Implementation Specification

for

Product Integration of the LexBIG framework into caCORE Version 1 Release 4.0
Last Updated: March 2, 2007
Owner: Frank Hartel
Telephone: 301.435-3869
Email: Hartelf@mail.nih.gov
National Cancer Institute Center for BioInformatics
6116 Executive Blvd.

Rockville, MD 20852

[image: image1.png]
41
Document Purpose

2
Implementation Overview
5
2.1
Team Members
5
2.2
Description
5
2.2.1
LexBIG Use Case
6
2.2.1.1
Programmatic Access to LexBIG API
6
2.2.1.2
Access to History and Version Information
10
2.3
Scope
11
2.4
Architecture
11
2.4.1
API details
13
2.4.2
DAO implementation
13
2.5
Assumptions
13
2.6
Dependencies
13
2.7
Issues
16
2.8
Third Party Tools
16
3
Implementation Contents
17
3.1
Server
17
3.1.1
Algorithms
17
3.1.2
Batch Processes
17
3.1.3
APIs
17
3.1.4
Error Handling
17
3.1.5
Database Changes
17
3.2
Client
18
3.2.1
JSP/HTML
18
3.2.2
Servlet
18
3.2.3
Error Handling
18
3.3
Security Issues
18
3.4
Performance
18
3.5
Internationalization
18
3.6
Installation / Packaging
18
3.7
Migration
19
3.8
Documentation Considerations
19
4
Unit Testing
20
4.1
Test Guidelines
20
4.2
Test Cases
20
4.3
Test Results
20
DOCUMENT CONTROL
21
DOCUMENT APPROVAL
22

List of TABLES

5Table 2 – Team Members

Table 3 – Implementation Specification Document Change Log
21

Document Purpose

The purpose of this document is to describe how the LexBIG application will be integrated into caCORE.

LexBIG is an open source terminology server that is being developed by the Mayo Clinic Division of Biomedical Informatics. It is meant as a replacement for the proprietary Apelon Distributed Terminology Server (DTS) and the Apelon MetaServer that EVS has been using. An open source terminology server will allow the NCICB to distribute EVS functionality with caCORE. EVS will also be able to customize the LexBIG server to meet the particular needs of the NCICB.

One of the biggest changes to the caCORE architecture will be the elimination of a separate EVS service layer. Instead of having a machine dedicated to DTS and MetaServer, LexBIG will be incorporated into the caCORE framework and will reside on the caCORE server. It is possible that multiple caCORE servers will be necessary on the production tier for purposes of load balancing. Still, the overall number of machines needed to serve data up to the caCORE client should be reduced. Furthermore, the interaction of caCORE with the underlying EVS data will be simplified.

Some variances exist between the Apelon and the LexBIG servers that will impact the public side of the caCORE API. It is our intention to cause as little disruption to downstream applications as possible, but it will be unavoidable in some cases. The intent is to not support the current EVS 3.2 domain objects. Details on what methods will be changing can be found in the API migration document.

1 Implementation Overview

1.1 Team Members

Table 1 – Team Members

	Role
	Name

	Director of Engineering

	Avinash Shanbhag

	Product Manager

	Frank Hartel

	Development Lead
	Gilberto Fragoso

	Documentation Lead
	Wendy Erikson

	Internationalization Lead
	N/A

	Product Manager
	Frank Hartel

	Test Lead
	Tracy Safran

	Tech Lead
	Doug Mason

	Development Team
	Kim Ong

Shaziya Muhsin

Iris Guo

Konrad Rokicki

	QA / Data Lead
	Tracy Safran

1.2 Description

The LexBIG application is distributed in two forms. As single executable jar file called “lbruntime.jar” the package includes both the LexBIG classes and the third party supporting jars. The LexBIG is also available as a set of runtime components. This allows the NCICB to replace the supplied supporting jars with different versions to match the current technology stack. EVS has chosen to deploy the runtime components version of the distribution.

There is no service structure built into the LexBIG itself, allowing the user to configure whatever type of server they prefer. We have chosen to integrate the LexBIG jar into a caCORE-like system, running on JBoss. The system will provide the standard SDK generated interfaces. This includes (1) Java API – the Java API allows integration of the EVS/LexBIG domain objects directly into a Java application; (2) SOAP-based Web Services (ws) – the ws interface provides a programming language neutral Service-Oriented Architecture (SOA); (3) REST HTTP interface – HTTP based query mechanism. Results are returned in either XML or HTML. In addition, the system will provide a simple user interface (UI) for querying the domain objects.

