Implementation Specification

For

caCORE EVS Version 3.2 Release
Last Updated: July 26, 2006
Owner: EVS Development Team

Email: NCIEVS-DEV-L@list.nih.gov

National Cancer Institute Center for BioInformatics

6116 Executive Blvd.

Rockville, MD 20852

[image: image1.png][image: image2.wmf]

[image: image3.png][image: image4.png]
31
Document Purpose

2
Implementation Overview
4
2.1
Team Members
4
3
In Scope – New Functionality for caCORE 3.2 System
5
4
In Scope – caCORE Database Tasks
5
6
Implementation Contents
6
6.1
Server
6
6.1.1
Algorithms
6
6.1.2
Batch Processes
6
6.1.3
APIs
6
6.1.4
Error Handling
6
6.1.5
Database Changes
6
6.2
Client
6
6.2.1
JSP/HTML
6
6.2.2
Servlet
6
6.2.3
Error Handling
6
6.3
Security Issues
6
6.6
Installation / Packaging
7
6.7
Migration
7
6.8
Documentation Considerations
7
7
Unit Testing
8
7.1
Test Guidelines
8
7.2
Test Cases
8
7.2.1
EVS Web Services and API Enhancements
8
7.3
Test Results
8
DOCUMENT CONTROL
10
DOCUMENT APPROVAL
11

1 Document Purpose

The purpose of this document is to provide a specification for implementing requested new functionality and discrepancies discovered by the caCORE Quality Assurance team during caCORE 3.2 release. This document will cover design details related to how we plan to address these new requirements and discrepancies during the upcoming caCORE 3.2 release.

2 Implementation Overview

2.1 Team Members

Table 1 – Team Members
	Title
	Name

	Director Software Engineering
	Avinash Shanbhag

	Director
	Frank Hartel

	Chief Architects

	Gilberto Fragoso / Kim Ong

	Test Manager
	Ye Wu

	Technical Lead
	Gilberto Fragoso / Douglas Mason

	Developer
	Kim Ong

	Developer
	Tracy Safran

	Developer
	Iris Guo

	Developer
	Vincent Tyan

	Developer
	Robert Wynne

3 In Scope – New Functionality for caCORE EVS 3.2 System

The caCORE 3.2 release shall include the following new functionalities, which are considered mandatory:

3.1 Provide operational LexBIG server
In the 3.2 release, the DTSRPC / DTS and Apelon metaphase server will remain the production servers, but the LexBIG server will be deployed to a pre-production user acceptance and test & development tier.
(http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=1496&group_id=129&atid=604)

Recommended Solution

· Construct a complete test and development tier to support all areas of development, systems support, data load and deploys for the operational LexBIG server.
· Architecturally, the LexBIG deployment will look quite different from the current EVS Apelon DTS servers. The current deployment is an n-tiered architecture – caCORE client -> caCORE server -> DTSRPC server -> DTS server -> DB. The new deployment will be a 3-tiered architecture – caCORE client-> caCORE server (using the LexBIG API) -> db.
· The caCORE API will directly access the access LexBIG methods (i.e. no remote calls to an server external to the caCORE deployment.) The jars and other LexBIG artifacts will be delivered with the caCORE deployment.
· The Lucene index used by the LexBIG code must be located in local disk store (or accessible for local file i/o operations). Therefore, we will determine the general size of the indexing and provide recommendations to the systems group. (The Lucene index file is provided to allow wildcard, “sounds like”, and other text based searches. This provides similar functionality to Oracle text, but in a db neutral manner. See the LexBIG design document for further information.)
· MySQL will be used for the vocabulary data store. The db must be accessible from the caCORE install (via remote access.) Data loads will provided by the LexBIG admistrative programs.
· Starting / Stopping the EVS API will be no different from the current caCORE API SOP. We will remove the current EVS DTSRPC / DTS SOP once the LexBIG is fully operational. (Note: this will be post 3.2 release. As described earlier, this is simple a test deployment of LexBIG.)
· Test Plan – an automate test suite will be developed from existing test programs. The test will provide regression and performance tests.
3.2 Performance Enhancements

3.2.1 The DTSRPC will implement a DTS connection pool
The DTSRPC server makes a single connection to the DTS vocabulary server (one connection per vocabulary service.) This causes performance problems when more than a single EVS user connects to the same service.

