LexEVS 6.0 Platform Specific Service Specification v.1.0

caBIG® Platform Specific Model and Service Specification
LexEVS 6.0
Analytical Grid Services
Version 1.0
December 23, 2010
	Authors
	Craig Stancl, Kevin Peterson, Scott Bauer, Sridhar Dwarkanath

	Editor
	Craig Stancl

	Reviewers
	Identify all reviewers

	Architecture Inception Team
	Craig Stancl, Harold Solbrig, Kevin Peterson, Scott Bauer, Sridhar Dwarkanath, Traci St. Martin

DOCUMENT CHANGE HISTORY

	Version Number
	Date
	Contributor
	Description

	1.0
	
	Craig Stancl, Sridhar Dwarkanath
	Initial Draft

	
	
	
	

	
	
	
	

	
	
	
	

** Following section to be removed from the final document **
Legend
	Type of text
	Color
	Font
	Style

	Instructions
	Red
	Times New Roman Size 12 pt.
	Italics

	Examples
	Blue
	Courier New Size 12 pt.
	Regular

	Content
	Black
	Times New Roman Size 12 pt.
	Regular

Note:

1. Red: Represents all the instruction provided to the user of the document to follow

2. Blue: Represents notional examples provided for the user’s understanding
a. Example diagram are provided with a blue border
3. Neither Instructions nor Examples should appear in the final specifications created

4. All the text in the final specifications document should be on black only (unless highlighting is specifically needed)
Table of Contents
51
Executive Summary:

51.1
Service Description and Purpose

51.2
Scope

61.3
Platform Details

71.4
Referenced Standards

82
Conformance to Platform Independent Model

82.1
Conformance Profile

92.2
Dynamic Interactions

113
Platform Specific Model

113.1
Overview

113.2
Assumptions and Dependencies

123.3
Service Interface

133.3.1
Interface Model

163.3.2
Operations Details for <Interface Name>

173.3.3
Operations Details for LexBIGServiceGrid

273.3.4
Operations Details for CodedNodeGraphGrid

383.3.5
Operations Details for CodedNodeSetGrid

473.3.6
Operations Details for LexBIGServiceMetadataGrid

503.3.7
Operations Details for HistoryServiceGrid

573.4
Message Information Model

573.4.1
Information Model

573.4.2
Information Model Description

583.5
Service Interactions

583.5.1
Actors

583.5.2
Interaction Details

593.6
Implementation Considerations

593.6.1
Security

623.6.2
Auditing

623.6.3
Privacy

623.6.4
Error Handling

643.7
Deployment Details

643.8
Constraints

654
Recommendations for Conformance and Compliance

654.1
Conformance Assertions

665
Appendix A - Relevant Standards

676
Appendix B - Glossary

1 Executive Summary:

1.1 Service Description and Purpose

Provide the overall description of the service and its intended purpose.
LexEVS 6.0 represents the next generation of NCI Enterprise Vocabulary Services. LexEVS is a mechanism for the standard storage of controlled vocabularies and ontologies defining a flexible format for accurately representing a wide variety of vocabularies and other lexically-based resources in several different server storage repositories as well as a XML format.

LexEVS provides a powerful and robust API and tool suite which permits access to controlled vocabulary content represented in the LexEVS model. This allows terminologies from a wide variety of resources such as RRF, OWL, and OBO to be represented and loaded to a single data base management system and accessed with a common set of tools and interfaces.

LexEVS is based off the LexGRID database schema and LexBIG API objects, where LexGRID defines how the terminologies are structured in the database and LexBIG defines how the terminology service looks as objects to the user. LexEVS provides optimizing query code that retrieves LexBIG objects, allows the user to tailor calls to the terminology service in such a way that a discrete set of values is returned increasing utility and interoperability.

One of the requirements of LexEVS 6.0 is to align the LexEVS Analytical Grid Services component operations - including Search and Query Operations for Code Systems and Associations but excluding other LexEVS capabilities for querying and loading Value Sets, Concept Domains and Usage Contexts – to international efforts at developing common terminology service interfaces, specifically, the Health Level Seven (HL7) Common Terminology Services – Release 2 (CTS 2) standard.
NOTE: For the purpose of this document, the terms “Code System” and “Coding Scheme” are synonymous.

1.2 Scope

Describe the overall scope of the service. Define all the functionality that this particular implementation of the service provides.
The scope of this PSM is constrained to the Analytical Grid Services components for LexEVS 6.0. Analytical Grid Services are those interfaces that are exposed on the Grid, and include the LexBIG domains of:

· LexBIGService – service identification interfaces

· CodedNodeGraph – A virtual graph where the edges represent associations and the nodes represent concept codes

· CodedNodeSet – A coded node set represents a flat list of coded entries

· HistoryService – Service reference to the history API servicing the given coding scheme

· LexBIGServiceMetadata – Interface to perform system-wide query over optionally loaded metadata for loaded code systems and providers
[image: image1.png]Coding Scheme Metadata

Licensing

luery Service

LexicalSet
Operations

Graph
Operations

History

Service Manager

Loaders

Indexers

Extensions

Plug-ins

These service interfaces provide query and filtering support to the core LexBIGService interface, allowing code system content to be queried and grouped according to the different attributes and properties of code system content.

There are however, components of LexEVS that are purposely excluded from the Analytical Grid Services, such as terminology authoring and administration, value domain query and concept domain query. This section outlines the scope of LexEVS PSM with respect to the scope of the Analytical Grid Services.
1.3 Platform Details

Provide the implementation platform selected for the service and also provide the rationale behind choosing it. Examples of Service Implementation can be Java EJB Service, Web Service, RESTful Service, Grid(caGrid) Service, etc.
LexEVS 6.0 Analytical Grid Services are built as a caGrid based service. Each of the defined grid analytical grid service operations (as defined later in the document) are viewable by the caGrid Portal (http://cagrid-portal.nci.nih.gov).
In the grid services environment, the client application makes calls the grid services interfaces which in turn call the distributed LexEVS API to access content in LexEVS. LexEVS for Analytical Grid Services consists of client system, caGrid Host Server, Distributed LexEVS server and database server. The client system is responsible for making calls to access controlled terminology content from the caGrid Host Server. The caGrid Host Server is responsible for routing information both to and from the client system from the LexEVS server. The LexEVS server is responsible for serving up structured terminology content represented in the LexGrid enabled repository (database server). Lastly, the database server houses the code systems available on LexEVS.

[image: image2.png]Client System caGrid Host Server Distributed LexEVS Server Database Server

LexEVS Client Proxy L Le)
TCcP N
RS JDBC| N
o
S N

1.4 Referenced Standards

Provide references to the standards as well as technical standards that service is using.

 E.g.

Standards such as - HL7V3, BRIDG2.1, ISO 21090 Data types
Listed are references to the standards and technical standards that the LexEVS Analytical Grid Service is using.
	Domain Standards
	Description

	HL7 CTS 2
	HL7’s Common Terminology Services 2 (CTS 2) specification specifies functional model (CIM) outlining HL7’s consensus requirement for terminology services.

For the LexEVS Analytical Grid Services PSM, only the terminology and association query components of HL7 CTS 2 is considered to be in scope.

LexEVS will ultimately implement much of the CTS 2 functionality, and as such, early identification of potential points of alignment is necessary.

	ISO 21090 Health Informatics – Harmonized data types for information interchange
	ISO 21090 data types provide a harmonized set of data type definitions for representing and exchanging healthcare related information.

LexEVS 6.0 will interchange information using the 21090 data type specifications

Technology Standards such as SOAP 1.1, Http, Https, SAML
	Technology Standards
	Description

	SOAP 1.1
	Simple Object Access Protocol ver 1.1 is used to interact with the service

	
	

2 Conformance to Platform Independent Model

This section provides details on how this Platform Specific Model and Service Specification conforms to the Platform Independent Model and Service Specification (PIMSS).
LexEVS 6.0 Analytical Grid Services PSM conforms to the corresponding PIM.
	Platform Independent Model Name and Service Specification
	Platform Independent Model and Service Specification Version
	Description & Link to the Platform Independent Model and Service Specification

	LexEVS 6.0 Platform Independent Model and Service Specification
	1.5
	https://wiki.nci.nih.gov/display/EVS/LexEVS+6.0+ECCF+Artifacts

2.1 Conformance Profile

This includes the Functional profiles and Semantic profile from the Platform Independent Model and Service Specification that this Platform Specific Model and Service Specification implements.
This conformance profile defines the query capabilities for LexEVS coding scheme and service related data for LexEVS Analytical Grid Services. This profile is invoked when LexEVS Analytical Grid Services are called to query either service specific information or terminology content and return that content in ISO 21090 data types.
	Conformance Profile No.
	QS-CP2

	Conformance Profile Name
	LexEVS 21090 Full Query Conformance Profile

	Functional Profiles
	Functional Profile No.

Functional Profile Name

QS-PF1

QS Service Query

QS-PF2

QS Content Query

	Semantic Profiles
	Semantic Profile No.

Semantic Profile Name

QS-SP1

CTS 2 Semantic Profile

2.2 Dynamic Interactions
Describe in details about any platform specific interactions which are relevant to the technology used. These interactions are on top of the business interactions which are specified in PIMSS.
Eg. Login Handshake Interaction or Obtaining Connection Interactions between the client application and the service. If necessary provide a UML Diagram

[image: image3.jpg]=d Domain Objects

Client

Herator'next catlg

[FesotvedConsepthsterancestarato]

Cotsdnodsset

CodedNodsSet Requesty

Lodiosemos

Requestinext flom Herator)

Refrshed Restited Refaranoe)
Client Placad Restictions)

ResultResolve)

3 Platform Specific Model

3.1 Overview
Provide Technical overview of the platform. This includes the Domain Model and includes technology stack. This information can be a reference to a separate document if a number of services comply with the same platform.

E.g.

Domain Model

All COPPA services comply to a given implementation model of BRIDG, HL7V3, ISO 21090 data types
	Domain Model
	Description

	NCI’s Implementation of ISO 21090 Data types
	The service specifications will be based on NCI’s restricted implementation of ISO 21090 data types

	
	

Technology Stack

Specify what technology stack is used to access the service. Only interface-specific technologies should be described here.
	Technology
	Affects

	Globus Toolkit 4.0.3
	Globus Toolkit is used to develop this grid service.

	JBoss 4.0.5
	JBoss server will be used to deploy this grid service.

	
	

3.2 Assumptions and Dependencies

This section enumerates any assumptions made in this specification as well as any dependencies.
 Assumptions can include deployment environment constraints such as network connectivity, lack of firewalls etc.