This simplifies the architecture and eliminates the network latency that was sometimes experienced between the caCORE and DTS/MetaServer components.
The main requirement for the LexBIG integration is that it supports all the major functionality that the current LexBIG API supports, only in a distributed manner. In addition, the performance should nearly match the existing LexBIG API (with network latency and a small server-side serialization as the only overhead.)
LexBIG is part of a larger project aimed at the caGrid called LexGrid. Requirements for LexBIG have come both from EVS and from the Booz Allen contractor which is working on the caGrid. Details about the functionality and requirements of the caCORE, LexGrid and LexBIG can be found in the documents below.

Documents:

caCORE: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview
LexBIG project : http://cabigcvs.nci.nih.gov/viewcvs/viewcvs.cgi/lexgrid/
LexGrid project: http://informatics.mayo.edu/LexGrid
caCORE 4.0 project: http://gforge.nci.nih.gov/docman/index.php?group_id=58&selected_doc_group_id=540
1.2.1 LexBIG Use Case

Below are two applicable use cases from LexBIG describing how their API would handle calls coming in from the caCORE application. For these diagrams, the “Client Application” is caCORE.

1.2.1.1 Programmatic Access to LexBIG API
[image: image2.jpg]
	Use Case Id
	PGM_UC_01 Establish Connectivity

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	End User Brief Description Actor establishes a connection to a LexBIG server (remote or direct language reference)

	Preconditions
	1) All necessary LexBIG server components are installed

	
	2) Actor incorporates necessary LexBIG connection code (e.g. client stubs for remote access, LexBIG Java implementation for direct language reference).

	Flow of Events
	1) Actor invokes appropriate method to instantiate a connection, as documented for the LexBIG client code that they are using.

	
	2) Refer to use case Remote Reference (PGM_UC_02) or Direct Language Reference

	Post Conditions
	Actor has a connection to a caCORE server.

	Notes
	

	Use Case Id
	PGM_UC_02 Remote Reference

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	LexBIG connection to a remote server.

	Preconditions
	PGM_UC_01

	
	Actor has requested a connection to a remote server.

	Flow of Events
	1) Client library attempts to connect to the remote server.

	
	2) Client library reports successful connection, or returns error to the user.

	Post Conditions
	Actor has a connection to a caCORE server.

	Notes
	

	Use Case Id
	PGM_UC_03 Direct Language Reference

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	Direct language reference to LexBIG implementation is established.

	
	Actor has requested a connection to a remote server.

	Preconditions
	PGM_UC_01

	Flow of Events
	1) LexBIG implementation is initialized.

	
	2) Implementation reports initialization success or failure to User.

	Post Conditions
	Actor has a connection to a caCORE server.

	Notes
	

	Use Case Id
	PGM_UC_04 Establish Session

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	Actor requests a session from the LexBIG server, and sets session parameter values.

	Preconditions
	Actor has established connectivity (PGM_UC_01)

	
	Session Manager is available.

	Flow of Events
	1) Actor calls client API method to request a session.

	
	2) Session Manager creates a session, and returns session information to client.

	
	3) Client stores session information. 4) Actor calls method to change a session default value.

	
	5) Client sends stored session information and new value into the session manager.

	
	 a. Session Manager validates new value.

	
	 b. Session Manager stores new value if valid, or returns an error if invalid.

	Post Conditions
	Actor has established a session.

	Notes
	If the Actor is using a direct language reference, the Client is the same thing as the LexBIG API implementation. If the Actor is using a remote reference, all actions are passed from the client to the LexBIG API implementation.

	
	** Extent and nature of session support will be determined on completion of LexBIG architecture.

	Use Case Id
	PGM_UC_05 Method Invocation

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	Actor calls a method from the LexBIG API.

	Preconditions
	Actor has established connectivity (PGM_UC_01)

	
	Optional – Actor has established session (PGM_UC_04)

	Flow of Events
	1) Actor provides parameters for and calls a LexBIG API client method.

