DTS and DTSRPC Admin Guide

2Objective

2Background

2Components

2Oracle

2DTS

4DTSRPC

6Tomcat

8Querying DTS/DTSRPC

8caCORE EVS API

8Web Browser

9Updating DTS/DTSRPC

10Load to QA

13Load to Stage

15Load to Prod

18Testing DTS/DTSRPC

18Through browser

19Through API

20Through DTSRPC Monitor

21Through SearchClasses app

21Through DTS Monitor

Objective

This guide is meant to aid administrators in deploying and troubleshooting DTS and DTSRPC components.
Background

The Distributed Terminology Server (DTS) is a proprietary Apelon Inc. product that allows for the viewing and querying of structured terminologies. The DTS works against an Oracle database backend and presents its access through a java API.

EVS uses DTS to publish a number of vocabularies such as the NCI Thesaurus, SNOMED and MedDRA. Each vocabulary gets its own DTS instance running on its own port. In order to present a consolidated interface to caCORE, add certain functionality and to hide any changes created by DTS versioning, EVS places an RPC layer above the DTS. The DTSRPC connects to the running DTS instances and collects them for access under a single port.
Components

Oracle

Each DTS instance is connected to an individual Oracle schema. The vocabulary data is received from the various sources, is processed into Apelon’s proprietary Ontylog xml format, then loaded into the Oracle schemas using Wintel based Apelon utilities.
DTS

DTS is a proprietary application supplied by Apelon, Inc. Production instances require a licensing fee, but testing instances are not charged. Each DTS instance runs in its own JVM. Multiple DTS instances can run on the same machine, but each must be on its own port. The DTS application was developed under Java 1.4 and has resisted attempts to run it under Java 1.5.

[image: image1.emf]Oracle Schema

username: evs1

password: evspwd1

…

 $JAVA_HOME/bin/java -Xmx256m -Dfile.encoding=UTF8 -Dorg.xml.sax.driver=org.apache.xerces.parsers.SAXParser -

classpath $CLASSPATH com.apelon.apelonserver.server.ApelonServer -cf apelonserverprops_evs.xml &

...

apelonserverprops_evs.xml

runEVS.s

<apelonserverconfig>

 <property name="port" value="6971" />

...

<connection default="true">

...

 <property name="user" value="evs1" />

 <property name="pass" value="evspwd1" />

 <property name="host" value="cbiodb10.nci.nih.gov" />

 <property name="database_name" value="EVSPROD" />

...

 </connection>

…

 <queryserver>

 <property name="qs" value="com.apelon.dts.server.TreeServer" />

 <property name="maxDbConns" value="15" />

 <property name="header" value="DTS:020" />

 <property name="cs" value="200" />

 </queryserver>

…

</apelonserverconfig>

Documentation

Apelon documentation

Apelon supplies a set of administration documents for the DTS. These documents are available in the files section of the DTSRPC project in Gforge: http://gforge.nci.nih.gov/frs/?group_id=72
Javadocs

The Apelon DTS javadocs are available on the EVS intranet site at https://ncicbintra.nci.nih.gov/intra/caCORE/cacorelfs/evs/EVS_SoftwareDocs/DTS3.1_javadocs/index.html .
apelonserverprops_*.xml

Each apelon DTS has a corresponding apelonserverprops configuration file. This file supplies the schema information for the Oracle database, the caching information for the various types of DTS queries, the port that the DTS should run on, and other parameters. Rather than take a DTS instance down for the entire period of a data update, EVS rotates schemas. Once the new schema is fully loaded, the apelonserverprops is edited to point to it and the DTS is restarted.
run*.sh

Each DTS instance has its own run script that tells it which apelonserverprops file it should use for configuration.
lib

The multiple DTS instances share a single lib folder. This folder contains a number of proprietary Apelon jars.
DTSRPC

The DTSRPC is a locally developed application that wraps the DTS. The DTSRPC will connect to all specified DTS instances that are running at the time the DTSRPC is started. It will not listen for new DTS instances to start, even if they are listed in the DTSRPC’s configuration file. It is tolerant of connected DTS instances going down and being restarted, as long as the DTS is not down for an extended period of time. The DTSRPC was developed for a number of reasons.

One, it consolidates the various DTS instances under a single port. This allows EVS to add new vocabularies without caCORE having to code a new port into their application.

Two, it shields the caCORE from any changes made to the DTS API when EVS adopts a new version of the DTS software.