	Assumptions
	Affects

	LexEVS 6.0 Analytical Grid Service will be deployed in its individual container
	A new separate JBoss container needs to be procured for each of the analytical grid service installations

	LexEVS 6.0 Analytical Grid Service will be deployed outside the NCI firewall.
	Institutional Network team needs to ensure this is possible.

	
	

Dependencies can include external components such as the caGrid Production environment, other services. This section can include both business as well as technical dependencies
	Dependency
	Description

	caGrid Production Environment
	LexEVS 6.0 Analytical Grid Service relies on caGrid Production environment for advertisement and discovery

	
	

3.3 Service Interface
The LexEVS 6.0 Analytical Grid services are implemented as a Java API. The following link to the service UML model shows the main Java interfaces.

Links to: UML
[image: image4.png]Seratizahie

sinteraen
LexlGservicatrid

getCodingSehemaConcepttoodingSehems ‘CodingSehemeldnifcation, versionOrTag ‘CodingSehemelesion T ag) : CodedHodeSetord
QetFilertname ‘Extensionldentiication) Fitar

getFiltrEtensions) : ExtensionDesorptionList

getbenercExtension(name ‘Extensionldentioation) : GensrisExtansion

getGeneicEstensions(): ExdensionDesaiptionList

getistonSenica(eodingScheme CodingSshemeldentifoation): Histon/SaniseGid

getLastUpdateTime(: Date

getitatohalgorthms) : ModuleDesorptionList

getliodeGraph(codingScheme CodingSshemeldentioation, vrslonDiTag CodingSshemeVerionOiTag, relationsilame :RelationContainerldentication) : CodedNodeGraphGid
getSericeMetadata(): LexBIG SenvioeMetadatarid<?>

getSonAlgoritim(name Extansondantification) : Sort

getSonAIgoritimteantext -SoiContext): SotDaserptianList

getSupportadCodingSchemes) ; CodingSchemsRenderingList

fazahve CadingScheme(cadingSsheme ‘CodingSehemeldéntieation, versionDiT ag CodingScheme\VersionDrTag): CodingScheme

el CodingSchemeCopyrahicadingScheme CodingSchameldantfioaton, veiion0iT ag -CodingSehameVarsianDiT ag) : CadingSchemeCopyRiaht
satSecurityToken(eodingScheme CodingSchemeldentifiation, token ‘SecuriyTaken) : LexBIG Senicatrid

Seratizahie

ainteraen
LexBIService Metadstatrid

ECdingSchemas0 : AbsaluteCodingS chemaVerionReferencelist
esolve) : MetadataPropartylist

fasticTaCodingScheme(acsvi -AbsolutaCodingSshemeVersionReference) : LexBIoSeniceMatadataid<?>
fastioToP ropertes(propertes Propertldentiication]) : LexBIGSeviceMetadatarid<?>

aSHIATOP opertyP arentspropertyParents :Propertldentiication]) : LexBIGS e Metadatarid 7>
festioToValua(matohText MatohCiitera, matchalgorithm Extensionldenifcation) : LexBIG SenviceMetadatadid<?>

Seratizahie

sinteraen
CodedNoderaphria

areCodesRelatedpalicy Relationship TypBasedPalicy, sscosistion NameAndValue): CodeRelationship
interseckgraph :CodedNodeGraphiid) : CodsdNoderaphaiid

SCodeinGraph(cods ‘ConceptRafarence) : Codexistance

EICodeRal tianehipa(polcy el ationship TypeBasedPolio) : Lit<Sting>

itGodeRelationships(polcy RelationshipDistanceBasedPolicy) - Conceptfeferancel it

azalveAsLispalicy GraphResalutionPolicy): ResalvadConceptRaferéncaList

it ToAssosiationsaszociation NameAndValusLis, sssocistionualifisi NameAndValusLizh: CodedNodeGraphGrid
FeATaC ade o0 “CadadNodeSatOrd) : CodedNodaoraphGrid

festicTaCodsS stem(eodingScheme CodingSchemeldentifoatin): CodedNodsCraphorid

A TaD rectionalNamestirectinaINames NameAndValusLis, sscocistionGualfies NameAndValusLish : CodedNodeGraphGrid
o T oS ourceCadestpods ‘CodedNodeSetond): Codedadz Graphord

festitToSourcaCodesystem(codingScheme CodingSchemeldentifoation) : CodedNodsGraphorid

et TaTargetCodestoodes CodedNodeSetond): CodadNads Graphond

fastietToTargetCodeSystem(oodingScheme ‘CodingSchemeldeniifcation) : CodsdNoderaphdiid

toladeListpalicy NodeLitPalioy): CodedNadaSetoria

union(araph CodedNodaGraphGd) : CodedNodsraphorid

Seratizahie

sinteraen
CoedNoeSetGrid

+diffaranca(eadasToRamove CodedNodeSetond): CodedNadsSetond
+ intersacicodes CodedNodaSetorid): CadsdNodeSatond

+ isCodelnSaticods ConceptReerence): CodsExstence

+ resolva(policy SetReslutionPolicy: ResalvedCancaptReferancestarator

+ resalvaTaListpolioy :SetResalutionPolicy): ResalvadConceptRateréncalist

+ restictToCodes(codeList :ConceptReerencelis) : CodednodeSatord

+ restictToMatchingDesignationsmateh Text MatohCritera, option :SearhDesignationption, matchalgorithm ‘Extensionldenifcation, Language ‘Languageldentifoaton): CodedNodeSetGiid

+ restictToMatchingProperlestpropertyNames LocalllameL s, propertyTypes PropertyTypell sourcelist LocalNameL st contextList -LosalNameLis, qualfierL it NameAndValueList, matshText MatshCiitera, matehAlgorithm ‘Extensionldenifcation, language ‘Languageldentifoaton): CodedNodeSetdrid
+ restictToPropertes(propertyList -LooalNameLis, propertyTypes (PropertyTypal, sourceL it LocalNamelis,contextList LocaNameL st qualifierLisl:NamesndvalueLis : CodedNodeSetorid

+ restictToStatus(activeTption :ActvaDplon, conceptStatus Status]): CodedNodeSetsrid

+ unioneodes CodedNodeSetorid) : CodsdNodesatond

ainteraves
LexBIGServics ConvenienceMethods rid

createCodatiodeSekonospiCodes Canceptdentifcation], codingScheme ‘CodingSchemeldaniifcation, versionOTag ‘CodingSchemeVerionDiTag) : CodedNodeSetorid
gthssasiationFonuardAndR everzaNamescodingSehame :CodingSehameldentiioatin, veizionOiT ag {CodingS chameVarsionDIT ag) Aszosistionldenticationl

getassosiationFomvardName(association Associatonldentfication, codingScheme CodingSshemeldentifioation, vesionDiTag CodingSshemeVersionDiTag) : DirectionalAssociationldentication
gethssosiationFonwardNamacodingScheme -CodingSehemeldantifiostin, veiion01T ag ‘CodingSehameVarsianOrT ag) : DirctionalAszosistinldenticationl

getassosiationRevarseNama(association :Associatonldentfication, codingScheme CodingSshemeldentifiotion, vesionDiTag CodingSshemeVersionDiTag) : DirectionalAssociationldentication
gethssosiationReversaNamacadingScheme :CodingSehameldantifioatin, veion01T ag ‘CodingSehameVarsianDrT ag) : Dirctionalssosistinldenticationl

getCadingSehemaCopytightoodingSehems -CadingSchemeldentification, versionOrT aq ‘CadingSchemeVesionOrTag) - CodingSehemeCopyRight

6tCodingSchemesWihS upportadAssasiation(Acsosiationl dentiiation :Ascosiatinldentieation) : CadingS chameRanderingList

QetHisrarohyIDateodingSehem <CodingSchemaldentfication, versionrT ag -CodingSehema\erionQrTag) : Hierarchyldzniifcation]

gethierarshyLevelNex(policy HisrarchyResolutionPolic, codingSshem :CodingSchemeldenifcation, versionOiTag ‘CodingScheme\esionaiTag) : AsoctationList

gethierarshyLevelPrev(policy HisrarchyResolutionPolicy, codingScheme ‘CodingSchemel denifcation, versionOiTag ‘CodingSchemeVerionaiTag) : AsociationList

QetHisrarchyF it ToRackpelicy HisrarchyRazolutionPalicy, codingSehame CadingS shemeldentioation, versionOrT ag CodingS cheme\arsionDrT ag. pathfezolveCption :HierarchyPsthR esalvaption) : AsociationList
gethierarshyRoot(codingScheme ‘CodingSchemeldentication, versionDITag ‘CodingScheme\arionOT 3g, hierarchyldenifcation Hierarchyldeniifcation) : ResolvedCanceptReferanceList
gethieraichyRootSetcodingSsheme CodingSshemeldentieation, versionDiT ag CodingSsheme\erionDrTag, hierarchyldentication Hisrarchyldentication) : CodedNodeSetorid

getRenderingDatailcadingScheme ‘CodingSehemsldentication, versionDrT ag CodingSchemeVerionDrTa): CodingSehameRandaring

isCodeRetited(conceptCods ‘Conceptidentifoaton, codingSsheme ‘CodingSchemldentiication, versionDITag ‘CodingSshemaVarionOITag) : Codestate

ieFamwardNama(eadingScheme :CadingSchemeldantification, verionQrT2g ‘CadingSchemeVieisianOrT g, direcionalName Assocationldznification) : Diection

ieReve gaNama(oadingScheme :CodingSchmeldantiioation, verionQT 2g ‘CadingSchemeViersionOiT ag, ditectionslName Associationldsnifcation) : Diection

Seratizahie

sintertaen
HistoryServicsGrid

+ metaURN: Shing = "umioidZ 165, (eadtn

getAncestor(oonceptRafarence ConceptReferance) NCIChangeEventList
QetBaelinextalessedAter Date, rlassedBatore Date): SysemRaleaseList

QetCanceptChangeVerianscanseplReterence -ConcaptReference, beginDats :Dats, endDate :Date) : CadingSehemeVersionList
QetCanceptCre tionVarsion(eanceptRataranos (CanceptRafarance) : CodingSchemeversion

getDascandanisconoeptReference ConceptReference): NCIChangeEventList

getEarliestBaseline : SystemRelesse

getEditActionListconceptRefarence :ConceptRaference, codingSchema\esion :CodingSchemeVersion) : NCIChangaEventlist
QetEditActianListsanceptRafaranos (ConceptRafarenca, beginDate Date, andDate Date): NCIChangeEventList
getEditactionLiskconceptRafarenos ‘ConceptReferance, releaseURN :URD: NCIChangeEventLis

getlatestBaseline : SystemRelease

getSyetemReleazeCelease RN “URD: SystemRelsaseDetai

3.3.1 Interface Model

	Implemented Interface No
	Supported Interface Name
	Interface Description
	Link

	LE_I_01
	LexBIGServiceGrid
	This interface represents the core interface to a LexBIG service.
	JavaDoc

