3 CodedNodeSet
	3.3.3.1 difference
	3.3.3.2 intersect
	3.3.3.3 isCodeInSet
	3.3.3.4 resolve
	3.3.3.5 resolve
	3.3.3.6 resolve
	3.3.3.7 resolveToList
	3.3.3.8 resolveToList
	3.3.3.9 resolveToList
	3.3.3.10 restrictToCodes
	3.3.3.11 restrictToMatchingDesignations
	3.3.3.12 restrictToMatchingProperties
	3.3.3.13 restrictToMatchingProperties
	3.3.3.14 restrictToProperties
	3.3.3.15 restrictToProperties
	3.3.3.16 restrictToStatus
	3.3.3.17 union

	3.3.4 LexBIGServiceMetadata
	3.3.4.1 listCodingSchemes
	3.3.4.2 restrictToCodingScheme
	3.3.4.3 restrictToProperties
	3.3.4.4 restrictToPropertyParents
	3.3.4.5 restrictToValue
	3.3.4.6 resolve

	3.3.5 HistoryService
	3.3.5.1 getAncestors
	Return a list of baselines supported by this service that were released on or after the first supplied date and were released on or before the second date. Returned baselines are arranged in sequential order, from earliest to latest.
	3.3.5.2 getBaselines
	3.3.5.3 getConceptChangeVersions
	Return a list of all of the coding scheme versions in which the supplied concept changed between the two supplied times (inclusive).
	3.3.5.4 getConceptCreationVersion
	3.3.5.5 getDescendants
	3.3.5.6 getEarliestBaseline
	3.3.5.7 getEditActionList
	3.3.5.8 getEditActionList
	3.3.5.9 getEditActionList
	3.3.5.10 getLatestBaseline
	3.3.5.11 getSystemRelease

	4 Dynamic Model
	4.1 Sequence Diagram

	5 Profiles
	5.1 Functional Profiles
	5.1.1 Service Query Functional Profile
	5.1.2 Content Query Functional Profile

	5.2 Semantic Profiles
	5.2.1 CTS 2 Semantic Profile

	6 Relationship with other services
	7 Conformance Statements
	7.1 Compliance and Conformance Statements

	8 Appendix A - References
	9 Appendix B - Glossary
	10 Appendix C - Cross Reference Tables
	10.1 Interface to Profile Mapping
	10.2 Interface Operations to Profile Operations