Three, it adds functionality that DTS does not directly support such as getTree, getMatchedTerms, and isRetired in response to specific caCORE user requirements.

Four, it keeps us from having to distribute the proprietary Apelon DTS Client jars to the caCORE.
Documentation

User Guide

The User Guide for DTSRPC version 2.0 is available on the EVS intranet site at https://ncicbintra.nci.nih.gov/intra/caCORE/cacorelfs/evs/Developer/DTSRPC-API_UsersGuide_V2.0.doc . This is in the process of being updated for version 2.1.
Javadocs

The javadocs for the DTSRPC version 2.1 are available at https://ncicbintra.nci.nih.gov/intra/caCORE/cacorelfs/evs/EVS_SoftwareDocs/DTSRPC2.1_javadocs/client/API/index.html .
DTSRPC.xml

This is the master configuration file for the DTSRPC. It tells the application which DTS instances to connect to and what ports they will be found on. It also tells the DTSRPC what port it should run on. For each DTS instance under the DTSRPC, it is able to cache trees specified within the DTSRPC.xml. Finally, the DTSRPC.xml provides a name, version number and description for each DTS vocabulary that can be retrieved by downstream applications.

For the NCI Thesaurus only, the DTSRPC.xml provides JDBC information for direct DTSRPC connection to the Oracle schema. This is to meet a requirement in support of the Clinical Trials application. Because of the JDBC and version information, the DTSRPC.xml must be edited when a new vocabulary version is released.

[image: image2.emf]<dtsrpc>

<vocabularies>

<host>localhost</host>

<port>7085</port>

<jdbc>

<jdbc-host>cbiodb10.nci.nih.gov</jdbc-host>

<jdbc-port>1521</jdbc-port>

<dsn>EVSPROD</dsn>

<user>evs1</userr>

<password>evspwd1</password>

</jdbc>

<vocabulary>

<name>NCI_Thesaurus</name>

<description>Published by NCI, this knowledgebase contains the working

vocabulary used in NCI data systems. It covers clinical, translational and basic research as well as

administrative terminology.</description>

<version>06.01c</version>

<namespaceid>40010</namespaceid>

<cached>partial</cached>

<cached-roots>

<cached-root>Murine_Tissue_Type</cached-root>

</cached-roots>

<mixedtree>

<root>Anatomic_Structure_System_or_Substance</root>

<roles>

<role>Anatomic_Structure_Is_Physical_Part_Of</role>

</roles>

<files>

<isafile>../../data/anatomy_isa.dat</isafile>

<rolefile>../../data/anatomy_role.dat</rolefile>

<propertyfile>../../data/anatomy_prop.dat</propertyfile>

</files>

</mixedtree>

</vocabulary>

</vocabularies>

<vocabularies>

<host>localhost</host>

<port>7060</port>

<vocabulary>

<name>GO</name>

<description>Gene Ontology vocabulary</description>

<version>March 2006</version>

<namespaceid>40020</namespaceid>

<cached>none</cached>

</vocabulary>

</vocabularies>

<serverport>6550</serverport>

</dtsrpc>

lib

The jar files required by the DTSRPC, including some proprietary Apelon jars used for interaction with the DTS. The DTSRPC functionality itself is divided into two main jars, the dtsrpcserver.jar and the dtsrpclient.jar.
dtsrpcserver.jar

This jar encompasses all the server functionality of the DTSRPC, including the connection to the Apelon DTS.
dtsrpcclient.jar

This jar is used on the client side to contact the DTSRPC. The caCORE EVS API is built using this jar in order to be able to contact the DTSRPC server. The NCIBrowser web application also includes this jar for the same purpose.
data directory anatomy files

These files are shared by both the DTSRPC 2.0 and DTSRPC 2.1 to display “mixed” trees. These are special hierarchies that are built using relationships other than the standard “is-a” structure. They are stored in the directory /usr/local/TRW-EVS/data
Two versions

EVS currently supports two version of the DTSRPC.
DTSRPC 2.0 / caCORE 3.0
The DTSRPC 2.0 is kept running in support of caCORE 3.0. There will be no further software development occurring on version 2.0, unless a severe bug is discovered. The vocabularies that were active at the time that we switched to caCORE 3.1 will be kept alive and updated. Any new vocabularies we choose to add will only be available through DTSRPC 2.1.
DTSRPC 2.1 / caCORE 3.1