	
	2) The client passes the parameters to the LexBIG API Implementation.

	
	3) Optional – if session information is present, it is also passed in.

	
	4) The implementation sends the parameters on to the proper method (see use cases PGM_UC_06 through PGM_UC_10)

5) The method returns the result to the Actor. Post Conditions Actor get results from calling a method. Notes If the Actor is using a direct language reference, the Client is the same thing as the LexBIG API implementation. If the Actor is using a remote reference, all actions are passed from the client to the LexBIG API implementation.

	Use Case Id
	PGM_UC_06 Retrieve uniquely specified concept

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	Actor calls a method from the LexBIG API to retrieve a uniquely specified concept.

	Preconditions
	Actor has invoked the appropriate method (PGM_UC_05)

	Flow of Events
	1) Method receives necessary parameters to get a uniquely specified concept.

	
	2) Method validates parameters according to the LexBIG API specification (tbd)

	
	 a. If parameters are invalid, an error is returned.

	
	3) LexBIG implementation is executed to get the desired result. 4) Result is returned to the Actor.

	Post Conditions
	Actor gets details (as specified by the LexBIG API) of the uniquely specified concept.

	Notes
	

	Use Case Id
	PGM_UC_07 Query concepts by criteria

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	Actor calls a method from the LexBIG API to query concepts by specified criteria.

	Preconditions
	Actor has invoked the appropriate method (PGM_UC_05)

	Flow of Events
	1) Method receives necessary parameters to query concepts by criteria..

2) Method validates parameters according to the LexBIG API specification (tbd) a. If parameters are invalid, an error is returned.

3) LexBIG implementation is executed to get the desired result. 4) Result is returned to the Actor.

	Post Conditions
	Actor gets details (as specified by the LexBIG API) of the query.

	Notes
	

	Use Case Id
	PGM_UC_08 DAG Traversal

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	Actor calls a method from the LexBIG API to traverse the Directed Acyclic Graph.

	Preconditions
	Actor has invoked the appropriate method (PGM_UC_05)

	Flow of Events
	1) Method receives necessary parameters to traverse the DAG in the requested

	
	direction, to the requested depth.
2) Method validates parameters according to the LexBIG API specification (tbd)

	
	 a. If parameters are invalid, an error is returned.

	
	3) LexBIG implementation is executed to get the desired result.

	
	4) Result is returned to the Actor.

	Post Conditions
	Actor gets the requested nodes (as specified by the LexBIG API) from the DAG.

	Notes
	

	Use Case Id
	PGM_UC_09 Combinatorial Access

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	Actor calls a method from the LexBIG API to execute a combination of other methods.

	Preconditions
	Actor has invoked the appropriate method (PGM_UC_05)

	Flow of Events
	1) Method receives necessary parameters to execute a combination of other methods.

2) Method validates parameters according to the LexBIG API specification (tbd)

 a. If parameters are invalid, an error is returned.

3) Multiple LexBIG methods are executed, using the results from one execution as input to the next method to get the desired result.

4) Result is returned to the Actor.

	Post Conditions
	Actor gets results (as specified by the LexBIG API) from the combination query.

	Notes
	Combinatorial access is not considered in scope of LexBIG phase 1 deliverables.

	Use Case Id
	PGM_UC_10 Server and Vocabulary Metadata Access

	Primary Actor
	Client Application

	Secondary Actors
	End User

	Brief Description
	Actor calls a method from the LexBIG API to get metadata.

	Preconditions
	Actor has invoked the appropriate method (PGM_UC_05)

	Flow of Events
	1) Method receives necessary parameters to get requested metadata.

	
	2) Method validates parameters according to the LexBIG API specification (tbd)

	
	a. If parameters are invalid, an error is returned. 3) LexBIG implementation is executed to get the desired metadata.

	
	4) Result is returned to the Actor.

	Post Conditions
	Actor gets results (as specified by the LexBIG API) from their metadata query.

	Notes
	

1.2.1.2 Access to History and Version Information

[image: image3.jpg]
	Use Case Id
	HST_UC_01 Request History for Uniquely Specified Concept

	Primary Actor
	LexBIG User

	Secondary Actors
	Client Application

	Brief Description
	Queries historical entries for a given concept.