	LE_I_02
	CodedNodeSetGrid
	A coded node set represents a flat list of coded entries.
	JavaDoc

	LE_I_03
	CodedNodeGraphGrid
	A virtual graph where the edges represent associations and the nodes represent coded entries. A CodedNodeGraph describes a graph that can be combined with other graphs, queried or resolved into an actual graph rendering.
	JavaDoc

	LE_I_05
	LexBIGServiceMetadataGrid
	Interface to perform system-wide query over metadata for loaded code systems and providers.
	JavaDoc

	LE_I_06
	HistoryServiceGrid
	The history service returns information about the change history of a coding scheme.
	JavaDoc

3.3.1.1 UML Diagram – Interface LexBIGServiceGrid (LE_I_01)
Link to: UML
[image: image5.png]Seraiizatie

sinteraen
LexlGservicatrid

getCodingSehemaConcepttoodingSehems ‘CodingSehemeldnifcation, versionOrTag ‘CodingSehemelesion T ag) : CodedHodeSetord
QetFilertname ‘Extensionldentiication) Fitar

getFiltrEtensions) : ExtensionDesorptionList

getbenercExtension(name ‘Extensionldentioation) : GensrisExtansion

getGeneicEstensions(): ExdensionDesaiptionList

getistonSenica(eodingScheme CodingSshemeldentifoation): Histon/SaniseGid

getLastUpdateTime(: Date

getitatohalgorthms) : ModuleDesorptionList

getliodeGraph(codingScheme CodingSshemeldentioation, vrslonDiTag CodingSshemeVerionOiTag, relationsilame :RelationContainerldentication) : CodedNodeGraphGid
getSericeMetadata(): LexBIG SenvioeMetadatarid<?>

getSonAlgoritim(name Extansondantification) : Sort

getSonAIgoritimteantext -SoiContext): SotDaserptianList

getSupportadCodingSchemes) ; CodingSchemsRenderingList

fazahve CadingScheme(cadingSsheme ‘CodingSehemeldéntieation, versionDiT ag CodingScheme\VersionDrTag): CodingScheme

el CodingSchemeCopyrahicadingScheme CodingSchameldantfioaton, veiion0iT ag -CodingSehameVarsianDiT ag) : CadingSchemeCopyRiaht
satSecurityToken(eodingScheme CodingSchemeldentifiation, token ‘SecuriyTaken) : LexBIG Senicatrid

3.3.1.2 UML Diagram – Interface CodedNodeSetGrid (LE_I_02)
Link to: UML
[image: image6.png]Sealizable

sinteraen
CoedNoeSetGrid

diferanos(oedesToRemove CodedodaSetord): CadsdNodesatond
interzeckoodas ‘CodadNodSetGrd): CodedNodeSetord

isCodelnSet(sode ConceptReterence): CodsExistence

esolve(policy SetResolutionPolicy) - ResolvedConosptReferencestterator

asolveToLikpolicy ‘SetRasolutionPolicy): ResohvedCanceptefarenceL ist

fasticTaCodss(codaL st -ConseptReferenceLis : CodedNodeSetorid

fasticToMatchingDesignations{matchText -MatchCitria, option :SearohDasignationDption, matshalgorithm ‘Extensionldentication, language ‘Languageldeniifcation) : CodedNlodeSetoid

fasticToMatchingProperties(propertyNames -LooalNameLis, propertyTypes (PropertyTypel, soutceLit ‘LocalNlameList, contextList LocalNameL st qualifierList-NameAndalueList, match Text MatchCritria, matehalgorithm ‘Extensionldentication, language ‘Languageldeniifcation) : CodedNlodesetord
fastioToP roperties(propertyListLocalNameL st propertyTypes PropertyTypel. souroeLis -LocalNameL s, contertLit LocalllameL s, qualiferLst NamesndValueLis: CodedNodeSetGrid

festitToStatusactiveDption -ActveDption, conospiStatus Statusl): CodedNiodeSet6rid

union(eaes CodedNadSetorid) : CodediodeStord

3.3.1.3 UML Diagram – Interface CodedNodeGraphGrid (LE_I_03)
Link to: UML
[image: image7.png]Sedalizable

sinteraen
CodedNoderaphria

areCodesRelatedpalicy Relationship TypBasedPalicy, sscosistion NameAndValue): CodeRelationship
interseckgraph :CodedNodeGraphiid) : CodsdNoderaphaiid

SCodeinGraph(cods ‘ConceptRafarence) : Codexistance

EICodeRal tianehipa(polcy el ationship TypeBasedPolio) : Lit<Sting>

itGodeRelationships(polcy RelationshipDistanceBasedPolicy) - Conceptfeferancel it

azalveAsLispalicy GraphResalutionPolicy): ResalvadConceptRaferéncaList

it ToAssosiationsaszociation NameAndValusLis, sssocistionualifisi NameAndValusLizh: CodedNodeGraphGrid
FeATaC ade o0 “CadadNodeSatOrd) : CodedNodaoraphGrid

festicTaCodsS stem(eodingScheme CodingSchemeldentifoatin): CodedNodsCraphorid

A TaD rectionalNamestirectinaINames NameAndValusLis, sscocistionGualfies NameAndValusLish : CodedNodeGraphGrid
o T oS ourceCadestpods ‘CodedNodeSetond): Codedadz Graphord

festitToSourcaCodesystem(codingScheme CodingSchemeldentifoation) : CodedNodsGraphorid

et TaTargetCodestoodes CodedNodeSetond): CodadNads Graphond

fastietToTargetCodeSystem(oodingScheme ‘CodingSchemeldeniifcation) : CodsdNoderaphdiid

toladeListpalicy NodeLitPalioy): CodedNadaSetoria

union(araph CodedNodaGraphGd) : CodedNodsraphorid

3.3.1.4 UML Diagram – Interface LexBIGServiceMetadataGrid (LE_I_05)
Link to: UML
[image: image8.png]Seratizahie

ainteraen
LexBIService Metadstatrid

ECdingSchemas0 : AbsaluteCodingS chemaVerionReferencelist
esolve) : MetadataPropartylist

fasticTaCodingScheme(acsvi -AbsolutaCodingSshemeVersionReference) : LexBIoSeniceMatadataid<?>
fastioToP ropertes(propertes Propertldentiication]) : LexBIGSeviceMetadatarid<?>

aSHIATOP opertyP arentspropertyParents :Propertldentiication]) : LexBIGS e Metadatarid 7>
festioToValua(matohText MatohCiitera, matchalgorithm Extensionldenifcation) : LexBIG SenviceMetadatadid<?>

3.3.1.5 UML Diagram – Interface HistoryServiceGrid (LE_I_06)
Link to: UML
[image: image9.png]Seratizahie

sintertaen
HistoryServicsGrid

‘metaURN: St

0182168, (ead0n

getAncestor(oonceptRafarence ConceptReferance) NCIChangeEventList
QetBaelinextalessedAter Date, rlassedBatore Date): SysemRaleaseList

QetCanceptChangeVerianscanseplReterence -ConcaptReference, beginDats :Dats, endDate :Date) : CadingSehemeVersionList
QetCanceptCre tionVarsion(eanceptRataranos (CanceptRafarance) : CodingSchemeversion

getDascandanisconoeptReference ConceptReference): NCIChangeEventList

getEarliestBaseline : SystemRelesse

getEditActionListconceptRefarence :ConceptRaference, codingSchema\esion :CodingSchemeVersion) : NCIChangaEventlist
QetEditActianListsanceptRafaranos (ConceptRafarenca, beginDate Date, andDate Date): NCIChangeEventList
getEditactionLiskconceptRafarenos ‘ConceptReferance, releaseURN :URD: NCIChangeEventLis

getlatestBaseline : SystemRelease

getSyetemReleazeCelease RN “URD: SystemRelsaseDetai

3.3.2 Operations Details for <Interface Name>
This section should describe in detail the operations for each of the interfaces within the service. Each operation should be listed separately and described.
NOTE: This section should be repeated for each implemented interface.
3.3.2.1 <Operation Name>
	Description
	An overall description on what the operation does. An activity diagram showing the details of the operation can be optionally included.

	Pre-Conditions
	Specify any platform specific pre-conditions for invoking this operation. (Eg. User needs to have a X.509 Grid Proxy to invoke this secured operation)

	Security Controls
	Describe the controls used to enforce the security requirements for this operation

	Inputs
	Provide the syntactic detail of the input parameters (eg. Link to XSD in GME)

	Outputs
	Provide the syntactic detail of the output parameters (eg. Link to XSD in GME)

	Post-Conditions
	Provide details about the state of the system after this operation is executed successfully. Also describe any state changes for the data types in this operation

	Exception Conditions
	List down all the possible exception conditions along with its error code and error message

	Notes
	Include additional implementation details.

3.3.3 Operations Details for LexBIGServiceGrid

This interface represents the core interface to a LexEVS service.
Links to: JavaDoc and UML
3.3.3.1 getCodingSchemeConcepts

Returns the set of all concepts in the specified coding scheme.

Links to: JavaDoc and Schema XSD
	Behavior Description
	· The starting point for Lexical based matching and queries

· Validation will ensure that:

· The Requested Coding Scheme exists in the System

· The specified version of the Coding Scheme is available

· The specified Coding Scheme is Active

· The returned CodedNodeSet is the starting point for building a lexical query.

	Pre-Conditions
	· The requested CodingScheme is available and Active in the System.

	Inputs
	· codingScheme - The local name, URI, or formal name of the requested CodingScheme

· versionOrTag - A LexGrid:CodingSchemeVersionOrTag indicating the Version or Tag of the Requested CodingScheme.

· If not provided, and there exists only one CodingScheme in the system matching the ‘codingScheme’ input, that CodingScheme will be used.

· If more than one CodingScheme in the system matches the ‘codingScheme’ input, the CodingScheme tagged as “PRODUCTION” will be used.

	Outputs
	· A CodedNodeSetGrid, the starting point for lexical queries.

	Post-Conditions
	· A CodedNodeSetGrid for the requested CodingScheme is initialized

	Exception Conditions
	· The requested CodingScheme is not available in the system

· The requested CodingScheme is not Active

· There are more than one CodingScheme matching the ‘codingScheme’ input, and no ‘versionOrTag’ input is provided

	Note
	· The resulting CodedNodeSetGrid will include codes only of ‘concept’ type. For all other types, see the operation ‘getNodeSet’

3.3.3.2 getFilter

Returns an instance of the filter extension registered with the given name
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns a Filter Extension, which may be used to restrict a set of results

· Validation is carried out to ensure that:

· A Filter Extension with the given name is available and registered correctly in the system

· If all conditions are met, the Filter Extension is returned to the consumer

	Pre-Conditions
	· The Filter must have been properly registered as an Extension in the system

	Inputs
	· name – The Extension name of the requested Filter

	Outputs
	· Filter – an instance of the filter extension.