The DTSRPC version 2.1 is the current production version. Any new software development will be done on this code base.
Tomcat

Tomcat hosts the NCIBrowser web application. This application allows users to search and browse the NCI Thesaurus and other published vocabularies from the internet.
DTSConf.xml

This is the main configuration file for the NCIBrowser. It tells the NCIBrowser which vocabularies to present to the user. It also has directions on how the data within individual vocabularies should be displayed. The welcome page of the NCIBrowser displays the version number of the vocabularies being presented, so must be updated when versions change.
DTSRPCClient.cfg

This configuration file tells the NCIBrowser where to find the DTSRPC.
tree files

Each vocabulary is capable of displaying a simple is-a tree hierarchy. These trees are generated as dat files and interpreted by the NCIBrowser. The tree files are updated when the vocabulary version changes and the new dat files are placed within the NCIBrowser.war.

files directory

Some vocabularies, such as the NCI Thesaurus, are capable of displaying a graph tree hierarchy. These are relationship diagrams that can be built on the fly for a given concept. This functionality uses the AT&T Graphviz software to build and display the graphical representation of a concept and it’s related concepts.

This function creates two files in the NCIBrowser/files directory every time a graph is generated. Although it has not happened yet, it is theoretically possible that heavy use of the graph tree function could load up the server hard drive with lots of Graphviz files. This file folder is automatically emptied by being overwritten when a new NCIBrowser.war is distributed.

[image: image3.emf]EVS

DTSRPC

DTS Instances

DTS

n

DTS

1

Web Server

NCIBrowser

URL

forwarded

Oracle

Tomcat

Apache

caCORE EVS

API

caDSR

DTS

1

DTS

n

Querying DTS/DTSRPC
There are two methods that are used to pull data from the DTS, either through the NCIBrowser or through the DTSRPC API using caCORE.
caCORE EVS API

The caCORE EVS API version 3.1 uses the dtsrpcclient.jar to interact with the DTSRPC server. The main commerce is for the caCORE EVS API to submit a parametered query and get back a DTSRPC concept object. The caCORE EVS API then converts this to a Description Logic concept object for use in its internal functions.

In the 3.0 version of the caCORE, there was a cyclical dependency between DTSRPC and caCORE. The DTSRPC returned a Description Logic concept, using the caCORE client jar to form the object. The caCORE EVS API then would include the dtsrpcclient.jar in their code to call the DTSRPC. This made software development very complex and interdependent between the two projects. This cycle was broken with caCORE 3.1, however the change means that DTSRPC 2.1 is not backwards compatible with caCORE 3.0. That is why we keep both versions of the DTSRPC running in parallel.
Web Browser

Internet uses can search and browse the DTS vocabularies using the NCIBrowser. The NCIBrowser calls the DTSRPC API, just like the caCORE does. Using the browser is one way of testing to see if the DTSRPC is functioning correctly.
Occasionally outside groups will ask us to host a new vocabulary. We will convert it to our format, publish it on DTS and put it in the DTSRPC. We will then invite the requesters to review the vocabulary over the internet to see if it appears as they would expect. However, we may not be ready to add it to the public face of the NCIBrowser. We will then take the NCIBrowser application and manipulate the DTSConf.xml to display only the vocabulary we are interested in testing. We will build a new war file with only this vocabulary and distribute it as a new web application. Once the application has been reviewed, we may ask that the custom web application be removed as it is no longer necessary.
Updating DTS/DTSRPC

The NCI Thesaurus is updated monthly. Other vocabularies are updated on various schedules, depending on when the source organization does a release. Since the NCI Thesaurus is the most common case, the following instructions are written with the NCI Thesaurus is mind. Any variations for other vocabularies are likely to be minor and can be dealt with in the instructions of the individual deployment requests.