	Preconditions
	Historical information has been imported from native format to the LexBIG repository.

	Flow of Events
	1) Actor invokes LexBIG API through client application specifying concept ID 2) System queries available history based the given parameters

	Post Conditions
	Actor gets results (as specified by the LexBIG API) from the query.

	Notes
	

	Use Case Id
	HST_UC_02 Request Change Report for Vocabulary Version

	Primary Actor
	LexBIG User

	Secondary Actors
	Client Application

	Brief Description
	Queries historical entries recorded for a specific version of a vocabulary.

	Preconditions
	Historical information has been imported from native format to the LexBIG repository.

	Flow of Events
	1) Actor invokes LexBIG API through client application specifying code system / version

	
	2) System queries available history based on the given parameters.

	Post Conditions
	Actor gets results (as specified by the LexBIG API) from the query.

	Notes
	

	Use Case Id
	HST_UC_03 Determine State of Individual Concept

	Primary Actor
	LexBIG User

	Secondary Actors
	Client Application

	Brief Description
	Queries current state of a given concept.

	Preconditions
	

	Flow of Events
	1) Actor invokes LexBIG API through Client Application specifying concept ID and property names that correspond to the desired status (e.g. concept status, isActive flag, etc) 2) System queries assigned properties for the concept

	Post Conditions
	Actor gets results (as specified by the LexBIG API) from the query.

	Notes
	

	Use Case Id
	HST_UC_04 Retrieve Available Versions of a Code System

	Primary Actor
	LexBIG User

	Secondary Actors
	Client Application

	Brief Description
	Actor invokes the LexBIG API to query versions of a vocabulary stored in the LexBIG

	
	repository.

	Preconditions
	

	Flow of Events
	1) Actor invokes LexBIG API through client application specifying code system name.

	
	2) System queries accessible versions of the vocabulary.

	Post Conditions
	Actor gets results (as specified by the LexBIG API) from the query.

	Notes
	

1.3 Scope

This document shall cover the LexBIG wrapper software and the public face of the caCORE EVS API. The design and function of the LexBIG software itself is outside the scope of this document, as it is an externally developed application that will simply be plugged into our architecture. Downstream user applications and tools that call the caCORE will also be considered out of scope.
The one exception is the EVSTree application, which will take over the tree caching duties from the EVS DTSRPC. This application will make calls to the caCORE and then cache the results local to the calling application. Details of how the EVSTree application will perform its duties are out of scope, except where it impacts the requirements of the caCORE LexBIG integration.
There will be a parallel effort to customize and publish the BioPortal web browser from NCBI as a front end to the LexBIG server. This browser would eventually replace the existing NCI Terminology Browser and Metathesaurus browser. NCBI currently has this web browser running against LexBIG 2.0 using and Oracle database and a Windows server. We will need to configure it to work against our Linux/Unix server and MySQL database structure. We will also need to change the styling to have the same look and feel of other NCICB web applications.
Please see the EVS 4.0 Scope document available at:

http://gforge.nci.nih.gov/docman/index.php?group_id=58&selected_doc_group_id=617&language_id=1
1.4 Architecture

The LexBIG API will be integrated into the caCORE System. A new LexBIG Data Access Object (DAO) will be added to the caCORE System. This DAO will allow API users to query LexBIG through caCORE and get back LexBIG data objects.

To accomplish the integration, the LexBIG data model will be used to generate a caCORE-like system with Java beans and Web services. The ApplicationService will be extended by an EVSApplicationService which implements the LexBIG interface LexBIGService. The LexBIG 2006 domain model will be used to map directly back to the LexBIG API’s LexBIGServiceImpl. (For more information on the LexBIG domain model. See: http://informatics.mayo.edu/LexGrid/downloads/LexGrid%20Model/schemas/2006/01/EAwebpublish/index.htm.) This will ensure that the objects returned by LexBIG can be returned directly to the DAO user, without any intermediate translation steps. (The caCORE system would provide a distributed functionality (i.e. Java API, WS, HTTP interface, and Grid components) for the LexBIG NCI distribution.)
[image: image4.emf]cd EVSApplicationService