(http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=1497&group_id=129&atid=604)
Suggested Resolution:

In order to support additional connection to the DTS server, we will implement a simple connection caching mechanism. The caching mechanism will be implement as a predetermined array of DTS connects (each vocabulary service will have a set number of connections.) Each vocabulary query to the DTSRPC, will given a random connection (via a random number generator.) In order to minimize the amount of code changes, the pool of connection will not perform ‘release’ mechanisms. Therefore, the same connection could be used by different request at the same time. This would have the same effect of the pool-less server. Each tree request will get a new connection and will not be part of the connection pool mechanism. This will allow longer request (the getTree() methods) to not block the connection pooling mechanism.
3.2.2 Revert workaround for AttributeSetDescriptor Apelon bug
At one time the Apelon DTS had a bug that would not allow a user to query for concepts and only return the roles or only return the properties. As a workaround, the DTSRPC was programmed to query for all attributes. The user was then able to extract what they queried for. The DTS error has been fixed, so now the DTSRPC will need to be adjusted to only request what it needs.

(http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=1498&group_id=129&atid=604)

Suggested Resolution:

The DTSRPC server use the DTS method. The workaround will be reverted.
3.3 Support authentication use cases
3.3.1 Licensed access to MedDRA on NCI Terminology Server
The MedDRA vocabulary is available to licensed users only. The NCI has licensed its use, but the web browser and API make it available to all the users. MedDRA has agreed to provide a web service that can be queried in order to determine whether a particular user has a license. The actual access control functionality would be done through CSM

(http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=1499&group_id=129&atid=604)

Suggested Resolution:

The caCORE EVSQuery.java class will include a new method to accept a ‘SecurityToken’ object. The

SecurityToken is a generic interface which could be used by any vocabulary service to authenticate. The

SecurityToken class will contain methods to return simple strings.

Example:

	 int
	getStatus()
 Get the token status.

	 java.lang.String
	getToken(String tokenName)
 Get the token value.

	 int
	hashCode()
 Generate a hash code for comparison tests.

	 boolean
	isValid()
 Chec the token status.

	 void
	setAccount(java.lang.String value)
 Set our Account identifier.

	 void
	setStatus(int value)
 Set the token status.

	 void
	setToken(java.lang.String value)
 Set our token value.

The caCORE system will validate the token (if applicable) for the vocabulary service before allowing access.

 Using this generic form for the SecurityToken, each vocabulary is free to implement is own ‘isValid’ method. For example, some vocabularies might use the CSM to implement the isValid() method; where others might use a JDBC call; or some other validation mechanism.

The caCORE ApplicationService client will be responsible for caching the ‘SecurityToken’ object and providing to the server during each subsequent call to the EVS caCORE API.
3.4 New Browser functionality

3.4.1 Migrate NCI Terminology Browser to caCORE API
Recommended Solution:
In anticipation DTS / DTSRPC replacement, the terminology server will remove the current DTSRPCClient access and use the caCORE java API. This will require the removal of the DTSRPClient calls and replace with the methods provided in the caCORE client jar. Methods will be mapped to the appropriate caCORE API methods. This will add a layer of abstraction when LexBIG because the functional server.
(http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=1500&group_id=129&atid=604)

3.4.2 Performance tune NCI Terminology Browser
Recommended Solution:
The NCI Terminology browser uses the concept name as the identifier for concepts. The concept name is not optimal for display because of the limitation on characters, requirement for underscores instead of spaces, and enforced uniqueness. Therefore the browser uses a concept’s preferred name for display in the browser. It currently queries the API for the preferred name at the time of display. This can slow down the display of returned terms. We would like to create a cached mapping file that resides locally on the server that would eliminate a trip to the database.