The main difference between the NCI Thesaurus and all other vocabularies is the Pre-Thesaurus. When the editors deliver the monthly NCI Thesaurus build, it must go through a series of QA, history processing, and formatting steps before it is ready for access by API users. This series of activities can take some time. While this is ongoing, EVS puts up a “beta” version of the NCI Thesaurus, called the Pre-Thesaurus, for editors and outside collaborators to review the content through the browser. Their feedback is incorporated into the monthly QA and processing. This Pre-Thesaurus is first deployed on QA, just to make sure it will display in the browser. It is then promptly submitted to production to allow the outside reviewers a chance to get a look at it.
Load to QA

	EVS
	Systems
	Other Apps

	Load Oracle tables
	
	

	Restart DTS
	
	

	Generate new trees
	
	

	Edit DTSRPC.xml
	
	

	Restart DTSRPC
	
	

	Edit NCIBrowser.war
	
	

	Restart Tomcat
	
	

	Notify developers
	
	

	
	
	Regression testing

The processed NCI Thesaurus is first loaded onto the QA server, it rests there for at least two weeks, usually more, in order to allow downstream applications to test their production level applications against the new data.
Apelon database scripts

Apelon has provided a set of Windows based processing and load scripts that are used to create the DTS vocabulary schemas in Oracle. Apelon does not support the use of these scripts in Linux. EVS currently runs these scripts from the ncievs-test2 server.

In order to minimize downtime, EVS rotates database schemas. If the database schema for NCI Thesaurus was named evs1 last month, we will make the new one evs2. Next month will go back to evs1, and so on. The new database schema can be fully loaded and readied while the DTS remains running attached to the old schema.
Edit apelonserverprops_nci.xml to point to new schema

Once the schema is loaded, the apelonserverprops for the vocabulary must be edited to point to the new schema. The only lines in the apelonserverprops that need to be modified are

 <property name="user" value="evs1" />

 <property name="pass" value="evspwd1" />

Restart DTS pointed at new schema

Once the apelonserverprops has been updated, the DTS must be restarted to use these new parameters. This is done using the following commands:

sh runNCI.s stop

sh runNCI.s start

The DTS can take several seconds to establish connection and restart. The DTS has finished booting when it outputs "Starting socketServer"
Generate trees

Once the new vocabulary is up on the DTS for the first time an application is run to generate the tree files. For NCI Thesaurus this process is run twice, once to generate the tree hierarchy for the NCIBrowser and once to generate the anatomy files subset for the DTSRPC data directory. The anatomy files are copied into the /usr/local/TRW_EVS/data directory and the main tree files are copied into the NCIBrowser packaging directory for inclusion in the NCIBrowser.war file.
Edit DTSRPC.xml

Once the tree files are ready, the DTSRPC.xml can be edited to update the version number of the vocabulary. For NCI Thesaurus, the JDBC settings also need to be adjusted to point to the new schema. This needs to be done for both DTSRPC 2.0 and DTSRPC 2.1. Due to slightly different requirements by the different versions and possibly different vocabulary lists, the DTSRPC.xml cannot be shared.
Restart DTSRPC (2.0 and 2.1)
When the DTSRPC.xml has been edited, the DTSRPC must be restarted to take advantage of the new settings and to cache the new trees. This process can take 20 to 30 minutes. This is done using the following commands in each DTSRPC.
sh runDTSRPC.s stop

sh runDTSRPC.s start
Edit NCIBrowser.war
The new tree files for the NCI Thesaurus should have been copied in already during the Generate trees step, above. Now the DTSConf.xml needs to be edited to display the correct version number of the vocabulary.
Restart Tomcat

With the DTSConf.xml updated, the Tomcat needs to be restarted in order to cache the newly created tree files. The tree files are not cached at Tomcat boot up, but at the first time the NCIBrowser is accessed after Tomcat bootup. Therefore, it is a good idea to browse to the vocabulary at http://nciterms-qa.nci.nih.gov using Internet Explorer (important, Firefox and NCIBrowser don’t always get along during initial access) and click Connect after a Tomcat reboot. The long pause experienced will be the trees being loaded.
Notify developers listservs

When the vocabulary has been loaded a notice is sent to the developers listservs inviting them to test their production level applications against the new data set. The vocabulary is normally left on testing for two to three weeks, depending on feedback.
Update spreadsheet

EVS keeps a spreadsheet to track the various DTS vocabularies, what schema they are using, and what status they are in. This spreadsheet is updated as events proceed.
Load to Stage

	EVS
	Systems
	Other Apps

	Load Oracle tables
	
	

	Send Deployment request
	
	

	
	Deploy tar
	

	
	Restart DTS
	

	
	Restart DTSRPC 2.0 and 2.1
	

	
	Restart Tomcat
	

	Notify developers
	
	

	
	
	Testing

After a period sufficient for regression testing, the vocabulary is loaded onto stage. EVS does not have direct access to the Staging server, so builds a deployment tar ball that is distributed to Systems using the EVS private ftp server : ncicbftps/evs/Stage.
Export schema from EVSTEST and import to EVSSTG