gov.nih.nci.system.applicationservice::ApplicationService+ getRemoteInstance() : ApplicationService+ getRemoteInstance(String) : ApplicationService+ --() : --+ -() : -gov.nih.nci.system.applicationservice::EVSApplicationServicegov.nih.nci.system.applicationservice::EVSApplicationServiceProviderclient::EVSApplicationServiceClientImplserver::EVSApplicationServiceServerImpl«interface»LexBigService+ getCodingSchemeConcepts(boolean, CodingSchemeVersionOrTag, String) : CodedNodeSet+ getFilter(String) : Filter+ getFilterExtensions() : ExtensionDescriptionList+ getGenericExtension(String) : GenericExtension+ getGenericExtensions() : ExtensionDescriptionList+ getHistoryService(String) : HistoryService+ getMatchAlgorithms() : ModuleDescriptionList+ getNodeGraph(String, CodingSchemeVersionOrTag, String) : CodedNodeGraph+ getServiceManager(Object) : LexBIGServiceManager+ getSortAlgorithm(String) : Sort+ getSortAlgorithms(SortContext) : SortDescriptionList+ getSupportedCodingSchemes() : CodingSchemeRenderingList+ resolveCodingSchemes(CodingSchemeVersionOrTag, String) : CodingSchemeextend«realize»«realize»«realize»«realize»

[image: image5.emf]sd EVSLBSequence:EVSApplicationService:EVSApplicationServiceProvider:EVSApplicationServiceClientImpl:EVSApplicationServiceServerImplLexBig ServerClientremoteService.xmlSpring FrameworkgetApplicationServicegetApplicationServiceEVSApplicationServiceImpl =searchsearchLexBIGSearchLexBIG results =LexBIG results =LexBIG results =

1.4.1 API details

The LexBigWebService will extend the LexBIG ConvenienceMethods. It will not implement all the methods of the LexBIGService, for reasons of practicality. There will be some methods added to the class for query purposes.
[image: image6.emf]cd EVS_WebServiceConvenienceMethods+ ConvenienceMethods(LexBIGService) : void+ codeToName(String, String, CodingSchemeVersionOrTag) : String+ createAbsoluteCodingSchemeVersionReference(String, String) : AbsoluteCodingSchemeVersionReference+ createAbsoluteCodingSchemeVersionReference(CodingSchemeSummary) : AbsoluteCodingSchemeVersionReference+ createCodedNodeSet(String[], String, CodingSchemeVersionOrTag) : CodedNodeSet+ createConceptReference(String, String) : ConceptReference+ createConceptReferenceList(String) : ConceptReferenceList+ createConceptReferenceList(String[]) : ConceptReferenceList+ createConceptReferenceList(String[], String) : ConceptReferenceList+ createLocalNameList(String) : LocalNameList+ createLocalNameList(String[]) : LocalNameList+ createNameAndValue(String, String) : NameAndValue+ createNameAndValueList(String) : NameAndValueList+ createNameAndValueList(String[]) : NameAndValueList+ createNameAndValueList(String, String) : NameAndValueList+ createProductionTag() : CodingSchemeVersionOrTag+ createSortOption(String, Boolean) : SortOption+ createSortOptionList(String[]) : SortOptionList+ createSortOptionList(String[], Boolean[]) : SortOptionList+ getChildrenOf(String, String, String, String, CodingSchemeVersionOrTag, boolean) : Association+ getParentsOf(String, String, String, String, CodingSchemeVersionOrTag, boolean) : Association+ getEndNodes(String, CodingSchemeVersionOrTag, String, String) : ResolvedConceptReferenceList+ getTopNodes(String, CodingSchemeVersionOrTag, String, String) : ResolvedConceptReferenceList+ getRenderingDetail(String, CodingSchemeVersionOrTag) : CodingSchemeRendering+ isCodeRetired(String, String, CodingSchemeVersionOrTag) : boolean+ nameToCode(String, String, CodingSchemeVersionOrTag) : StringEVSWebServiceextend

1.4.2 DAO implementation

The LexBigDAO will implement both the caCORE SDK’s DAO and LexBIG’s LexBIGService interfaces. It will pass all calls to the LexBIGService, with a minimum of logic coding.
public class LexBigDAO implements DAO, LexBigService

{

LexBigServiceImpl lb = new LexBigService();

HistoryService getHistoryService(String hs)

{

return lb.getHistoryService(hs);

}

.