	Post-Conditions
	· The Filter Extension will be initialized and returned to the user, given the state and logic provided by the author of the Extension itself.

	Exception Conditions
	· The requested Filter Extension does not exist, or has not been registered properly.

3.3.3.3 getFilterExtensions

Returns a description of all registered extensions used to provide additional filtering of query results.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns a list of Filter Extension that have been registered in the system

	Pre-Conditions
	· Any Filter Extensions must be correctly registered as Extensions to be listed

	Inputs
	· none

	Outputs
	· An ExtensionDescriptionList, which is a list describing each Filter Extension registered within the system.

	Post-Conditions
	· The populated ExtensionDescriptionList will be available to the user, and each of the Extensions listed will be available to the user.

	Exception Conditions
	· none

3.3.3.4 getGenericExtension

Returns an instance of the application-specific extension registered with the given name.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns an application-specific Generic Extension that hasbeen registered in the system

· Validation is carried out to ensure that:

· A Generic Extension with the given name is available and registered correction in the system

· If all conditions are met, the Generic Extension is returned to the consumer

	Pre-Conditions
	· Any Generic Extensions must be correctly registered as Extensions to be available during the execution of this operation

	Inputs
	· name – the name of the requested Extension as it has be registered in the system

	Outputs
	· GenericExtension – an instance of the application-specific extension.

	Post-Conditions
	· The Generic Extension will be initialized and returned to the user, given the state and logic provided by the author of the Extension itself.

	Exception Conditions
	· The given ‘name’ input is:

· Not registered correction in the system

· Does not exist in the system

3.3.3.5 getGenericExtensions

Returns a description of all registered extensions used to implement application-specific behavior that is centrally accessible from a LexBIGService.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns a list of Generic Extensions that have been registered in the system

· Note: Only Generic Extensions (base class GenericExtension) will be listed here. All other classes are retrievable at the appropriate interface point (filter, sort, etc).

	Pre-Conditions
	· Any Generic Extensions must be correctly registered as Extensions to be listed

	Inputs
	· none

	Outputs
	· An ExtensionDescriptionList, which is a list describing each Filter Extension registered within the system.

	Post-Conditions
	· The populated ExtensionDescriptionList will be available to the user, and each of the Extensions listed will be available to the user.

	Exception Conditions
	· none

3.3.3.6 getHistoryService

Resolve a reference to the History Interface servicing the given coding scheme.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· The entry point to the History Interface, given a requested CodingScheme

· Validation is carried out to ensure that:

· There has been History content loaded for the requested CodingScheme

· If all conditions are met, a reference to the History Interface is returned to the consumer

	Pre-Conditions
	· History content must have been loaded and registered in the system for the requested CodingScheme

	Inputs
	· codingScheme – the localName or URI of the requested CodingScheme

	Outputs
	· HistoryServiceGrid - a reference to the History Interface for the requested CodingScheme

	Post-Conditions
	· The History Interface returned to the user will be initialized for the requested CodingScheme

	Exception Conditions
	· If the no History exists for the requested CodingScheme

3.3.3.7 getLastUpdateTime

Return the last time that the content of this service was changed
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the time of the last content change of the system. A content change consists of any change to the vocabulary metadata or the vocabulary itself in the system.

· Note: A Tag assignment does not constitute a content change

	Pre-Conditions
	· History content must have been loaded and registered in the system for the requested CodingScheme

	Inputs
	· none

	Outputs
	· Date - the time of the last content change

· Note: if the system has had no registered content changes, nothing will be returned

	Post-Conditions
	· None

	Exception Conditions
	· The system has not been initialized correctly

3.3.3.8 getMatchAlgorithms

Returns the full description of all supported match algorithms.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· A description of all Match Algorithms (if any) is returned.

	Pre-Conditions
	· Any Match Algorithms must be available and registered in the system to be returned

	Inputs
	· none

	Outputs
	· ModuleDescriptionList - the full description of all Match Algorithms in the system.

	Post-Conditions
	· none

	Exception Conditions
	· The system has not been initialized correctly

3.3.3.9 getNodeGraph

Returns the node graph as represented in the particular relationship set in the coding scheme
Links to: JavaDoc and Schema XSD
	Behavior Description
	· The starting point for relation based matching and queries

· Validation will ensure that:

· The Requested Coding Scheme exists in the System

· The specified version of the Coding Scheme is available

· The specified Coding Scheme is Active

· The returned NodeGraph is the starting point for building a relation based query.

	Pre-Conditions
	· The requested CodingScheme is available and Active in the System.

	Inputs
	· codingScheme - The local name, URI, or formal name of the requested CodingScheme

· versionOrTag - A LexGrid:CodingSchemeVersionOrTag indicating the Version or Tag of the Requested CodingScheme.

· If not provided, and there exists only one CodingScheme in the system matching the ‘codingScheme’ input, that CodingScheme will be used.

· If more than one CodingScheme in the system matches the ‘codingScheme’ input, the CodingScheme tagged as “PRODUCTION” will be used.

· relationsName - The name of the relations container to reference when generating the graph. If omitted, all native relation containers for the code system will be queried. Note: a 'native' container contains a set of associations defined by the coding scheme curators.

	Outputs
	· A CodedNodeGraphGrid, the starting point for relation queries.

	Post-Conditions
	· A CodedNodeGraphGrid for the requested CodingScheme is initialized

	Exception Conditions
	· The requested CodingScheme is not available in the system

· The requested CodingScheme is not Active

· There are more than one CodingScheme matching the ‘codingScheme’ input, and no ‘versionOrTag’ input is provided

	Notes
	· A 'native' container contains a set of associations defined by the coding scheme curators.

3.3.3.10 getServiceMetadata

Return an interface to perform system-wide query over metadata for loaded code systems and providers.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· The entry point to the LexBIGServiceMetadata Interface

	Pre-Conditions
	· The LexEVS system is correctly initialized

· Any Service Metadata has be loaded and registered to the system

	Inputs
	· none

	Outputs
	· LexBIGServiceMetadataGrid - a reference to the LexBIGServiceMetadataGrid Interface

	Post-Conditions
	· The LexBIGServiceMetadataGrid Interface is returned to the user will be initialized for the underlying system, with all loaded and registered metadata available for queries

	Exception Conditions
	· Exceptions will occur if:

· The underlying system fails to initialize

· The LexBIGServiceMetadataGrid Interface fails to initialize

· There has be invalid metadata loaded to the system

3.3.3.11 getSortAlgorithm

Returns an instance of the sort extension registered with the given name
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns a Sort Interface, which may be used to sort a set of results

· Validation is carried out to ensure that:

· A Sort algorithm with the given name is available and registered in the system

· If all conditions are met, the Sort Algorithm is returned to the consumer

	Pre-Conditions
	· Any Sort Algorithms must be available and registered in the system to be returned

	Inputs
	· name – the Sort Algorithm name, as it has be registered in the system

	Outputs
	· Sort – an instance of the sort extension.

	Post-Conditions
	· The fully initialized Sort Algorithm is returned to the consumer

	Exception Conditions
	· The input ‘name’ does not pass validation as noted above

3.3.3.12 getSortAlgorithms

Returns a description of all registered extensions used to provide additional sorting of query results in the given context.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns a list of Sort Algorithms that have been registered in the system

· Validation is carried out to ensure that:

· The context provided (if any) is a valid SortContext

· If all conditions are met, the list of descriptions of the registered Sort Algoritms is returned to the user

	Pre-Conditions
	· Any Sort Algorithms must be available and registered in the system to be returned

	Inputs
	· context – the SortContext to restrict results to. If not provided, no SortContext restriction will be considered

	Outputs
	· SortDescriptionList - The list of descriptions of the registered Sort Algoritms in the system

	Post-Conditions
	· None

	Exception Conditions
	· The input ‘context’ does not pass validation as noted above

3.3.3.13 getSupportedCodingSchemes

Return a list of coding schemes and versions that are supported by this service, along with their status
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns a list of CodingSchemes that have been registered in the system

	Pre-Conditions
	· CodingSchemes available to be returned via this operation must be loaded and registered correctly in the system

	Inputs
	· None

	Outputs
	· CodingSchemeRenderingList - The list of CodingScheme descriptions and versions for every correctly loaded and registered CodingScheme in the system

	Post-Conditions
	· none

	Exception Conditions
	· The underlying system fails to initialize

3.3.3.14 resolveCodingScheme

Return detailed coding scheme information given a specific tag or version identifier.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the LexGrid:CodingScheme given the input parameters

· Validation will ensure that:

· The Requested Coding Scheme exists in the System

· The specified version of the Coding Scheme is available

· The specified Coding Scheme is Active

	Pre-Conditions
	· The requested CodingScheme:

· Has been loaded and registered in the system

· Is Active

	Inputs
	· codingScheme - The local name, URI, or formal name of the requested CodingScheme

· versionOrTag - A LexGrid:CodingSchemeVersionOrTag indicating the Version or Tag of the Requested CodingScheme.

· If not provided, and there exists only one CodingScheme in the system matching the ‘codingScheme’ input, that CodingScheme will be used.

· If more than one CodingScheme in the system matches the ‘codingScheme’ input, the CodingScheme tagged as “PRODUCTION” will be used.

	Outputs
	· The LexGrid:CodingScheme give the requested inputs

	Post-Conditions
	· A LexGrid:CodingScheme matching the requested parameters is returned

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

	Note
	· Because of size concerns, the LexGrid:CodingScheme may or may not be fully populated, based on the underlying implementation. For example, all LexGrid:Entities may not be returned, as the size would be prohibitive for the the intent of this operation

3.3.3.15 resolveCodingSchemeCopyright

Return coding scheme copyright given a specific tag or version identifier
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the Copyright representation of the requested CodingScheme

· Validation will ensure that:

· The Requested Coding Scheme exists in the System

· The specified version of the Coding Scheme is available

· The specified Coding Scheme is Active

	Pre-Conditions
	· The requested CodingScheme:

· Has been loaded and registered in the system

· Is Active

	Inputs
	· codingScheme - The local name, URI, or formal name of the requested CodingScheme

· versionOrTag - A LexGrid:CodingSchemeVersionOrTag indicating the Version or Tag of the Requested CodingScheme.

· If not provided, and there exists only one CodingScheme in the system matching the ‘codingScheme’ input, that CodingScheme will be used.

