

Mayo Foundation

 Biomedical Statistics and Informatics
LEX BIG SERVICE MANAGER
 Unit Test Plan 2.0
Release 1.0
1.0 INTRODUCTION…………………………………………………………….1

2.0 TEST SCOPE….……………………………………………………………... 3
2.1 FEATURES TO BE TESTED

3.0 TEST APPROACH……………………………………………………………4
4.0 TRACEABILITY MATRIX WITH QUALITY RISK ANALYSIS………….4
5.0 PROJECT RISK AND ASSUMPTIONS……………………………………..5
6.0 SCHEDULE ………………………………………………………………….5
7.0 TEST ENVIRONMENT………………………………………………………5
7.1 TOOLS

8.0 DEVELOPMENT/ TEST PROCUDEURES………………………………….6
8.1 TEST PROCEDURES.

8.2 INCIDENT TRACKING.
8.3 INTERNAL COMMUNICATION.

9.0 TEST CONTROLS……………………………………………………………6
10.0 TEST PLAN APPROVAL…………………………………………………….7
 Document Revision History

	Version
	Description
	Date
	Author

	1.0
	Initial Version
	7/01/2008
	Shalini Nagaraja

	1.1
	Revised for LexEVS 5.1
	8/7/2009
	Scott Bauer

	2.0
	Revised for LexEVS 6.0
	4/26/2010
	Scott Bauer

Test Plan Category and Test Plan Identifier
	 Test Category

	Unit (
	Integration (
	System (
	Performance (
	Other (

1.0 Introduction and Overview
The Test Plan documents the detailed activities and information needed to carry out the approach to testing defined in the Test Strategy. It identifies:

· System End to End validation testing.

· Environments in which testing will occur.

· Identification of teams.(N/A)
· Tools that will be used.

· Resources required for testing.

· The schedule and milestones of testing.

· Test coverage

2.0 Test Scope

The primary scope of testing LexBigServiceManager provides a single write and update access point for all of a service's content. The service manager allows new coding schemes to be validated and loaded, existing coding schemes to be retired and removed and the status of various coding schemes to be updated and changed.

2.1 Features to be tested
2.1.1 LexBigServiceMangager

· Activate Coding Scheme Version.
· Deactivate Coding Scheme Version.
· Get Exporter

· Get Export Extensions.
· Get Extension Registry.
· Get Index.

· Get Loader.

· Get Loader Extension.

· Get Index Extensions.

· Remove Coding Scheme Version.

· Remove Coding Scheme Version Metadata.

· Remove History Service.

· Set Version Tag.
2.1.2 LexBIGService Loader Interfaces.

· HL7 Load
· Index Load
· LexGrid Load
· MetaData Load
· NCI History Load
· NCI MetaThesaurus Load
· OBO Load
· OWL Load
· RadLex Protégé Frames Load
· UMLS History Load
· UMLS Load
3.0 Test Approach

Unit testing is testing of the source code for an individual unit (class or method) by the developer who wrote it. A Unit is to be tested after initial development, and again after any change or modification. The developer is responsible for verifying new code before committing the code to change control.
The goal of Unit Testing for “LexBigServiceManager” module is to ensure there are no errors in the implementation and the application will also tested to verify it meets the requirement specification. LexBIGServiceManager features will be tested using automated unit tests outlined below.
Test results will be accompanied in a separate traceability matrix document LexEVS_60_QA_Traceability

The service manager interface provides user access to loader extensions and functions and allows local server side users to load vocabularies to the server. Test administrators will run JUnits to provide unit testing of each loader against valid sample terminologies. Integration testing requires test administrators to load full reference terminology versions. This exercise provides user acceptance validation of test loads at the same time.
System execution of these unit tests will be the responsibility of the CBIIT QA Staff and will take place on the CBIIT QA tier.
Testing of loaders and load performance will occur in the form of user acceptance on a dedicated CBIIT loading server.

4.0 Traceability Matrix for LexBIGServiceManager
	Scenarios

	Test Cases

	1.1 ActivateCodingSchemeVersion.

	Activate an inactive coding scheme version.

	1.2 DeactivateCodingSchemeVersion.
	 Mark a coding scheme as inactive.

	1.3 Get Exporter.
	Return an instance of the named export extension.

	1.4. GetExportExtensions.
	Returns a description of all registered extensions used to export information loaded to a LexBIGService

	1.5 GetExtensionRegistry.

	 Returns the object used to manage all externally registered extensions to this service.

	1.6 Get Index.

	 Return an instance of the named index extension.

	1.7 GetIndexExtensions.

	 Return a list of registered index extensions supported by this service; empty if none are defined.

	1.8 Get Loader.
	Return an instance of the named loader extension.

	1.9 GetLoaderExtension.
	Returns a description of all registered extensions used to load information for access by a LexBIGService.

	1.8 RemoveCodingSchemeVersion.

	 Remove a pending or inactive coding scheme from the service.

	1.9 RemoveCodingSchemeVersionMetadata.

	Remove the metadata for a coding scheme from the service.

	1.10 RemoveHistoryService.

	Remove pending or inactive coding scheme history information.

	1.11 SetVersionTag.

	 Assign a symbolic tag to a specified coding scheme version.