.

.

}
[image: image7.emf]cd EVSDAOLexBigDAO«interface»LexBigService+ getCodingSchemeConcepts(boolean, CodingSchemeVersionOrTag, String) : CodedNodeSet+ getFilter(String) : Filter+ getFilterExtensions() : ExtensionDescriptionList+ getGenericExtension(String) : GenericExtension+ getGenericExtensions() : ExtensionDescriptionList+ getHistoryService(String) : HistoryService+ getMatchAlgorithms() : ModuleDescriptionList+ getNodeGraph(String, CodingSchemeVersionOrTag, String) : CodedNodeGraph+ getServiceManager(Object) : LexBIGServiceManager+ getSortAlgorithm(String) : Sort+ getSortAlgorithms(SortContext) : SortDescriptionList+ getSupportedCodingSchemes() : CodingSchemeRenderingList+ resolveCodingSchemes(CodingSchemeVersionOrTag, String) : CodingScheme«interface»DAO+ query(Request) : Response«realize»«realize»

1.5 Assumptions

· It is assumed that Mayo will successfully implement all planned functionality in the LexBIG software.

· It is assumed that the EVSTree application will be built and that it will take over the function of tree caching for dependent applications.
1.6 Dependencies

· caCORE SDK – version 3.2

· LexBIG runtime components (As described above)

· JBoss 4.0.4 GA
· MySQL 4.1.19 or above
The following Java archives are distributed with the LexBIG runtime environment. (See LexBIG Programmer’s guide for more information)

	Module
	Function

	lbRuntime
	The LexBIG runtime code, including all necessary code and dependencies required for direct Java-to-Java invocation of the LexBIG API. This consolidates LexBIG code and third party modules in order to simplify configuration for program execution.

Note: This archive is not available for redistribution simply because individual contributions are not easily separated and the combined content cannot be shared under a single license. It is provided strictly as a convenience for simplified program execution and in accordance with the user having agreed to all terms and conditions during product installation.

Redistributable components (e.g. those listed below) and associated license terms are also made available. The redistributable components provide equivalent content and function, but require more extensive configuration for program execution.

	lbAdmin lbImpl

lbInterfaces

lbModel

	The LexBIG runtime code, excluding all dependencies.

	lbGUI
	The LexBIG graphical user interface runtime code, excluding all dependencies.

	lgModel

lgUtility
	LexGRID classes, used and extended by the LexBIG code.

	activation
	Provided by Sun’s reference implementation of the JavaBeans Activation Framework (JAF) standard extension. Used for e-mail notification when runtime errors occur.

	caGrid
	Grid infrastructure to support the caBIG™ community. Contains tools for creating and deploying caBIG™-compliant grid services.

	commons-cli
	Provides a simple API for working with command line arguments, options, option groups, mandatory options and so forth.

	commons-codec
	Provides implementations of common encoders and decoders such as Base64, Hex, Phonetic and URLs.

	commons-collections
	Provides a suite of classes that extend or augment the Java Collections Framework.

	commons-lang
	Provides a very common set of utility classes that provide extra functionality for classes in the java.lang package.

	commons-logging
	Provides a bridge between different logging libraries.

	commons-pool
	Provides a generic object pooling interface, a toolkit for creating modular object pools and several general purpose pool implementations.

	gnu-regexp
	Provides a Java language implementation of standard NFA regular expression features.

	hsqldb
	SQL relational database engine written in Java.

	icu4j
	International components for Unicode processing.

	jakarta-regexp
	Java package for processing regular expressions.

	jcalendar
	Java date chooser bean for graphically picking a date.

	jdom
	Java-based solution for accessing, manipulating, and outputting XML data from Java code.

	jena
	Java framework for building Semantic Web applications.

	junit
	Java regression test framework.

	log4j
	Runtime logging services.

	lucene-core
	Text search engine library written in Java.

	lucene-regex
	Provides support for regular expression-based queries.

	lucene-snowball
	Provides stemming support for indexed concepts.

	mail
	Provided by the Sun JavaMail API. Used for e-mail notification when runtime errors occur.

	mm.mysql (drivers, 2.0.6)
	JDBC drivers for MySQL database.

	org.eclipse.*
	Used internally by LexBIG load and export extensions to access and manipulate Eclipse Modeling Framework (EMF) model representations.