· If more than one CodingScheme in the system matches the ‘codingScheme’ input, the CodingScheme tagged as “PRODUCTION” will be used.

	Outputs
	· The LexGrid:CodingSchemeCopyRight – the copyright of the coding scheme given the requested inputs

	Post-Conditions
	· A representation of the Copyright of the requested CodingScheme is returned and available to the user

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

	Note
	· If the implementation provides any security measures to restrict access to CodingSchemes (for example, restrict CodingScheme access based on the license of the CodingScheme), this operation should not be constrained by these security measures. The intent is to show Copyrights even for security protected CodingSchemes

3.3.3.16 setSecurityToken
Return coding scheme copyright given a specific tag or version identifier
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Registers a security token for a coding scheme.

	Pre-Conditions
	· The requested CodingScheme:

· Has been loaded and registered in the system

· Is Active

	Inputs
	· codingScheme - The local name, URI, or formal name of the requested CodingScheme

· token - The assigned security token.

	Outputs
	· LexBIGServiceGrid – an instance of LexBIGServiceGrid.

	Post-Conditions
	· A instance of the LexBIGServiceGrid of the requested CodingScheme is returned and available to the user.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

	Note
	·

3.3.4 Operations Details for CodedNodeGraphGrid
A virtual graph where the edges represent associations and the nodes represent coded entries. A CodedNodeGraph describes a graph that can be combined with other graphs, queried or resolved into an actual graph rendering
Links to: JavaDoc and UML
3.3.4.1 areCodesRelated

Determine whether there is an directed edge (or transitive closure of an edge) from the source code to the target code in this graph. The last parameter determines whether only direct associations are considered or whether the transitive closure of the edge is used.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Determine whether there is an directed edge (or transitive closure of an edge) from the source code to the target code in this graph.
· The last parameter determines whether only direct associations are considered or whether the transitive closure of the edge is used.

	Pre-Conditions
	· The CodedNodeGraph has been initialized for the given CodingScheme

	Inputs
	· policy - Policy for resolving the relationship

· association - Identifies the association to be tested. The name and value will be compared against the local name and URN of supported associations for participating coding schemes.

	Outputs
	· CodeRelationship

	Post-Conditions
	· none

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.4.2 intersect

Return the set of nodes and associations that are present in both graphs.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Adds a Intersect Restriction to the CodedNodeGraphGrid

	Pre-Conditions
	· Both the target CodedNodeGraphGrid and the source CodedNodeGraphGrid involved in the Intersection have been properly initialized.

	Inputs
	· graph

Identifies the CodedNodeGraphGrid to be intersected with.

	Outputs
	· A new CodedNodeGraphGrid representing the intersection result.

	Post-Conditions
	· The resulting CodedNodeGraphGrid is properly initialized and able to be resolved.

· Any restrictions placed on the CodedNodeGraphGrid involved in the restriction are preserved

	Exception Conditions
	· The underlying system fails to initialize

3.3.4.3 isCodeInGraph

Determine whether the supplied code is in the graph.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns whether or not, given the restrictions that have currently been place on the CodedNodeGraphGrid, the given node exists in the graph

	Pre-Conditions
	· The CodedNodeGraphGrid has been initialized, and all appropriated Restrictions have been placed on the graph prior to invoking this operation

	Inputs
	· code

Identifies the coding scheme and code to test.

	Outputs
	· CodeExistance - True if the code is present; otherwise False.

	Post-Conditions
	· The original CodedNodeGraphGrid is unchanged, and maybe be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize

3.3.4.4 listCodeRelationships

Return a list of all of the associations in the graph that have the supplied source and target codes or, if directOnly is false, all associations whose transitive closure has the supplied associations.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Computes node edges, as described above.

· Note: all Restrictions placed on the graph (if any) will be respected and incorporated into node relationship calculations

	Pre-Conditions
	· The CodedNodeGraphGrid has been initialized, and all appropriated Restrictions have been placed on the graph prior to invoking this operation

	Inputs
	· policy - Policy for resolving the relationship

	Outputs
	· List - The list of code references for matching associations

	Post-Conditions
	· The original CodedNodeGraphGrid is unchanged, and maybe be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize

	Note
	· Note that while the class of the returned value appears to imply concepts only, each contained reference inherits from the more general CodedNodeReference and is capable of representing any type of node contained by the graph.

3.3.4.5 listCodeRelationships

Return a list of all of the associations in the graph that have the supplied source and target codes based on distance between them. Distance (or the No. of edges) for a direct association between a source and target codes is 1. Values if distance should be equal or greater than 1, otherwise exception is thrown. Resulting list is not based on associations source & target have, but on distance only.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Computes node edges, as described above.

· Note: all Restrictions placed on the graph (if any) will be respected and incorporated into node relationship calculations

	Pre-Conditions
	· The CodedNodeGraphGrid has been initialized, and all appropriated Restrictions have been placed on the graph prior to invoking this operation

	Inputs
	· policy - Policy for resolving the relationship

	Outputs
	· ConceptReferenceList - The list of code references for matching associations

	Post-Conditions
	· The original CodedNodeGraphGrid is unchanged, and maybe be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize

	Note
	· Note that while the class of the returned value appears to imply concepts only, each contained reference inherits from the more general CodedNodeReference and is capable of representing any type of node contained by the graph.

3.3.4.6 resolveAsList

Resolve all of the coded nodes in the list, sorting by the supplied property (if any), resolving the supplied properties, resolving coded entries to the supplied depth and resolving associations to the supplied depth.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the underlying graph, given any placed Restrictions, as described above

· Validation will ensure that:

· The Requested CodingScheme exists in the system

· The Requested CodingScheme is not Active within the system.

· If no focus is provided, parameters ‘resolveForward’ OR ‘resolveBackward’ may be True, or neither may be True, but both may not be True

· ‘propertyNames’ are valid for the CodingScheme

· ‘sortOptions’ are registered and available as Sort Extensions

	Pre-Conditions
	· The CodedNodeGraphGrid has been initialized, and all appropriated Restrictions have been placed on the graph prior to invoking this operation

	Inputs
	· policy - Policy for resolving the relationship

	Outputs
	ResolvedConceptReferenceList - A list of code references, up to the maximum number specified in the policy. Note that in the event that a maximum number 'n' is specified and exactly 'n' items are returned, there is currently no flag or notification provided to indicate whether all available items were returned. Each entry will include basic information for the node along with an embedded object (e.g. concept) populated with requested properties.

	Post-Conditions
	· The original CodedNodeGraphGrid is unchanged, and maybe be Restricted further, or Resolved again.

	Exception Conditions
	· The underlying system fails to initialize

	Note
	· Note that while the class of the returned value appears to imply concepts only, each contained reference inherits from the more general CodedNodeReference and is capable of representing any type of node contained by the graph.

3.3.4.7 restrictToAssociations

Restrict the graph to the nodes that participate as a source or target of the named association and, if supplied, the named association qualifiers.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the graph, as described above

· Validation will ensure that:

· The associations provided are valid associations for the CodingScheme

· The association qualifiers provided (if any) are valid association qualifiers for the CodingScheme

· Returns a new CodedNodeGraphGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeGraph has been initialized

	Inputs
	· Association

List of associations used to restrict the graph. The name and value for each item in the list will be compared against the local name and URN of supported associations for participating coding schemes.
· associationQualifiers

If supplied, restriction only applies to associations that are qualified by one or more of the supplied qualifiers. The name and value for each item in the list will be compared against the local name and URN of supported association qualifiers for participating coding schemes.

	Outputs
	· CodedNodeGraphGrid - representing the filtered result

	Post-Conditions
	· The CodedNodeGraphGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.4.8 restrictToDirectionalNames

Restrict the graph to the nodes that participate as a source or target of an association whose directional name matches the one provided and, if supplied, the named association qualifiers. A directional name is considered to be either the forward or reverse label registered to an association defined by the ontology. Forward and reverse names are optionally assigned to each association. For example, an association 'lineage' may have a forward name 'ancestorOf' and reverse name 'descendantOf'
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the graph, as described above

· Validation will ensure that:

· The associations provided are valid associations for the CodingScheme

· The association qualifiers provided (if any) are valid association qualifiers for the CodingScheme

· Returns a new CodedNodeGraphGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeGraphGrid has been initialized

	Inputs
	· directionalNames

List of directionalNames used to restrict the graph. A directional name is compared against the forward and reverse names for defined associations. If a given name matches more than one forward or reverse label, all corresponding associations are included in the restriction.

· associationQualifiers

If supplied, restriction only applies to associations that are qualified by one or more of the supplied qualifiers. The name and value for each item in the list will be compared against the id and URN of supported association qualifiers for participating coding schemes.

	Outputs
	· CodedNodeGraphGrid representing the filtered result

	Post-Conditions
	· The CodedNodeGraphGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.4.9 restrictToCodes

Return a graph that contains only the codes that are present in the supplied list, and all edges that still have a source and target code remaining.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the graph, as described above

· Returns a new CodedNodeGraphGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeGraph has been initialized

	Inputs
	· codes

Codes to filter on.

	Outputs
	· CodedNodeGraphGrid representing the filtered result

	Post-Conditions
	· The CodedNodeGraphGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.4.10 restrictToCodeSystem

Restrict the graph to codes (source and target) that originate from the supplied code system. Note: edges defined by other code systems will still be resolved if associated with both source and target nodes for the restricted code system.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the graph, as described above

· Returns a new CodedNodeGraphGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeGraphGrid has been initialized

	Inputs
	· codingScheme

The local name or URN of the coding scheme to filter on.

	Outputs
	· CodedNodeGraphGrid representing the filtered result

	Post-Conditions
	· The CodedNodeGraphGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize

3.3.4.11 restrictToSourceCodes

Restrict the graph to associations that have one of the codes in the supplied list as source codes.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the graph, as described above

· Returns a new CodedNodeGraphGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeGraph has been initialized

	Inputs
	· codes

Codes to filter on.

	Outputs
	· CodedNodeGraphGrid representing the filtered result

	Post-Conditions
	· The CodedNodeGraphGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize

3.3.4.12 restrictToSourceCodeSystem

Restrict the graph to edges that have codes from the specified code system as a source.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the graph, as described above

· Returns a new CodedNodeGraphGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeGraph has been initialized

	Inputs
	· codingScheme

The local name or URN of the coding scheme to filter on.

	Outputs
	· CodedNodeGraphGrid representing the filtered result

	Post-Conditions
	· The CodedNodeGraphGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize

3.3.4.13 restrictToTargetCodes

Restrict the graph to associations that have one of the codes in the supplied list as target codes.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the graph, as described above

· Returns a new CodedNodeGraphGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeGraph has been initialized

	Inputs
	· codes

Codes to filter on.