The Oracle schema is transferred from the EVSTEST database to the EVSSTG database using a simple export and import script.
Alter apelonserverprops_nci to point to new schema

The apelonserverprops is altered to point to the newly imported schema. Normally this is accomplished by overwriting with a new apelonserverprops included in the tar ball.
Restart DTS pointed at new schema

With the new apelonserverprops in place, the DTS is restarted to point at the new schema. This is done using the following commands:

sh runNCI.s stop

sh runNCI.s start

The DTS can take several seconds to establish connection and restart. The DTS has finished booting when it outputs "Starting socketServer"
Copy anatomy trees

For the NCI Thesaurus, the tar ball will overwrite the files in the /usr/local/TRW_EVS/data directory with a new set of anatomy tree files.
Copy DTSRPC.xml (2.0 and 2.1)

For vocabularies that we in existence for caCORE 3.0, the tar ball will copy in new DTSRPC.xml files to both the DTSRPC 2.0 and DTSRPC 2.1 servers. For vocabularies added since caCORE 3.1, only the DTSRPC version 2.1 will be updated.
Restart DTSRPC (2.0 and 2.1)

The DTSRPC(s) should be restarted once the DTSRPC.xml is updated. This process can take 20 to 30 minutes and is finished when it outputs “DTSRPC started on port ####”. This is done using the following commands.

sh runDTSRPC.s stop

sh runDTSRPC.s start
Deploy NCIBrowser.war
The tar ball will copy in a new NCIBrowser.war to the tomcat-5.5.9/webapps directory, overwriting the old. This carries with it the new tree files, new DTSConf.xml and has the effect of clearing out the files directory.
Restart Tomcat

With the NCIBrowser updated, the Tomcat needs to be restarted in order to cache the newly created tree files. The tree files are not cached at Tomcat boot up, but at the first time the NCIBrowser is accessed after Tomcat bootup. Therefore, it is a good idea to browse to the vocabulary at http://nciterms-stage.nci.nih.gov using Internet Explorer (important, Firefox and NCIBrowser don’t always get along during initial access) and click Connect after a Tomcat reboot. The long pause experienced will be the trees being loaded.
Notify developers listservs

When the vocabulary has been loaded a notice is sent to the developers listservs inviting them to test their production level applications against the new data set. The vocabulary is normally left on testing for one week, depending on feedback.
Update spreadsheet

EVS keeps a spreadsheet to track the various DTS vocabularies, what schema they are using, and what status they are in. This spreadsheet is updated as events proceed.
Load to Prod

	EVS
	Systems
	Other Apps

	Load Oracle tables
	
	

	Send Deployment request
	
	

	
	Deploy tar
	

	
	Restart DTS
	

	
	Restart DTSRPC 2.0 and 2.1
	

	
	Restart Tomcat
	

	Notify developers and users
	
	

	Upload files to ftp site
	
	

	Update download site html
	
	

	
	Deploy download site html
	

After a period sufficient for regression testing, the vocabulary is loaded onto Production. EVS does not have direct access to the Production server, so builds a deployment tar ball that is distributed to Systems using the EVS private ftp server : ncicbftps/evs/Prod.
Export schema from EVSSTG and import to EVSPROD

The Oracle schema is transferred from the EVSSTG database to the EVSPROD database using a simple export and import script.
Copy in apelonserverprops_nci to point to new schema

The apelonserverprops is altered to point to the newly imported schema. Normally this is accomplished by overwriting with a new apelonserverprops included in the tar ball.
Restart DTS pointed at new schema

With the new apelonserverprops in place, the DTS is restarted to point at the new schema. This is done using the following commands:

sh runNCI.s stop

sh runNCI.s start

The DTS can take several seconds to establish connection and restart. The DTS has finished booting when it outputs "Starting socketServer"
Copy anatomy trees

For the NCI Thesaurus, the tar ball will overwrite the files in the /usr/local/TRW_EVS/data directory with a new set of anatomy tree files.
Copy DTSRPC.xml (2.0 and 2.1)

For vocabularies that we in existence for caCORE 3.0, the tar ball will copy in new DTSRPC.xml files to both the DTSRPC 2.0 and DTSRPC 2.1 servers. For vocabularies added since caCORE 3.1, only the DTSRPC version 2.1 will be updated.
Restart DTSRPC (2.0 and 2.1)