	
	

	prefuse
	Used for graph representations in the LexBIG GUI.

	postgresql (drivers)
	JDBC drivers for PostgreSQL database.

	swt (*swt*.jar)
	Provides the underlying widget toolkit used by the LexBIG GUI.

	xerces
	XML parsing services.

1.7 Issues

The current SDK system does not support XSDattribute tags. This will be an issue for code generation. TBD – 2/23/2007
The LexBIG install requires external indexing files (used by Lucene.) The system should have direct access to the file (i.e. no NFS access.) The system should also have enough disk space to support current and near future vocabulary upgrades (TBD – See System’s HD scoping document.)
1.8 Third Party Tools

None
1.9 Reference
This document references the LexBIG 1.0 and 2.0 documentation produced by Division of Informatics at Mayo Clinic.

· Requirements and use cases : http://informatics.mayo.edu/wiki/index.php/LexBIG_-_Req .Note, this site is password protected.

· Javadocs and user guides found in the LexBIG installation packages downloadable from http://gforge.nci.nih.gov/frs/?group_id=14.
2 Implementation Contents

2.1 Server

.

The caCORE and EVS will be running on the same server, rather than separate servers as they are at present. Each EVS vocabulary release will result in updated configuration files, index files, and database tables. It is planned that all these variable factors will be external to the caCORE, using a data directory on the local file system. The EVS web browsers will be modified to use the caCORE EVS API and will also be deployed on JBoss with configuration files in a data directory on the local file system. The server architecture for EVS will be greatly simplified by this LexBIG integration.

2.1.1 Algorithms

Not applicable

2.1.2 Batch Processes

Not applicable
2.1.3 APIs

The LexBIG API signature will remain substantially unchanged. The EVS domain objects will get mapped to the LexBIG API calls. There is no plans to be backwards compatible with the current EVS model (See caCORE 3.2)
2.1.4 Error Handling

Any exceptions thrown by the LexBIG service will be wrapped in a standard SDK Exception and returned to the user. The following exceptions may be thrown by the LexBIG service in the specified wrapper:
	LexBIG Exception
	SDK Exception
	Description

	LBException
	DAOException
	Superclass for checked exceptions declared and thrown by the LexBIG runtime.

	LBInvocationException
	DAOException
	The exception to throw when invocation of a LexBIG service fails due to an unexpected problem captured and logged for administrative action.

	LBParameterException
	QueryException
	The exception to throw when invalid input is provided to a LexBIG service.

	LBResourceUnavailableException
	DAOException
	Thrown when a resource required by the requested LexBIG operation

cannot be located or resolved.

	LBRuntimeException
	DAOException
	Superclass for unchecked exceptions issued by the LexBIG runtime.

	LBUnsupportedOperationException
	QueryException
	The exception to throw when an unsupported operation is attempted against a LexBIG service.

2.1.5 Database Changes

The database changes on the EVS side are extensive. EVS will be moving from an Oracle 9i database supporting the Apelon software to a MySQL database supporting the LexBIG software. Promoting data between tiers will require the simultaneous promotion of file system based index files. This promotion scheme will need to be coordinated with the caCORE. It is not expected that data promotion will require a restart of the caCORE server. It is likely that the required index files will be placed in a data directory on the caCORE server and will then be referenced from within the caCORE JBoss container.

The method for promoting data between tiers will require systems to do a database export from the QA server then import the data into the Stage and eventually the Production server. Along with the data, the index and configuration files will need to be packaged and transferred up onto the file systems on the Stage and Production machines.

