NCI Center for Bioinformatics

Architectural Review Checklist

EVS – NCIm Browser
 1.1
Revision Document History

	Date
	Version
	Description
	Author

	06/09/09
	1.1
	First draft
	NCICB Dedicated Support

	06/22/09
	1.1
	Deployment date updates
	W.A. Garcia

Table of Contents

61.
Introduction

1.1
Purpose
6
1.2
Guidelines for Completing the ARC
6
2.
Project Details (To be answered by development team)
6
2.1
General Information
6
2.1.1
Project Description
6
2.1.2
Contact Information
6
2.1.3
Major Deployment Milestones
7
2.2
Architectural Details
7
2.2.1
High level architectural description:
7
2.2.2
High Level Design Diagram (If available):
7
2.2.3
Implementation language(s) used?
8
2.2.4
Will connections/requests to the application be session based (i.e. statefull versus stateless)? If so, is there any reason why application would not support “sticky session” load balancing?
8
2.2.5
Will the application be caching data? If so, what is being cached and how much data will be cached?
8
2.2.6
What data files will be created (if any)? How much data will be saved on an on going basis?
8
2.2.7
Will this application need a database schema(s) created on the NCICB infrastructure? If so, what is the maximum number of objects to be stored?
8
2.2.8
Are there any external/non-NCICB data sources that will be accessed by the application?
8
2.2.9
If this is a web-based application, what are the preferred virtual hosts names to be registered?
8
2.2.10
Any additional architectural details that may be of significance to the needed deployment environment.
9
2.3
Performance Requirements
9
2.3.1
Total number of users for this application?
9
2.3.2
Peak number of concurrent users?
9
2.3.3
Peak number of requests/minute?
9
2.3.4
Up time requirements?
9
Standard for NCICB. (24 hours/day, 7 days/week)
9
2.3.5
Acceptable down time when recovering from major systems disaster?
9
Standard for NCICB (24 – 48 hours)
9
2.4
NCICB Project Dependencies
9
2.5
Configuration Management Details
9
2.5.1
Version Control
9
2.5.2
Change Control
10
2.5.3
Migration to CVS
10
2.5.4
Users
10
2.5.5
Build Process
10
2.5.6
Other CM Needs
10
2.6
Additional Notes
10
3.
System Requirements (To be answered by both development & systems team)
10
3.1
Operating System
10
3.2
Software (Technology Stack)
10
3.2.1
Web Server:
10
3.2.2
App Server:
11
3.2.3
Database Server:
11
3.2.4
Other software components:
11
3.3
Server Hardware
11
3.3.1
Server:
11
3.3.2
Minimum processor speed:
11
3.3.3
Minimum memory:
11
3.3.4
Minimum local drive space:
11
3.4
Storage
11
3.4.1
Expected file server disk storage (in MB):
11
3.4.2
Expected database storage (in MB):
11
3.4.3
Expected ftp storage (in MB):
11
3.4.4
Expected media/image storage (in MB):
11
3.5
Load Balancing/Fault Tolerance
11
3.5.1
Does the application support load balancing?
11
3.5.2
Yes.
11
3.5.3
Implement load balancing – YES/NO:
11
3.6
Networking
11
3.6.1
Any application specific port assignments?
11
3.6.2
Any additional configuration?
12
3.7
Additional Notes
12
4.
Proposed NCICB Deployment Environment (To be answered by systems team)
12
4.1
Hardware
12
4.2
Technology Stack
12
4.3
File Server
12
4.4
Database
12
4.5
Networking
12
4.6
Other Resources
12
5.
Impact Assessment (To be answered by systems team)
12
5.1
Overview
12
5.2
Cost
12
5.3
Timeline to implement
12
5.4
Additional Notes
12
6.
Acceptance
13
7.
Appendix 1 - Future Systems Requirements
14
7.1
New Architecture Diagram
14
7.2
Notes on the design change
14
7.3
Hardware
14
7.3.1
Servers
14
7.3.2
Processor speed
14
7.3.3
Memory
14
7.3.4
Drive Space
14
7.4
Software (Technology Stack)
14
7.4.1
Web Server
14
7.4.2
App Server
14
7.4.3
Other components
14
7.5
Fault Tolerance (Redundancy)
14
7.5.1
Does the application support load balancing?
14
7.5.2
Implement load balancing – YES/NO
14
7.5.3
Load balancing requirements
14
7.5.4
Fault tolerance solution suggested
14
7.5.5
Additional requirements (if any)
14
7.6
Performance Enhancements
14
7.6.1
Processing Power
14
7.6.2
Memory
14
7.6.3
I/O
14
7.6.4
Other needs
14

1. Introduction

1.1 Purpose

The purpose of the Architectural Review Checklist (ARC) is to help identify the deployment environment (both hardware and software components) necessary for an application to execute optimally within the NCICB IT infrastructure. The ARC is considered to be a dynamic artifact for any NCICB project and should be maintained in the configuration library (i.e. CVS) for each project. For new projects, this document template will be automatically checked into the projects repository by the SCM team upon project initiation. The ARC should be reviewed on at least a quarterly basis to capture any application design changes that may effect the deployment environment necessary for optimal performance.