	Outputs
	· CodedNodeGraphGrid representing the filtered result

	Post-Conditions
	· The CodedNodeGraphGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize

3.3.4.14 restrictToTargetCodeSystem

Restrict the graph to edges that have codes from the specified code system as a target.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the graph, as described above

· Returns a new CodedNodeGraphGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeGraphGrid has been initialized

	Inputs
	· codingScheme

The local name or URN of the coding scheme to filter on.

	Outputs
	· CodedNodeGraphGrid representing the filtered result

	Post-Conditions
	· The CodedNodeGraphGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize

3.3.4.15 toNodeList

Transform the graph into a simple of list of code references, removing all association information.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the underlying graph as a list of nodes, given any placed Restrictions.
· Validation will ensure that:

· The Requested CodingScheme exists in the system

· The Requested CodingScheme is not Active within the system.

· If no focus is provided, parameters ‘resolveForward’ OR ‘resolveBackward’ may be True, or neither may be True, but both may not be True

	Pre-Conditions
	· The CodedNodeGraphGrid has been initialized, and all appropriated Restrictions have been placed on the graph prior to invoking this operation

	Inputs
	· policy - Policy for resolving the relationship

	Outputs
	CodedNodeSetGrid - A set with matching items, up to the maximum number specified in the policy. Note that in the event that a maximum number 'n' is specified and exactly 'n' items are returned, there is currently no flag or notification provided to indicate whether all available items were returned.

	Post-Conditions
	· The original CodedNodeGraphGrid is unchanged, and maybe be Restricted further, or Resolved again.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.4.16 union

Return the union of the two graphs. Union, in this context, means that the resulting graph contains the unique set of coded entries (String independent) that are present in one or both of the graphs, and the unique combination of edges (associations) present in one or both of the graphs.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Adds a Union Restriction to the CodedNodeGraphGrid

	Pre-Conditions
	· Both the target CodedNodeGraphGrid and the source CodedNodeGraphGrid involved in the Union have been properly initialized.

	Inputs
	· graph

Identifies the CodedNodeGraphGrid to be unioned.

	Outputs
	· CodedNodeGraphGrid representing the merged result.

	Post-Conditions
	· The resulting CodedNodeGraphGrid is properly initialized and able to be resolved.

· Any restrictions placed on the CodedNodeGraphGrid involved in the restriction are preserved

	Exception Conditions
	· The underlying system fails to initialize

3.3.5 Operations Details for CodedNodeSetGrid
A coded node set represents a flat list of coded entries.
Links to: JavaDoc and UML
3.3.5.1 difference

Return a coded node set that represents the set of concepts in this coded node set that are not included by the given set of codes.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the difference of two CodedNodeSetGrid, given the input criteria

	Pre-Conditions
	· Both CodedNodeSetGrid participating in the difference operation have been initialized for the given CodingScheme

	Inputs
	· codesToRemove –

List of codes to remove from the surrounding set.

	Outputs
	· CodedNodeSetGrid representing the difference.

	Post-Conditions
	· The resulting CodedNodeSetGrid is properly initialized and able to be resolved.

· Any restrictions placed on the CodedNodeSetGrid involved in the restriction are preserved

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.5.2 intersect

Return a coded node set that represents the set of concepts that this node set and the provided node set have in common.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the intersection of two CodedNodeSetGrid, given the input criteria

	Pre-Conditions
	· Both CodedNodeSetGrid participating in the intersection operation have been initialized for the given CodingScheme

	Inputs
	· codes –

Set of codes to intersect

	Outputs
	· CodedNodeSetGrid representing the intersection result

	Post-Conditions
	· The resulting CodedNodeSetGrid is properly initialized and able to be resolved.

· Any restrictions placed on the CodedNodeSetGrid involved in the restriction are preserved

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.5.3 isCodeInSet

Return true if the supplied concept reference is contained within the represented list.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns whether or not, given the restrictions that have currently been place on the CodedNodeSetGrid, the given node exists in the graph

	Pre-Conditions
	· The CodedNodeSetGrid has been initialized, and all appropriated Restrictions have been placed on the set prior to invoking this operation

	Inputs
	· Code

Coding scheme and concept code to test

	Outputs
	· CodeExsitance - True if the code is present; otherwise False.

	Post-Conditions
	· The original CodedNodeSetGrid is unchanged, and maybe be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize

3.3.5.4 resolve

Resolve an iterator over concepts matching the given criteria.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the underlying node set, given any placed Restrictions, as described above

· Validation will ensure that:

· The Requested CodingScheme exists in the system

· The Requested CodingScheme is not Active within the system.

· ‘sortOptions’ are valid and registered in the system

· ‘propertyNames’ are valid for the CodingScheme

	Pre-Conditions
	· The CodedNodeSetGrid has been initialized, and all appropriated Restrictions have been placed on the set prior to invoking this operation

	Inputs
	· policy - Policy for resolving the CodedNodeSet

	Outputs
	· ResolvedConceptReferencesIterator - An iterator over matching entries. Each entry will include basic information for the node along with an embedded object (e.g. concept) populated with requested properties.

	Post-Conditions
	· The original CodedNodeSetGrid is unchanged, and may be be Restricted further, or Resolved again.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

	Note
	· Note that while the class of the returned value appears to imply concepts only, each contained reference inherits from the more general CodedNodeReference and is capable of representing any type of node contained by the set.

3.3.5.5 resolveToList

Resolve the set to a list of concepts sorted by the supplied parameters, resolving all of the properties named in the list.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the underlying node set, given any placed Restrictions, as described above

· Validation will ensure that:

· The Requested CodingScheme exists in the system

· The Requested CodingScheme is not Active within the system.

· ‘sortOptions’ are valid and registered in the system

· ‘propertyNames’ are valid for the CodingScheme

	Pre-Conditions
	· The CodedNodeSetGrid has been initialized, and all appropriated Restrictions have been placed on the set prior to invoking this operation

	Inputs
	· policy - Policy for resolving the relationship

	Outputs
	· ResolvedConceptReferenceList - A list of node references, up to the maximum number specified. Note that in the event that a maximum number 'n' is specified and exactly 'n' items are resolved, there is currently no flag or notification provided to indicate the requested list is fully resolved.

	Post-Conditions
	· The original CodedNodeSetGrid is unchanged, and may be be Restricted further, or Resolved again.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

	Note
	· Note that while the class of the returned value appears to imply concepts only, each contained reference inherits from the more general CodedNodeReference and is capable of representing any type of node contained by the set.

3.3.5.6 restrictToCodes

Restrict the set to the list of codes in the supplied reference list.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the node set.
· Returns a new CodedNodeSetGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeSetGrid has been initialized

	Inputs
	· codeList

The list of codes to filter on.

	Outputs
	· CodedNodeSetGrid representing the filtered result

	Post-Conditions
	· The CodedNodeSetGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.5.7 restrictToMatchingDesignations
Restrict the list to the set of concepts that have designations that match the supplied string, using the supplied matching algorithm and language.

Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the node set, as described above

· Returns a new CodedNodeSetGrid representing the filtered result.

· Validation will ensure that:

· ‘matchAlgorithm’ is valid and registered in the system

	Pre-Conditions
	· The CodedNodeSetGrid has been initialized

	Inputs
	· matchText –

Filter String - syntax is determined by the match algorithm

· option –

Indicates the designations to search (one of the enumerated type SearchDesignationOption).

· matchAlgorithm –

Local name of the match algorithm - possible algorithms are returned in LexBigService.getMatchAlgorithms().

· language –

Language of search string. If missing, use the default language specified in the context.

	Outputs
	· CodedNodeSetGrid representing the filtered result

	Post-Conditions
	· The CodedNodeSetGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.5.8 restrictToMatchingProperties
Remove all elements from the set that do not have one or more properties that match the given criteria. Note that while property name and type are often synchronized, the API allows for them to be differentiated. For concepts, there are 5 major types of properties that can be assigned ('Comments', 'Definitions', 'Instructions', 'Presentations', and 'Generic' properties which can represent vocabulary-specific name/value pairings). Often the name assigned to a property will match the property type (e.g. a Presentation named 'textualPresentation' or a Definition named 'definition'). However, names are not fixed (e.g. a Presentation property may be named 'text' or 'textualPresentation'). This method allows for query based on property name, type, or both. However, at least one name or type must be specified.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the node set, as described above

· Returns a new CodedNodeSetGrid representing the filtered result.

· Validation will ensure that:

· ‘propertyNames’ are valid and registered in the system

· ‘matchAlgorithm’ is valid and registered in the system

	Pre-Conditions
	· The CodedNodeSetGrid has been initialized

Local names of sources to match; each must be defined in the supported sources for the coding scheme. Returned values must match at least one of the specified values. A null or empty value indicates to match against all available sources.

	· contextList –
Local names of usage contexts to match; each must be defined in the supported contexts for the coding scheme. Returned values must match at least one of the specified values. A null or empty value indicates to match against all available contexts.

· qualifierList –
Name/value pairings of property qualifiers to match. Each name must be defined in the supported property qualifiers for the coding scheme. Returned values must match at least one of the name/value combinations. A null or empty value indicates to match against all property qualifiers.

· matchText –
Property text to match - syntax is determined by the algorithm.

· matchAlgorithm –
Local name of the match algorithm - possible algorithms are returned in LexBigService.getMatchAlgorithms().

· language –
Language of search string. If missing, use the default language specified in the context.
	

	Outputs
	· CodedNodeSetGrid representing the filtered result

	Post-Conditions
	· The CodedNodeSetGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.5.9 restrictToProperties
Remove all elements from the set that don't have one or more properties that match the given criteria. Note that while property name and type are often synchronized, the API allows for them to be differentiated. For concepts, there are 5 major types of properties that can be assigned ('Comments', 'Definitions', 'Instructions', 'Presentations', and 'Generic' properties which can represent vocabulary-specific name/value pairings). Often the name assigned to a property will match the property type (e.g. a Presentation named 'textualPresentation' or a Definition named 'definition'). However, names are not fixed (e.g. a Presentation property may be named 'text' or 'textualPresentation'). This method allows for query based on property name, type, or both. However, at least one name or type must be specified.

Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the node set.
· Returns a new CodedNodeSetGrid representing the filtered result.

· Validation will ensure that:

· ‘propertyNames’ are valid and registered in the system

	Pre-Conditions
	· The CodedNodeSet has been initialized

Local names of sources to match; each must be defined in the supported sources for the coding scheme. Returned values must match at least one of the specified values. A null or empty value indicates to match against all available sources.

	· contextList –
Local names of usage contexts to match; each must be defined in the supported contexts for the coding scheme. Returned values must match at least one of the specified values. A null or empty value indicates to match against all available contexts.