The LexBIG table structures vary dramatically from the Apelon schemas. Most of this variation will be transparent to caCORE users, though proprietary Apelon objects and ideas will be discontinued. Specifically, the removal of Concept_Name as an identifier will likely require adjustment to downstream applications. Administration of the LexBIG data will be done external to caCORE and is therefore out of scope of this document. Information on LexBIG server configuration and database schemas can be found here:
http://informatics.mayo.edu/LexGrid/index.php?page=lgmsql
2.2 Client

The caCORE EVS client will remain substantially unchanged for the integration. See the current EVS API. There will be some methods retired that relied on Apelon structures. There will likely be new methods added to take advantage of LexBIG features.
2.2.1 JSP/HTML

Not applicable
2.2.2 Servlet

Not applicable

2.2.3 Error Handling

See section 3.1.4
2.3 Security Issues

Not applicable
2.4 Performance

Performance of the caCORE with the LexBIG integrated will be compared with the performance of the stand-alone LexBIG API. The performance with LexBIG is expected to be as good as or better than the current caCORE. Deficiencies in performance will be considered a priority to be addressed by the Mayo and/or NCI development teams before release of the software into production.
2.5 Internationalization

Not applicable (NOTE: LexBIG currently supports UTF-8)
2.6 Installation / Packaging

The packaging and install targets will use the standard SDK build mechanism.
The standard LexBIG configuration files will get packaged into the caCORE package structure. The configuration files contain DB and Lucent index information. Where applicable, this information will get externalized to help the Systems team to configure the installation (as it moves up the supported tiers.)
2.7 Migration

LexBIG is capable of importing vocabularies in a number of formats; the most pertinent being OBO, RRF, and OWL. Most vocabularies will end up being converted to OWL format, and then loaded into LexBIG. This will require external scripts to be written to make this conversion where necessary. It may also require configuration files to be developed for the loading of the various OWL vocabulary versions into LexBIG. Currently we have loaders developed for NCI Metathesaurus, NCI Thesaurus OWL, and GO OBO. With the exception of HL7, the remaining standalone vocabularies could be pulled from the Metathesaurus RRF files but might require some massaging to be a true representation of the original vocabulary. A converter will need to be written for the HL7 in order to convert it into a format that will be loadable into LexBIG.
The currently served vocabularies that will need conversion and/or loading scripts are:

· HL7

· LOINC

· MedDRA

· MGED

· Snomed

· VA-NDFRT

EVS Services will be combined onto the caCORE server, which will impact server administration. It is possible that multiple caCORE servers will end up being placed behind a BIG-IP load balancer. The current production EVS servers will no longer be necessary.
2.8 Documentation Considerations
· caCORE technical guide
· Design document (This document)

· System sizing doc
· Systems deployment document
· Systems db doc
3 Unit Testing

3.1 Test Guidelines

The standard regression test should be used for testing the EVS LexBIG install.
3.2 Test Cases

TBD
3.3 Test Results

TBD
DOCUMENT CONTROL

Change History

Content changes to this document from the previous to the current level are indicated by revision bars (|) unless a complete rewrite is indicated.

Table 2 – Implementation Specification Document Change Log

	Version/Date
	Approved By
	Change Description and Explanation
	D - Draft

A - For Review/ Approval

R - Re-Approval, Plan of Record Change

	01/31/2007
	Doug Mason
	Draft
	D

	02/01/2007

02/23/2007
	Doug Mason

Tracy Safrin
	Changed based on comments by Tracy and Frank (Will not be backwards compatable with 3.2; Added LexBIG dependences)

Added UML and addition documtation require to expose the LexBIG API directly.
	D

D

	Note: If this document has been inspected, please indicate the inspection date that each version is based on in the “Change Description and Explanation” area. Entries in this log must be maintained for at least 3 years.

DOCUMENT APPROVAL

Approvers List

The individuals listed in this section constitute the approvers list for the Integration Test Plan document. Formal approval must be received from all approvers prior to the initiation of the next steps in the process.

	Title
	Name

	Project Manager
	name

	Development Manager
	name

Reviewers List

The individuals listed in this section constitute the reviewers list for the Master Test Plan document. Formal approval is not required from the reviewers, however, it is desirable to have all reviewers review and comment on the document. Reviewers may choose to concentrate on reviewing only those sections that are in their area of responsibility, rather than the entire document.

	Title
	Name

	Solutions Manager
	name

	Project Manager
	name

	Test Manager
	name

	Test Engineer
	name

	Development Manager
	name

	Technical Writer
	name

	Client Support Analyst
	name

	Internationalization Lead
	name

	DBA
	name

	Developer
	name

	Developer
	name

	END OF DOCUMENT

lexcore_integration_implemenation.doc Page 17 of 23