The DTSRPC(s) should be restarted once the DTSRPC.xml is updated. This process can take 20 to 30 minutes and is finished when it outputs “DTSRPC started on port ####”. This is done using the following commands.

sh runDTSRPC.s stop

sh runDTSRPC.s start
Deploy NCIBrowser.war

The tar ball will copy in a new NCIBrowser.war to the tomcat-5.5.9/webapps directory, overwriting the old. This carries with it the new tree files, new DTSConf.xml and has the effect of clearing out the files directory.
Restart Tomcat

With the NCIBrowser updated, the Tomcat needs to be restarted in order to cache the newly created tree files. The tree files are not cached at Tomcat boot up, but at the first time the NCIBrowser is accessed after Tomcat bootup. Therefore, it is a good idea to browse to the vocabulary at http://nciterms.nci.nih.gov using Internet Explorer (important, Firefox and NCIBrowser don’t always get along during initial access) and click Connect after a Tomcat reboot. The long pause experienced will be the trees being loaded.
Notify developers and users listservs

With the new vocabulary up on production, a notice is sent to the developer and users listservs notifying them of the update.
Update spreadsheet

EVS keeps a spreadsheet to track the various DTS vocabularies, what schema they are using, and what status they are in. This spreadsheet is updated as events proceed.
Move files to ftp site

When a new NCI Thesaurus goes into production, EVS releases a copy of the data in various formats (xml, OWL and text). These are placed on the public caCORE ftp site.
Update download site text and submit

Once the data files are available on the ftp site, the html for the NCICB EVS download site is updated and submitted to App support.
Move Thesaurus.owl to zope site – Notify Cliff and Horacio

One particular data file called Thesaurus.owl is made available for direct access on the ncicb web site. It is placed by EVS in the http://ncicb-dev.nci.nih.gov/xml/owl/EVS/manage directory. A notice is then sent to Clint Malone and Horacio Chamorro to move this up to http://ncicb.nci.nih.gov/xml/owl/EVS/ .
Testing DTS/DTSRPC

There are several methods for testing or probing the DTS and DTSRPC. It is not suggested that Systems does all these tests each time. Checking the browser will tell if the NCIBrowser.war that accompanies each update has been built and deployed correctly and will give some information about the underlying DTSRPC and DTS. Checking through the caDSR will tell if the API’s are working from top to bottom. The browser and caDSR tests should be sufficient for most installs, with the other tests being done for debugging purposes if an issue is discovered. (Note: caDSR will be supplying us with a set of tests to perform. Until then, the caCORE EVS API will test from the caBIO level on down).
Through browser

	Tests to perform after Deploy
	Results expected

	Browse to web site. View version
	Should match version from Deployment request

	Click Connect
	Search page should display

	Examine Drop down boxes
	Should be populated

	Click Browse Hierarchy
	New page should open with tree display.

	Enter “gene” in search box, click GO
	After a few seconds should get a list of matching concepts

	Click History link
	Should get new window displaying history records for the concept

	Click Graph
	Should get a roles selection page with a list of roles to the left

	Click Select in Graph window
	Should display a graphic of the concept and any related concepts

Different functions of the browser can test for different areas of functionality. First step is always to navigate to the browser page, select the vocabulary of interest, and click Connect. This should, after a few seconds, open up the browser search page. If it doesn’t, then there is a problem with the NCIBrowser.war. The possibilities are numerous and usually have to deal with a syntax error in the DTSConf.xml or a packaging error when building the war.

Drop Down box review

Once connected to a vocabulary, a window should open revealing a group of drop down boxes at the top of the page, a menu bar just beneath these, and a series of links in the left hand sidebar. The drop down boxes below “Advanced Search” should have text in them. This text is pulled from the DTSRPC for display. If there is no text here, then something at the DTSRPC or below is broken
Browse Hierarchy

Once connected to a vocabulary, click the Browse Hierarchy button on the menu bar just beneath all the drop down boxes. A new window should open up displaying one or mode nodes with little plus signs to the left of them. Clicking on a plus sign should open the node and display the immediate children. For NCI Thesaurus there should be about 20 original parent nodes. (WARNING: When testing, please don’t click on the Chemotherapy Regimen or Retired Concept nodes. These are very large, flat trees that will take several minutes to open). If you do not see this display, then something has gone wrong in either the creation or distribution of the tree files.
Search