· qualifierList –
Name/value pairings of property qualifiers to match. Each name must be defined in the supported property qualifiers for the coding scheme. Returned values must match at least one of the name/value combinations. A null or empty value indicates to match against all property qualifiers.
	

	Outputs
	· CodedNodeSetGrid representing the filtered result

	Post-Conditions
	· The CodedNodeSetGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.5.10 restrictToStatus

Restrict the set to concepts matching the given status criteria.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Places an association specific Restriction on the node set, as described above

· Returns a new CodedNodeSetGrid representing the filtered result.

	Pre-Conditions
	· The CodedNodeSetGrid has been initialized

	Inputs
	· activeOption –

Indicates whether to include active codes, inactive codes, or both in the resolved result set (one of the enumerated type ActiveOption). This is matched against the 'isActive' field for CodedEntry instances in the code system.

· status –

Indicates zero or more status values to match. Provided values are compared using an exact match algorithm against the 'status' field for matching entities. If null or empty, the restriction is evaluated based only on the specified activeOption.

	Outputs
	· CodedNodeSetGrid representing the filtered result

	Post-Conditions
	· The CodedNodeSetGrid may be Restricted further, or Resolved.

	Exception Conditions
	· The underlying system fails to initialize, or the input parameters fail to validate as described above

3.3.5.11 union

Return the set union of all of the codes in the containing or the referenced set
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Adds a Union Restriction to the CodedNodeSetGrid

	Pre-Conditions
	· Both the target CodedNodeSetGrid and the source CodedNodeSetGrid involved in the Union have been properly initialized.

	Inputs
	· codes
Codes to add to the union

	Outputs
	· CodedNodeSetGrid representing the merged result.

	Post-Conditions
	· The resulting CodedNodeSetGrid is properly initialized and able to be resolved.

· Any restrictions placed on the CodedNodeSetGrid involved in the restriction are preserved

	Exception Conditions
	· The underlying system fails to initialize

3.3.6 Operations Details for LexBIGServiceMetadataGrid
Interface to perform system-wide query over metadata for loaded code systems and providers.
Links to: JavaDoc and UML
3.3.6.1 listCodingSchemes

List the coding schemes that are represented in the metadata index.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available service metadata, as described above

	Pre-Conditions
	· The LexBIGServiceMetadataGrid service has been initialized correctly

	Inputs
	· none

	Outputs
	· A LexBIG:AbsoluteCodingSchemeVersionReferenceList indicating the loaded service metadata

	Post-Conditions
	· none

	Exception Conditions
	· The LexBIGServiceMetadataGrid service, or underlying LexEVS service fail to initialize

3.3.6.2 restrictToCodingScheme

Restrict the search to a particular coding scheme.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Add a Restriction to the available service metadata, as described above

	Pre-Conditions
	· The LexBIGServiceMetadataGrid service has been initialized correctly

	Inputs
	· acsvr –

The coding scheme to restrict the search to. You may provide the URN, the version, or both.

	Outputs
	· A new LexBIGServiceMetadataGrid representing the restricted result.

	Post-Conditions
	· The LexBIGServiceMetadataGrid may be Restricted further, or Resolved

	Exception Conditions
	· The LexBIGServiceMetadataGrid service, or underlying LexEVS service fail to initialize

3.3.6.3 restrictToProperties

Restrict the search to a particular property. Currently, this can be any element or attribute name from the OBO metadata schema
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Add a Restriction to the available service metadata, as described above

	Pre-Conditions
	· The LexBIGServiceMetadataGrid service has been initialized correctly

	Inputs
	· properties –

The set of properties to restrict the search to. If you provide multiple properties, it is treated as an OR search.

	Outputs
	· A new LexBIGServiceMetadataGrid representing the restricted result.

	Post-Conditions
	· The LexBIGServiceMetadataGrid may be Restricted further, or Resolved

	Exception Conditions
	· The LexBIGServiceMetadataGrid service, or underlying LexEVS service fail to initialize

3.3.6.4 restrictToPropertyParents

Restrict the search by the parents of the metadata elements. The OBO MetaData format is hierarchial - if you wish to restrict your search to properties that are under another property, provide the required property containers here.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Add a Restriction to the available service metadata, as described above

	Pre-Conditions
	· The LexBIGServiceMetadataGrid service has been initialized correctly

	Inputs
	· propertyParents –
The containers to require as parents. For example, to restrict the search to "contacts" that are under "about" that is under "authority" - provide "authority" and "about". The order of the parents does not matter. Multiple parents are treated as an AND - so the result is required to be under each of the parents going up the parent tree.

	Outputs
	· A new LexBIGServiceMetadataGrid representing the restricted result.

	Post-Conditions
	· The LexBIGServiceMetadataGrid may be Restricted further, or Resolved

	Exception Conditions
	· The LexBIGServiceMetadataGrid service, or underlying LexEVS service fail to initialize

3.3.6.5 restrictToValue

Restrict the result to the metadata elements that match the supplied string, using the supplied matching algorithm
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Add a Restriction to the available service metadata.
· Validation will ensure that:

· ‘matchAlgorithm’ is valid and registered in the system

	Pre-Conditions
	· The LexBIGServiceMetadataGrid service has been initialized correctly

	Inputs
	· matchText –

The match text. Format is determined by the match algorithm.

· matchAlgorithm –

Local name of the match algorithm - possible algorithms are returned in LexBigService.getMatchAlgorithms().

	Outputs
	· A new LexBIGServiceMetadataGrid representing the restricted result.

	Post-Conditions
	· The LexBIGServiceMetadataGrid may be Restricted further, or Resolved

	Exception Conditions
	· The LexBIGServiceMetadataGrid service, or underlying LexEVS service fail to initialize, or the input parameters fail to validate as described above

3.3.6.6 resolve

Apply all of the restrictions, and return the result
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Returns the underlying MetadataPropertyList, given any placed Restrictions, as described above

	Pre-Conditions
	· The LexBIGServiceMetadataGrid service has been initialized correctly

	Inputs
	· none

	Outputs
	· The resulting MetadataPropertyList

	Post-Conditions
	· The LexBIGServiceMetadata may be Restricted further, or Resolved again

	Exception Conditions
	· The LexBIGServiceMetadata service, or underlying LexEVS service fail to initialize

3.3.7 Operations Details for HistoryServiceGrid
The history service returns information about the change history of a coding scheme.
Links to: JavaDoc and UML
3.3.7.1 getAncestors

Return a list of baselines supported by this service that were released on or after the first supplied date and were released on or before the second date. Returned baselines are arranged in sequential order, from earliest to latest.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· conceptReference–
The reference from which to begin the query.

	Outputs
	· A LexBIG:NCIChangeEventList containing the ancestors of the given ‘conceptReference’ parameter

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.2 getBaselines

Return a list of baselines supported by this service that were released on or after the first supplied date and were released on or before the second date. Returned baselines are arranged in sequential order, from earliest to latest.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· releasedAfter

If present, only return baselines released on or after the supplied date.

· releasedBefore

If present, only return baselines that were released before the specified date

	Outputs
	· A LexBIG:SystemReleaseList containing the baselines of the given parameters

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.3 getConceptChangeVersions
Return a list of all of the coding scheme versions in which the supplied concept changed between the two supplied times (inclusive).
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· conceptReference

The concept to pull the versions out of

· beginDate

Begin date (inclusive) to check for version changes. If omitted, go to earliest recorded date

· endDate

Last date to check for changes in (inclusive). If omitted include all dates past and including beginDate

	Outputs
	· A CodingSchemeVersionList

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.4 getConceptCreationVersion

Return the coding scheme version in which the supplied concept was created.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· conceptReference

The concept to pull the creation version of

	Outputs
	· A CodingSchemeVersion

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.5 getDescendants

Return the list of change events identifying the immediate descendants of the given concept reference.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· conceptReference

The concept focus of the query

	Outputs
	· A NCIChangeEventList containing the immediate descendants of the ‘conceptReference’ parameter

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.6 getEarliestBaseline

Return the earliest baseline version in the list.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· none

	Outputs
	· A SystemRelease containing earliest baselines of the History service

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.7 getEditActionList

Return the list of available NCI-defined change events for the given concept and coding scheme version.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· conceptReference

Optional concept to get the action list for. If omitted, all events for the given change set (represented by a coding scheme version) are returned.

· codingSchemeVersion

Version to get the action list for

	Outputs
	· A NCIChangeEventList containing the change events as described above.

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.8 getEditActionList

Return the list of available NCI-defined change events for the given concept and date range.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· conceptReference

Optional concept to get the action list for. If omitted, all events for the given date range are returned.

· beginDate

Begin date (inclusive) to check for version changes. If omitted, go to earliest recorded date.

· endDate

 Last date to check for changes in (inclusive). If omitted include all dates past and including beginDate.

	Outputs
	· A NCIChangeEventList containing the change events as described above.

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.9 getEditActionList

Return the list of NCI-defined change events for the given concept and release; empty if not applicable.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· conceptReference

Optional concept to get the action list for. If omitted the actions for all registered concepts for the specified system release are returned.

· releaseURN

URN of the system release to retrieve the action list for.

	Outputs
	· A NCIChangeEventList containing the change events as described above.

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.10 getLatestBaseline

Get the latest baseline in the list.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· none

	Outputs
	· A SystemRelease containing latest baselines of the History service

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.3.7.11 getSystemRelease

Return detailed information about the particular system release.
Links to: JavaDoc and Schema XSD
	Behavior Description
	· Query the available History service, as described above

	Pre-Conditions
	· The History service has been initialized correctly

	Inputs
	· releaseURN

The URN of the system release to retrieve.

	Outputs
	· A SystemReleaseDetail of the Release URN specified by the ‘releaseURN’ parambet

	Post-Conditions
	· The HistoryService service state is maintained and may be queried again

	Exception Conditions
	· The History service, or underlying LexEVS service fail to initialize

3.4 Message Information Model

This section describes the information model of the messages sent to the service. This should match the semantic profile detailed above. It should include a UML model showing the object model for the service. It should also include a detailed description of the model elements in a tabular format. This section should also include artifacts such as an xml schema as required for the technology binding.
3.4.1 Information Model

A UML diagram showing the service object model.
3.4.2 Information Model Description

This section should include a detailed description of the service object model. This object model is the external facing object model which the clients of the service will use to interact with the service. This can include a tabular description of objects and attributes of the service model. Any artifacts that implementers of this service need to adhere such as an xml schema or java interfaces should be referred to here.