(http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=1501&group_id=129&atid=604)

3.4.3 Performance tune Lay Browser
Recommended Solution:
As in the NCI Terminology Browser, the lay browser uses concept name as an identifier and queries the database for each concept to get the preferred name. Also, the display functionality requires a search to pull back any matching concepts, then re-query each concept to find the exact property that that the search hit on, so it can be displayed prominently. This functionality slows down the searching and might be discarded. There could be a number of smaller tweaks that might be made, depending on the analysis.

(http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=1502&group_id=129&atid=604)

3.5 CVS / Build support
Currently the EVS products are built by the EVS team and provided to the Systems team for deployment. During this release, all the deployable modules will be checked into CVS, a build script (ant) will be written, and build instruction provided to the build support team. It is also suggested that build team had to the nightly build mechanism.

(http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=1503&group_id=129&atid=604)

3.6 Support current NCICB technology stack

Support for the current NCICB technology stack will be provided.
(http://gforge.nci.nih.gov/tracker/index.php?func=detail&aid=1504&group_id=129&atid=604)

4 Implementation Contents

4.1 Server

4.1.1 Algorithms

N/A

4.1.2 Batch Processes

N/A

4.1.3 APIs

Include the API signatures and their implementation detail.

4.1.4 Error Handling

All error handling will be wrapped in the SDK / caCORE standard exception handling.
4.1.5 Database Changes

The LexBIG will provide a new database schema.
4.2 Client

4.2.1 JSP/HTML

All changes to JSP/HTML are described in the previous sections.

4.2.2 Servlet

The remoteServices service will change to support the security changes as described above.
4.2.3 Error Handling

All error handling will be wrapped in the SDK / caCORE standard exception handling
4.3 Installation / Packaging

Changes to installation are described in the previous sections.
4.4 Migration

N/A

4.5 Documentation Considerations

The following documents will need to be modified to reflect the above-mentioned changes:

· caCORE Technical Document
· Detail design documents for LexBIG integration and vocabulary security
5 Unit Testing
5.1 Test Guidelines

5.2 Test Cases

5.2.1 EVS Web Services and API Enhancements

5.3 Test Results

Appendix A
DOCUMENT CONTROL

Change History

Content changes to this document from the previous to the current level are indicated by revision bars (|) unless a complete rewrite is indicated.

Table 2 – Implementation Specification Document Change Log

	Version/ Date
	Approved By
	Change Description and Explanation
	D - Draft

A - For Review/ Approval

R - Re-Approval, Plan of Record Change

	5/13/06
	
	Final Draft Version
	D

	7/26/06
	
	Added GForge numbers
	

	Note: If this document has been inspected, please indicate the inspection date that each version is based on in the “Change Description and Explanation” area. Entries in this log must be maintained for at least 3 years.

DOCUMENT APPROVAL

Approvers List

The individuals listed in this section constitute the approvers list for the Integration Test Plan document. Formal approval must be received from all approvers prior to the initiation of the next steps in the process.

	Title
	Name

	Project Manager
	Tara Akhavan

	Development Manager
	Himanso Sahni

Reviewers List

The individuals listed in this section constitute the reviewers list for the Master Test Plan document. Formal approval is not required from the reviewers, however, it is desirable to have all reviewers review and comment on the document. Reviewers may choose to concentrate on reviewing only those sections that are in their area of responsibility, rather than the entire document.

	Title
	Name

	Solutions Manager
	name

	Project Manager
	name

	Test Manager
	name

	Test Engineer
	name

	Development Manager
	name

	Technical Writer
	name

	Client Support Analyst
	name

	Internationalization Lead
	name

	DBA
	name

	Developer
	name

	Developer
	name

	END OF DOCUMENT

� EMBED Word.Document.8 \s ���

�

�

Center for Bioinformatics

EVS3.2_Implementation_Specification_06132006.doc
Page 5 of 14

[image: image5.wmf]

_1184494716.doc
[image: image1.png]