Practically all the vocabularies we publish have a concept that will match the search string “gene”. Enter “gene” in the search box at the upper left and click “GO”. In the main window you should soon see a list of concepts that match this search, each with two red buttons to the left of it. The button with the three white lines will retrieve and display the detail information about the concept. The button with the little diamond will open the tree hierarchy window and locate the chosen concept in the tree. (If the search tells you “no concepts found”, then you can try another term or a shorter search string. If you cannot raise any results no matter what you enter, then something may be broken in anything from the browser on down. Further testing is needed to isolate the problem)
History

Provided you have a result list, click the detail button. The details for the selected concept should appear. At the top of the concept details will be a link for History. Click this and a new window should appear displaying a record of when the concept was created, modified, etc. If nothing appears or you get a message saying there is no history, then we made an error in the database load.

Graph

In the NCI Thesaurus and select other vocabularies there will be a Graph link next to the history link. If this link is missing in the NCI Thesaurus, then we have either not included the necessary tree files or not declared them properly in the DTSConf.xml.

If present, click Graph. A new window will appear with a list of roles on the left. For NCI Thesaurus this list is very long, so you will need to scroll down the page a little before you see the select button. You don’t need to select anything else, just accept the default and click Select. A graphic should appear showing the current concept and its relationship (if any) to other concepts. If the graphics does not appear or you get an error, this could mean that Graphviz is not installed or not working right. It could also mean that there is a problem with the tree files or the DTSConf.xml
Sitescope

Systems has the Sitescope application which queries the Tomcat servlet on a regular basis. If anything breaks on the stack, this should detect it.
Through caCORE EVS API

	Tests to perform after Deploy
	Results expected

	Query the relevant caCORE server with GetHTML?query=DescLogicConcept[@name=blood*]
(example http://cabio.nci.nih.gov/cacore31/GetHTML?query=DescLogicConcept%5b@name=blood*]
	Should get one class returned with a list of properties and other details.

	Query the relevant caCORE server with GetHTML?query=DescLogicConcept[@name=blood*]
(example http://cabio.nci.nih.gov/cacore31/GetXML?query=DescLogicConcept[@name=blood*]
	Should get an XML output of the concept and its properties.

The developers’ listservs are notified when a new version of the vocabulary has been placed on a tier. It is expected that the dependent apps will run quick regression tests against the API to ensure that nothing has been disrupted. Each EVS tier has a matching API URL.

Production: ncidts.nci.nih.gov
Staging: ncidts-stage.nci.nih.gov
QA: ncidts-qa.nci.nih.gov
Each of these has a matching caCORE EVS API

Production: http://cabio.nci.nih.gov/cacore31/
 Staging: http://cabio-stage.nci.nih.gov/cacore31/

QA: http://cabio-qa.nci.nih.gov/cacore31/

The NCIBrowser uses the same API as the dependent applications, so if a search on “gene” was successful for the above test, it indirectly shows that the DTS and DTSRPC API are functioning.
EVSTest app
The CDE Curation tool has provided a small set of tests that can be used to test NCI Thesaurus through the caCORE EVS API. This is available on GForge at http://gforge.nci.nih.gov/frs/?group_id=33 and is called EVSTEST_3_1_0.zip.
Through caDSR

	Tests to perform after Deploy
	Results expected

	TBD
	TBD

	
	

Through DTSRPC Monitor

	Tests to perform after Deploy
	Results expected

	Open DTS Monitor
	Should see a list of all vocabularies specified in the DTSRPC.xml

	Click the vocabulary to be tested then click continue
	Should flip to a new window showing all the trees currently cached (if any) for that vocabulary. If you get a connection error, then the DTSRPC was not able to find the DTS for that vocabulary.

Northrup Grumman, which wrote the DTSRPC, has also provided a Windows based GUI application that can be used to view a running DTSRPC server. This application displays all of the DTS instances currently listed under the DTSRPC. The user can select each in turn to test if the connection between the DTSRPC and the selected DTS is still active. Details on the use of the application can be found in the DTSRPC monitor packages on the DTSRPC GForge site. There are separate versions for DTSRPC 2.0 (supporting caCORE 3.0) and DTSRPC 2.1 (supporting caCORE 3.1).