NOTE: the following table should be repeated for each entity which acts as an input or output parameter within the Information Model. Note: Exceptions should be defined separately in the Error Handling section below
	Object Name
	AdverseEvent

	Description of the Object
	Represents the Adverse Event occurring within the system

	Link to the Object Specification
	Provide link to the XSD or the Java Interface Specifications

	Attribute Name
	Type
	Description

	Id
	String / Number / II etc.
	Stores the Id of the Adverse Event

	
	
	

	
	
	

	…
	
	…

3.5 Service Interactions

This section describes the actors involved with the service and the dynamic behavior of the service. It should include details of service behavior in all significant service interactions.
An interaction diagram illustrating the interaction should also be included in this section.

3.5.1 Actors

A description of the actors involved in service interactions.

	Name
	Type
	Description

	LexEVS 6.0
	System
	System interacts with the service to query content in LexEVS.

	Subject Registry Service
	
	Uses the Subject Registry Service to retrieve additional subject information

	
	
	

	
	
	

	…
	
	…

3.5.2 Interaction Details
Provide the interaction details between this service and other actors. Describe the technology used for this interaction. Also provide the exact version of the service to be used and the data specifications to adhere to for a particular interaction. The number of consumers of the service can always increase in the future. However provide a notional interaction with a consumer below to describe the specification of the
*Producers provided the data which this service needs.

*Consumers consume the data provided by this service.

	Actor Name
	Producer / Consumer
	Data
	Link
	Description

	LexEVS 6.0 Analytical Grid Services
	Producer
	Ontology Information.
	Provide link to the XSD or Java Specification defining the data element exchanged
	LE 6.0 AG Service relies on Subject Registry Service to retrieve additional subject information

	Scheduled Calendar Service v1.0
	Consumer
	AE Information
	Provide link to the XSD or Java Specification defining the data element exchanged
	AE Service supplies AE information to the Treatment Plan service

	
	
	
	
	

	
	
	
	
	

	…
	
	
	
	…

3.6 Implementation Considerations
The following sections can optionally be used to specify any implementation specific details for this service.

3.6.1 Security

Provide technical specification on security requirements to access this service. This includes authentication, authorization, encryption, and other LOA requirements.
	Access Control

	Does the Service require Access Control mechanism to be in place to restrict access to only authenticated users or systems?
	No

	If Yes then provide the following in detail:

	N/A

	Application (Service) Security [Access Policy]

	Does the Service incorporate any security controls (Authorization) to ensure that access to information is granted to only the authorized users / systems?
	Yes

	If Yes then provide the following in detail:

	Certain vocabulary content accessible through the LexEVS Grid Service may require extra authorization to access. Each client is required to supply its own access credentials via Security Tokens. These Security Tokens are implemented by a SecurityToken object:

Name: SecurityToken
Namespace: gme://caCORE.caCORE/3.2/gov.nih.nci.evs.security
Package: gov.nih.nci.evs.security

Each call to “setSecurityToken” sets up a secured connection to Distributed LexEVS with the access privileges included in the SecurityToken parameter. The LexEVSGridServiceReference that is returned to the client contains a unique key identifier to the secure connection that has been created on the server. All subsequent calls the client makes through this LexEVSGridServiceReference will be made securely. If additional SecurityTokens are passed in through the “setSecurityToken” Grid Service, the additional security will be added and maintained.

The “setSecurityToken” Grid Service is a stateful service. This means that after the client sets a SecurityToken, any subsequent call will be applied to that SecurityToken.

Secure connections are not maintained on the server indefinitely, but are based on load conditions. The server will allow 30 unique secure connections to be set up for clients without any time limitations. As additional requests for secure connections are received by the server, connections will be released by the server on an ‘oldest first’ basis. No connection, however, may be released prior to 5 minutes after its creation.
If no SecurityTokens are passed in by the client, a non-secure Distributed LexEVS connection will be used. The server maintains one (and only one) un-secured Distributed LexEVS connection that is shared by any client not requesting security.
NOTE: All non-secured information accessed by the LexEVS Grid Service is publicly available from NCICB and users are expected to follow the licensing requirements currently in place for accessing and using NCI EVS information.

	Cryptography

	Does the Service require encryption of data transmitted to and from it?
	No

	If Yes then provide the following in detail:

	N/A

	Information Security and Risk Management

	Is the information served by the service confidential or privileged? And if yes, is it at risk from any external threats or vulnerabilities?
	No

	If Yes then provide the following in detail:

	N/A

	Legal, Regulations, Compliance and Investigations

	Does the information served by the service fall under any legal / regulatory compliance either at federal, state, local or institutional level ?
	Yes

	If Yes then provide the following in detail:

	Users are expected to follow the licensing requirements currently in place for accessing and using NCI EVS information.

	Telecommunications and Network Security

	Does the service need any network or transport level security such as SSL, Firewall protection etc.
	Yes

	If Yes then provide the following in detail:

	Firewall configurations required to provide access to the LexEVS 6.0 Analytical Grid Services.

3.6.2 Auditing

No auditing requirements exist for LexEVS 6.0 Analytical Grid Services.
	Operation Name
	Auditing Details

	N/A
	·

	Entity Name
	Auditing Details

	N/A
	·

3.6.3 Privacy

No privacy requirements exist for LexEVS 6.0 Analytical Grid Services.
	Data Element
	Privacy Regulation
	Security Control in Place
	Access Requirement

	N/A
	
	
	

3.6.4 Error Handling

Provide technical specification on how the errors will be raised by the service and what information will be provided. Provide a technical model of the error conditions and its specific meaning.
In this section, provide the technical specification on how the errors will be raised by the service and what information will be provided. Provide a technical model of the error conditions and its specific meaning.

NOTE: This section should only list the errors which are to be returned to the clients. The service should provide an encapsulation boundary to all the internal errors and return only the errors which are of use to the client application.

3.6.4.1 Overview

Provide overview of the error handling and reporting mechanism for the specific implementation. Depending upon the technology used to implement the service specification, describe in detail the appropriate error reporting mechanism. E.g. In case of web services it would be web service faults or in case of EJB interface they will be Java Exceptions.
3.6.4.2 Error Object Details
Provide technology specific details about eacht attribute and its data type contained within the error object, which can be used to describe the error condition that occurred. It is recommended that each error object contain a unique code which can be used to identify the error condition programmatically. It should also be supported by a human readable message which can be used for display purposes. Also an attribute describing the criticality of the error can be present as well. Also an attribute describing the criticality of the error (FATAL, MAJOR, MINOR, etc.) can be present as well.

· In case of an EJB Interface these attributes become exception of the exception object as class attributes.

· In case of a WebService interface these attributes can be using the Error Code, String and Message fields of a SOAP Fault. Additional information like severity etc. can be represented in form of a Structured XML which can be included in the message part of the SOAPFault.
	Error Object Name
	AEException

	Description of the Error Object
	Represents the Exception object in the AE Service

	Link to the Object Specification
	Provide link to the XSD or the Java Interface Specifications

	Attribute Name
	Type
	Description

	Code
	CD
	Provides the Error Code

	Message
	ST
	Provides the Error Message

	Severity
	CD
	Provides the type of error (eg. FATAL, MAJOR, MINOR etc.)

	
	
	

3.7 Deployment Details
The following sections can optionally be used to specify any deployment specific details for this service.

	Deployment Details
	Impact

	Deployment Modes
	Provide details of the different deployment mode provided by this detail.

	Performance details
	Provide specific measures of the service’s expected performance for each service operation.

	Scalability details
	Does this service need to support a particular number of requests? Are there performance requirements for the service?

	Discovery
	How can clients call this service? For example if this is an application it would be installed on their computers, downloaded from a public web site etc.

	Uptime
	Provide the details of the uptime provided by this implementation of the service.

	Failover
	Does this service need to provide hot failover? If yes, then how should it be handled at service / database levels etc?

	
	

	
	

	
	

3.8 Constraints

This section should include any additional constraints on the service that have not been covered in the previous sections.
No additional constraints exist for LexEVS 6.0 Analytical Grid Services.
	Constraints
	Impact

	
	

	
	

	
	

4 Recommendations for Conformance and Compliance

4.1 Conformance Assertions

This section should include a table of conformation assertions required to conform to this platform specific specification. For example to conform an implementation would have to implement a web service conforming to a given WSDL.
The following conformance assertions are required to conform to this LexEVS 6.0 Analytical Grid Services PSM.
	No.
	Name
	Description
	Test method

	CS1
	Conformance Profiles
	In order to claim a minimal level of conformance to the LexEVS 6.0 Analytical Grid Service specification, designers/implementers are obligated to support the following mandatory Conformance Profile: QS-CP2 (LexEVS 21090 Full Query Conformance Profile)
	1. Test cases to be defined to test each specified profile

	CS2
	ISO Datatypes
	Designers/implementers are obliged to support ISO 21090 datatypes in all operations
	1. Test cases to include processing of each relevant data type

	
	
	
	

5 Appendix A - Relevant Standards

	Standards
	Description
	Location

	HL7 CTS 2
	HL7’s CTS 2 specification specifies functional model (CIM) outlining HL7’s consensus requirement for terminology services.

For the LexEVS CIM, PIM, and PSM, only the terminology and association query components of HL7 CTS 2 is considered to be in scope.

LexEVS will ultimately implement much of the CTS 2 functionality, and as such, early identification of potential points of alignment is necessary.
	Health Level Seven (HL7) Common Terminology Services – Release 2 (CTS 2)

	ISO 21090 Health Informatics – Harmonized data types for information interchange
	ISO 21090 data types provide a harmonized set of data type definitions for representing and exchanging healthcare related information.

LexEVS 6.0 will interchange information using the 21090 data type specifications
	http://www.kith.no/upload/4414/ISODIS21090.pdf

6 Appendix B - Glossary

	Term
	Description

	Association
	A binary relation from a set of entities to a set of entities and/or data.

	Coding Scheme
	A resource that makes assertions about a collection of terminological entities.

	Property
	A description, definition, annotation or other attribute that serves to further define or identify an resource.

	RRF
	UMLS Metathesaurus – Rich Release Format (RRF) (http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=nlmumls&part=ch03)

	OWL
	Web Ontology Language

	OBO
	The OBO flat file format is an ontology representation language.

	Relation Identifier
	A unique identifier of a relationship.

	Registered Extensions
	Used to implement application-specific behavior that is centrally accessible from a LexEVS service.

	Service Reference (History, Coded Node Set, Coded Node Graph, Service Metadata)
	A Service Reference is an abstract reference to a grouping of like functionality. A Service Reference will define intended behavior and capabilities of the Service, as well and provide a entry point for execution. Examples of a Service Reference would be a Java Interface, Web Service Endpoint Reference, an RMI (Remote Method Invocation) Endpoint, or any other abstract functional endpoint.

- 59 -