1.2 Guidelines for Completing the ARC

The ARC is divided into 4 main sections. The first section (Project Details) is meant to capture general information about the project. The project development team should fill out the Project Details section and return it to the systems team. The second section (Systems Requirements) is meant to capture details of specific system requirements for the project. Both the development and system teams will preferably answer the Systems Requirement section jointly. However, depending on the development team’s familiarity with the NCICB infrastructure, they may choose to answer either all or parts of this section on their own. The third section (Planned Deployment Environment) specifies the proposed deployment environment for the application and is to be answered by the systems team based on the response to section 1 & 2. Finally, the last section (Impact Assessment) describes the impact (additional hardware/software costs, staffing resources…) to the existing NCICB IT infrastructure in order to support this application. Upon completion of the Deployment Environment and Impact Assessment sections, the systems team will return the ARC to the development team for final review and comments.

2. Project Details (To be answered by development team)

2.1 General Information

2.1.1 Project Description

The NCIm Browser is a web-based terminology browser which is intended to allow users to browse and search NCI Meta Thesaurus data along with other biomedical vocabularies. The terminology sources exposed through the NCIm Browser will be retrieved via LexBIG.

2.1.2 Contact Information

	Title
	Name
	Phone
	Email

	Product Manager
	Frank Hartel
	(301) 435-3869
	hartel@mail.nih.gov

	Project Manager
	Jason Lucas
	(301) 527-6615
	jason.Lucas@ngc.com

	QA Manager
	Steve Hunter
	(301) 435-6370
	hunterst@mail.nih.gov

	Team Lead/Architect
	Wilberto Garcia
	(301) 443-3343
	garciawa2@mail.nih.gov

	Architect
	Kim Ong
	(301) 443-2962
	kim.ong@ngc.com

	Sr. Developer
	David Yee
	(301) 443-6219
	yeed@mail.nih.gov

2.1.3 Major Deployment Milestones

	Milestone
	Date
	Status

	Planned Release to QA
	04/29/2009
	Completed
URL: http://ncim-qa.nci.nih.gov/

	Planned Release to Staging
	07/15/2009
	Open

	Planned Release to Production
	07/27/2009
	Open

2.2 Architectural Details

2.2.1 High level architectural description:
The NCIm Browser is Java-Based n-Tier architecture is which assigns functional responsibilities to separate application layers. N-Tier architecture fosters loosely coupled and tightly cohesive architecture in which objects in each layer are focused on specific architectural responsibilities yet, cleanly integrate with the other layers.
2.2.2 High Level Design Diagram (If available):

[image: image1.png]

Figure 1 - High Level Diagram

2.2.3 Implementation language(s) used?

The NCIm Browser implementation language is Java.
2.2.4 Will connections/requests to the application be session based (i.e. statefull versus stateless)? If so, is there any reason why application would not support “sticky session” load balancing?

Connections/requests to the NCIm Browser application will be session based. In this instance, there is no reason why the application would not support “sticky session” load balancing. Our server side communications will go against the Distributed LexBIG API and all requests will be stateless.
2.2.5 Will the application be caching data? If so, what is being cached and how much data will be cached?

None, initially, we don’t foresee the need for the browser application to cache data. Data access will be via strictly via the LexBIG API.
2.2.6 What data files will be created (if any)? How much data will be saved on an on going basis?

None, the primary purpose of the NCIm Browser is browsing Meta Thesaurus terminology data. We don’t anticipate the need for the NCIm Browser to produce data files.

2.2.7 Will this application need a database schema(s) created on the NCICB infrastructure? If so, what is the maximum number of objects to be stored?

None, the NCIm Browser will access the terminology data via the LexBIG API. More specifically, the first release will be based on LexBIG 5.0 API.
2.2.8 Are there any external/non-NCICB data sources that will be accessed by the application?
None.
2.2.9 If this is a web-based application, what are the preferred virtual hosts names to be registered?
The NCIm Browser is a web-based application. The preferred virtual host name is
ncimbrowser.nci.nih.gov
ncim.nci.nih.gov
2.2.10 Any additional architectural details that may be of significance to the needed deployment environment.

Yes. Because the LexBIG API environmental variable is set once for the application server container (IE; LG_CONFIG_FILE=somePath), it’s not possible to deploy and use applications that depend on different local versions of LexBIG within the same container.
Note, since the NCIt browser uses a local LexBIG (API version 4.2.1) and the NCIm browser uses a local LexBIG (API version 5.0), and both APIs use the same global LG_CONFIG_FILE variable, its not possible for these applications to co-exist with the same container.
This restriction does not apply to the use of the distributed LexBIG API which allows for the data source setting to be set per application.