Through SearchClasses app

	Tests to perform after Deploy
	Results expected

	Open the Search Classes and select to search DTS
	Should be prompted for connection info

	Enter the appropriate host machine to be tested and the port number for the vocabulary to be tested (port can be found using DTSRPC Monitor, above).
	Should change to a search page. If you get a connection error, than the SearchClasses app was not able to find a vocabulary at the location you specified.

	Enter the search term gene* and click Search
	Should get a list of results, no matter what vocabulary you are searching.

Northrup Grumman has provided a Wintel GUI application that can be used to connect with and query a running DTS service. The user will need to know the server and port that the DTS is running on (information that can be drawn from the DTSRPC Monitor, above). This allows the user to look directly at the DTS to see its state, bypassing the DTSRPC. Details on the use of the application can be found in the SearchClasses package on the DTSRPC GForge site.
Through DTS Monitor

Northrup Grumman has provided a two part application that can monitor a list of DTS services provided in a configuration file. This application will be documented, packaged, and placed on the DTSRPC GForge site for use by Systems.

The server portion of this application will ping all the DTS services on the list, looking for a response. This application can then send an email to a specified list of users when a DTS service goes down.

The client portion of this application provides a Windows GUI than can be used to view the listed DTS services, ping them on request, and see how long they have been running.
DTS and DTSRPC Admin Guide.doc

Page 20 of 22
May 4, 2006

_1208256173.vsd
<dtsrpc>
	<vocabularies>
		<host>localhost</host>
		<port>7085</port>
		<jdbc>
			<jdbc-host>cbiodb10.nci.nih.gov</jdbc-host>
			<jdbc-port>1521</jdbc-port>
			<dsn>EVSPROD</dsn>
			<user>evs1</userr>
			<password>evspwd1</password>
		</jdbc>
		<vocabulary>
			<name>NCI_Thesaurus</name>
			<description>Published by NCI, this knowledgebase contains the working vocabulary used in NCI data systems. It covers clinical, translational and basic research as well as administrative terminology.</description>
			<version>06.01c</version>
			<namespaceid>40010</namespaceid>
			<cached>partial</cached>
			<cached-roots>
				<cached-root>Murine_Tissue_Type</cached-root>
			</cached-roots>
			<mixedtree>
				<root>Anatomic_Structure_System_or_Substance</root>
				<roles>
					<role>Anatomic_Structure_Is_Physical_Part_Of</role>
				</roles>
				<files>
					<isafile>../../data/anatomy_isa.dat</isafile>
					<rolefile>../../data/anatomy_role.dat</rolefile>
					<propertyfile>../../data/anatomy_prop.dat</propertyfile>
				</files>
			</mixedtree>
		</vocabulary>
	</vocabularies>
	<vocabularies>
		<host>localhost</host>
		<port>7060</port>
		<vocabulary>
			<name>GO</name>
			<description>Gene Ontology vocabulary</description>
			<version>March 2006</version>
			<namespaceid>40020</namespaceid>
			<cached>none</cached>
		</vocabulary>
	</vocabularies>

	<serverport>6550</serverport>
</dtsrpc>�

DTSRPC.xml�

_1208263683.vsd
Cluster�

Data�

EVS�

�

DTS1�

DTSRPC�

DTSn�

�

Oracle�

DTS Instances�

Web Server�

NCIBrowser�

Tomcat�

URL forwarded�

Apache�

caCORE EVS API�

caDSR�

DTS1�

DTSn�

�

_1208255622.vsd
Data�

Oracle Schema
username: evs1
password: evspwd1�

�
 $JAVA_HOME/bin/java -Xmx256m -Dfile.encoding=UTF8 -Dorg.xml.sax.driver=org.apache.xerces.parsers.SAXParser -classpath $CLASSPATH com.apelon.apelonserver.server.ApelonServer -cf apelonserverprops_evs.xml &
...�

<apelonserverconfig>
 <property name="port" value="6971" />
...
<connection default="true">
...
 <property name="user" value="evs1" />
 <property name="pass" value="evspwd1" />
 <property name="host" value="cbiodb10.nci.nih.gov" />
 <property name="database_name" value="EVSPROD" />
...
 </connection>
�
 <queryserver>
 <property name="qs" value="com.apelon.dts.server.TreeServer" />
 <property name="maxDbConns" value="15" />
 <property name="header" value="DTS:020" />
 <property name="cs" value="200" />
 </queryserver>
�
</apelonserverconfig>

�

apelonserverprops_evs.xml�

runEVS.s�

