
 Mayo Foundation

Biomedical Statistics and Informatics
CODEDNODESET
 Unit Test Plan 2.0
Release 1.0

1.0 INTRODUCTION…………………………………………………………….1

2.0 TEST SCOPE….……………………………………………………………... 3
2.1 FEATURES TO BE TESTED
3.0 TEST APPROACH……………………………………………………………4
4.0 TRACEABILITY MATRIX WITH QUALITY RISK ANALYSIS………….4
5.0 PROJECT RISK AND ASSUMPTIONS……………………………………..5
6.0 SCHEDULE ………………………………………………………………….5
7.0 TEST ENVIRONMENT………………………………………………………6
7.1 TOOLS

8.0 DEVELOPMENT/ TEST PROCUDEURES………………………………….6
8.1 TEST PROCEDURES.

8.2 INCIDENT TRACKING.
8.3 INTERNAL COMMUNICATION.

9.0 TEST CONTROLS……………………………………………………………7
10.0 TEST PLAN APPROVAL…………………………………………………….7
Document Revision History

	Version
	Description
	Date
	Author

	1.0
	Initial Version
	7/01/2008
	Shalini Nagaraja

	1.1
	Revised for LexEVS 5.1
	8/7/2009

	Scott Bauer

	2.0
	Revised for LexEVS 6.0
	4/26/2010
	Scott Bauer

Test Plan Category and Test Plan Identifier
	 Test Category

	Unit (
	Integration (
	System (
	Performance (
	Other (

1.0 Introduction and Overview
The Test Plan documents the detailed activities and information needed to carry out the approach to testing defined in the Test Strategy. It identifies:

· System End to End validation testing.

· Environments in which testing will occur.

· Identification of teams.(N/A)
· Tools that will be used.

· Resources required for testing.

· The schedule and milestones of testing.

· Test coverage

2.0 Test Scope

The primary scope of testing CodedNodeSet interface is to ensure and validate the concept of code system. CodedNodeSet represents a flat list of coded entries.
2.1 Features to be tested

· Difference.
· Intersection.
· Is Code In Set.
· Resolve.
· Resolve To List.
· Restrict To Codes.
· Restrict To Matching Designations.
· Restrict To Matching Properties.
· Restrict To Properties.
· Restrict To Status.
· Union.
3.0 Test Approach

 Unit testing is testing of the source code for an individual unit (class or method) by the developer who wrote it. A Unit is to be tested after initial development, and again after any change or modification. The developer is responsible for verifying new code before committing the code to change control.
The goal of Unit Testing for the “CodedNodeSet” module is to ensure there are no errors in the implementation and the application will also tested to verify it meets the requirement specification. CodedNodeSet features will be tested using automated unit tests outlined below. The CodedNodeSet Interface is tested at three levels using unit tests. Local testing occurs in an environment where direct method calls in Java take place. Web enabled LexEVS provides a RMI service over an http network protocol. LexEVS Grid services for the analytical LexEVS service provide access to the same interface and are also unit tested.

Test results will be accompanied in a separate traceability matrix document LexEVS_60_QA_Traceability

System execution of these unit tests will be the responsibility of the QA Staff and will take place on the QA tier.

Performance testing will take place outside of the unit testing code base and will focus on likely trouble spots as determined by domain experts.

4.0 Traceability Matrix

 Purpose: The Traceability Matrix is a mapping between the test cases to system requirements (functional specifications, requirements specifications, technical design documentation

	Scenarios No’s

	Test Cases

	1.1 Difference.

	Return a coded node set that represents the set of concepts in this coded node set that are not included by the given set of codes.

	1.2 Intersection.

	Return a coded node set that represents the set of concepts that this node set and the provided node set have in common.

	1.3 Is Code In Set.
	Return true if the supplied concept reference is contained within the represented list.

	1.4 Resolve
	1. Resolve an iterator over concepts matching the given criteria.
2. Allowing for additional filters to be applied against the returned items.

	1.5 Resolve To List.

	1. Resolve the set to a list of concepts sorted by the supplied parameters, resolving all of the properties named in the list.

2. Allowing for additional filters to be applied against the returned items.

	1.6 Restrict To Codes.

	Restrict the set to the list of codes in the supplied concept Reference list.

	1.7 Restrict To Matching Designations.

	Restrict the list to the set of concepts that have designations that match the supplied string, using the supplied matching algorithm and language.

	1.8 Restrict To Matching Properties.

	1. Remove all elements from the set that do not have one or more properties that match the given criteria.

2. Remove all elements from the set that do not have one or more properties that match the supplied property names, type, and text.

	1.9 Restrict To Properties.

	Remove all elements from the set that don't have one or more properties that match the given criteria.

	1.10 Restrict To Status
	Restrict the set to concepts matching the given status criteria.

	1.11 Union.

	Return the set union of all of the codes in the containing or the referenced set.

4.1 Performance Traceability (proposed)

Perceived and expected trouble spots to be focused upon here and largely drawn from users and domain experts. System’s start and stop execution points will be the implementation strategy for measurement.

	Method signature

	Algorithm and parameter (set)
	Terminology target
	System

values
	Time in milli/

seconds

4.2 Performance Test Example

	Restrict to Source

Restrict to Matching Properties

resolveAsList

	source = “NCI_Thesaurus”

propertyName = “conceptCode”

text = “C12434”

Matching Algorithm = “LuceneQuery”
Max to return = 500

All other values = null
	NCI

Thesaurus
	OS = Windows XP

Java = 1.6

RAM = 4gb

CPU’s = 2x2.6 MHz

Heap Settings =

-Xmx

2000m

	To be noted

4.2.1 Performance Test Execution
· Execution results are posted here: https://gforge.nci.nih.gov/plugins/wiki/index.php?Run%201&id=491&type=g
· These results represent output from concurrency performance test runs executed during use of other applications.

· The criteria for performance evaluation is user acceptance.
· Coded Node Set Specific tests include text searches, code searches, multiple ontology searches, and iterator advances in a list.
4.3 Integration Testing

Integration testing is designed to test the interaction of the Service Interfaces with each other. Test data used for testing is intended to mimic a production vocabulary environment, while being scaled down to a size useful for testing. Certain assumptions are made of the test data:

· At least one format of every available loader is loaded in the test suite.

· Test data is as close to actual production data as possible.

· Certain scenarios may be artificially inserted into the test data for testing purposes.

· If the test data cannot reproduce a known issue, either new test data will be introduced, or existing data will be modified.

4.4 Integration Testing

Integration testing will meet the following criteria:

· All integration testing will be automated

· Testing will provide developer-oriented feedback. If a new error has been introduced due to a code change or from resolving an unrelated issue, all new errors will be documented with all appropriate error and log messages

· Integration tests will be run on a predetermined schedule

· Integration testing will include the current development code, as well as any code/tag branches that are intended to be maintained

· Results of each scheduled Integration test will be available immediately after test completion

5.0 Quality Risk Analysis
The following is a list of the possible risks to the successful outcome of testing.
	Identified Risk
	Impact on Project

(High, Medium, Low)

	Requirement changes
	High

	Code changes
	High

6.0 Schedule

	Task
	Dependency

	Duration
	Responsible Role

	JUnit Testing
Progression Testing (Automated)
	Code component completion
	Ongoing, but completing without fail before system testing
	Mayo Staff

	JUnit Testing
Regression testing

(Automation, Manual)
	Code component completion
	Ongoing but completing without fail before system testing
	Mayo Staff

	Performance
	Code component completion
	One week
	To be determined

	System Testing
	Progression and Regression tests
	
	CBIIT QA Staff

The test cases which we test with JUnit testing can also be automated for Regression testing.

7.0 Test Environment.

 7.1 Tools

	Software Name
	Version
	URL

	Java Software Development Kit
	1.6.0
	http://java.sun.com/javaee/downloads/index.jsp

	MySQL Database
	5.0.45
	http://dev.mysql.com/downloads/mysql/4.1.html

	Oracle
	11g rc2
	Mayo Tools

	Eclipse
	3.5.1
	http://www.eclipse.org/downloads/

	Operating System
	Windows XP Professional
	Mayo

	
	Red Hat Enterprise 5
	

	JUnit
	4.4
	http://sourceforge.net/project/showfiles.php?group_id=15278

8.0 Development / Test Procedures.
 8.1 Test Procedures
Preconditions: Data loads of test terminologies when appropriate. Test case descriptions will be created including test inputs and expected outcome. Results will be maintained in a test matrix.

A test report will be auto generated or written by the Test Administrator. The test matrix will contain the test specification, the expected test values and the output values produced during the test.

 8.2 Incident Tracking
Initial incident tracking will be recorded in the test matrix and JUnit generated test reports.

Incidents (errors and failures) will be recorded in the LexEVS Gforge tracker located here:

https://gforge.nci.nih.gov/tracker/?atid=1850&group_id=491&func=browse
The following fields should be adjusted in the tracker web form upon submission:

	Product
	LexBIG API

	Status
	bug

	Importance to end user
	1 to 5 with “5” designated as a “must have” and “1” designated as a “Not a Priority”

	Component
	client

	Assigned to
	Craig Stancl (Technical Lead)

Additionally, The Test administrator will provide:

· Summary title of the error

· Conditions for causing the error or failure

· Operating System

· Technical Software Stack

· Input value(s)

· Sample code (If appropriate)

· Expected results

· Stack trace or other error or failure description (i.e. freeze up of web page or gui, application crash, web server error message)

8.3 Internal Communication

A Testing status update will be done during the weekly project meeting.

Additional meetings will be scheduled with the developers and the team if necessary.
9.0 Test Controls.
The testing will be done on Unit Test Cases. The Unit test cases that will be used must have passed required functionality before the data can be pulled.
 Entrance Criteria:

· All Unit test cases have been reviewed and approved

· Test environment has been properly set

· All data has been identified

 Exit Criteria:

· Unit test cases have passed.

10.0 Acceptance:

	Test Plan Prepared by
	Scott Bauer
	Date
	4/26/2010

	
	
	
	

	Test Plan Accepted by
	Traci St. Martin
	Date
	

	
	Project Manager
	
	

PAGE
1