4.1 Integration Testing

Integration testing will meet the following criteria:

· All integration testing will be automated

· Testing will provide developer-oriented feedback. If a new error has been introduced due to a code change or from resolving an unrelated issue, all new errors will be documented with all appropriate error and log messages

· Integration tests will be run on a predetermined schedule

· Integration testing will include the current development code, as well as any code/tag branches that are intended to be maintained

· Results of each scheduled Integration test will be available immediately after test completion

5.0 Traceability Matrix for LexBIGService Loader Extensions
	Scenarios

	Test Cases

	5.1 HL7 Load
	Load sample HL7 Rim Access data base

	5.2 Index Load
	Load Lucene Index sample

	5.3 LexGrid Load
	Load sample LexGrid Xml

	5.4 Metadata Load
	Load sample Metadata to valid xml external file

	5.5 NCI History Load
	Load sample History to history table

	5.6 NCI MetaThesaurus Load
	Load sample NCI MetaThesaurus RRF source

	5.7 OBO Load
	Load sample OBO source file

	5.8 OWL Load
	Load sample OWL file

	5.9 RadLex Protégé Frames Load
	Load sample RadLex Protégé Frames source file

	5.10 UMLS History Load
	Load UMLS History to history table

	5.11 UMLS Load
	Load UMLS RRF source sample

	5.12 Mapping Scheme Loaded
	Load a Mapping Scheme to LexGrid as a Coding Scheme

5.1 Integration Testing

Integration testing is designed to test the interaction of the Service Interfaces with each other. Test data used for testing is intended to mimic a production vocabulary environment, while being scaled down to a size useful for testing. Certain assumptions are made of the test data:

· At least one format of every available loader is loaded in the test suite.

· Test data is as close to actual production data as possible.

· Certain scenarios may be artificially inserted into the test data for testing purposes.

· If the test data cannot reproduce a known issue, either new test data will be introduced, or existing data will be modified.

6.0 Quality Risk Analysis

The following is a list of the possible risks to the successful outcome of testing.
	Identified Risk
	Impact on Project
(High, Medium, Low)

	Requirement changes
	High

	Code changes
	High

7.0 Schedule
	Task
	Dependency

	Duration
	Responsible Role

	JUnit Testing
Progression Testing (Automated)
	Code component completion
	Ongoing, but completing without fail before system testing
	Mayo Staff

	JUnit Testing
Regression testing

(Automation, Manual)
	Code component completion
	Ongoing but completing without fail before system testing
	Mayo Staff

	Performance
	Code component completion
	One week
	To be determined

	System Testing
	Progression and Regression tests
	
	CBIIT QA Staff

The test cases which we test with JUnit testing can also be automated for Regression testing.
8.0 Test Environment.
8.1 Tools

	Software Name
	Version
	URL

	Java Software Development Kit
	1.6
	http://java.sun.com/javaee/downloads/index.jsp

	MySQL Database
	5.0,45
	http://dev.mysql.com/downloads/mysql/4.1.html

	Oracle
	11g rc2
	Mayo Tools

	Eclipse
	3.2
	http://www.eclipse.org/downloads/

	Operating System
	Windows XP Professional
	Mayo

	
	Red Hat Enterprise 5
	

	JUnit
	4.4
	http://sourceforge.net/project/showfiles.php?group_id=15278

9.0 Development / Test Procedures.

9.1 Test Procedures.

Preconditions: Data loads of test terminologies when appropriate. Test case descriptions will be created including test inputs and expected outcome. Results will be maintained in a test matrix.

A test report will be auto generated or written by the Test Administrator. The test matrix will contain the test specification, the expected test values and the output values produced during the test.

 8.2 Incident Tracking
Initial incident tracking will be recorded in the test matrix and JUnit generated test reports.

Incidents (errors and failures) will be recorded in the LexEVS Gforge tracker located here:

https://gforge.nci.nih.gov/tracker/?atid=1850&group_id=491&func=browse
The following fields should be adjusted in the tracker web form upon submission:

	Product
	LexBIG API

	Status
	bug

	Importance to end user
	1 to 5 with “5” designated as a “must have” and “1” designated as a “Not a Priority”

	Component
	client

	Assigned to
	Craig Stancl (Technical Lead)

Additionally, The Test administrator will provide:

· Summary title of the error

· Conditions for causing the error or failure

· Operating System

· Technical Software Stack

· Input value(s)

· Sample code (If appropriate)

· Expected results

· Stack trace or other error or failure description (i.e. freeze up of web page or gui, application crash, web server error message)

8.3 Internal Communication

A Testing status update will be done during the weekly project meeting.

Additional meetings will be scheduled with the developers and the team if necessary.
8.4 Internal Communication.
A Testing status update will be done during the weekly project meeting.

Additional meetings will be scheduled with the developers and the team if necessary.
10.0 Test Controls.
The testing will be done on Unit Test Cases. The Unit test cases that will be used must have passed required functionality before the data can be pulled.
 Entrance Criteria:
· All Unit test cases have been reviewed and approved

· Test environment has been properly set

· All data has been identified

 Exit Criteria:

· Unit test cases have passed.

10.0 Acceptance:

	Test Plan Prepared by
	Scott Bauer
	Date
	4/26/2010

	
	
	
	

	Test Plan Accepted by
	Traci St. Martin

	Date
	

	
	Project Manager
	
	

Approval of the Test Plan indicates that the Project Manager is satisfied that the planned approach to validate the interface is functioning appropriately; and that it will satisfy the requirement to confirm that the interface will not adversely impact core functionality / operations of the system.

PAGE
8