For performance reasons, we are using local instances of LexBIG which displays a remarkable performance boost over the distributed API.
2.3 Performance Requirements

2.3.1 Total number of users for this application?

Initial Estimate: 2000
2.3.2 Peak number of concurrent users?

Initial Estimate: 200
2.3.3 Peak number of requests/minute?

Initial estimate: 30
2.3.4 Up time requirements?
Standard for NCICB. (24 hours/day, 7 days/week)
2.3.5 Acceptable down time when recovering from major systems disaster?
 Standard for NCICB (24 – 48 hours)
2.4 NCICB Project Dependencies

The NCIm Browser has a dependency on is the LexBIG 5.0 API.

2.5 Configuration Management Details

Briefly describe your current configuration management practices here.
Standard version control process for NCICB applications.

2.5.1 Version Control

What version control software are you currently using, if any?

SVN
2.5.2 Change Control

What are your current change control practices? What procedures are in place to determine whether to implement a change request?

Standard version control process for NCICB applications.
2.5.3 Migration to CVS

Indicate whether you will require SCM support migrating your source code to the NCICB CVS repository.

None.
2.5.4 Users

Provide a list of all developers who require access to your repository modules.

Kim Ong
David Yee
Tracy Safran
Robert Wynne
Wilberto A. Garcia
2.5.5 Build Process

Describe your build process here. For example, are you using Ant, Make, or something else?

NCIm Browser will use the NCICB BDA process for its build and deployment.
2.5.6 Other CM Needs

Describe any other CM needs?

None.

2.6 Additional Notes

None.
3. System Requirements (To be answered by both development & systems team)

3.1 Operating System

Linux. (No operating system dependencies currently exist. Java based web application.)
3.2 Software (Technology Stack)

3.2.1 Web Server:
None.
3.2.2 App Server:
JBoss 4.0.5 or highest NCICB supported version.
3.2.3 Database Server:
None
3.2.4 Other software components:
 Java Server Faces (JSF)
3.3 Server Hardware

3.3.1 Server:
NCI standard hardware. No hardware dependencies currently exist.
3.3.2 Minimum processor speed:
Minimum required by JBoss 4.0.5 or highest NCICB supported version.
3.3.3 Minimum memory:
Minimum required by JBoss 4.0.5 or highest NCICB supported version.
3.3.4 Minimum local drive space:
Minimum required by JBoss 4.0.5 plus 150 MB for NCIm Browser.
3.4 Storage

3.4.1 Expected file server disk storage (in MB):
0MB
3.4.2 Expected database storage (in MB):
0 MB
3.4.3 Expected ftp storage (in MB):
0 MB
3.4.4 Expected media/image storage (in MB):
 0 MB
3.5 Load Balancing/Fault Tolerance

3.5.1 Does the application support load balancing?
3.5.2 Yes.
3.5.3 Implement load balancing – YES/NO:
 No.
3.6 Networking

3.6.1 Any application specific port assignments?
Standard port required by JBoss 4.0.5 highest NCICB supported version. May be set to any suitably available port #.
3.6.2 Any additional configuration?
No.
3.7 Additional Notes

None.
4. Proposed NCICB Deployment Environment (To be answered by systems team)

4.1 Hardware

<<dev, qa, staging, production servers to be used>>

4.2 Technology Stack

<<specific technology stack to be used>>

4.3 File Server

<<space allocation on big IP, NFS mount points, initial size allocation…>>

4.4 Database

<<database server to used, schema names to be created, initial size, maximum size…>>

4.5 Networking

<<e.g. any BigIP configuration necessary, …>>

4.6 Other Resources

<<e.g. ftp server access, media server access, …>>

5. Impact Assessment (To be answered by systems team)

5.1 Overview

5.2 Cost

5.3 Timeline to implement

5.4 Additional Notes

6. Acceptance

	Project Lead ()

	Project Coordinator – NCICB ()

	Systems Team

	SCM Administrator

7. Appendix 1 - Future Systems Requirements

In this section, describe any projected future anticipated requirements for your system.

7.1 New Architecture Diagram

7.2 Notes on the design change

7.3 Hardware

7.3.1 Servers

7.3.2 Processor speed

7.3.3 Memory

7.3.4 Drive Space

7.4 Software (Technology Stack)

7.4.1 Web Server

7.4.2 App Server

7.4.3 Other components

7.5 Fault Tolerance (Redundancy)

7.5.1 Does the application support load balancing?

7.5.2 Implement load balancing – YES/NO

7.5.3 Load balancing requirements

7.5.4 Fault tolerance solution suggested

7.5.5 Additional requirements (if any)

7.6 Performance Enhancements

7.6.1 Processing Power

7.6.2 Memory

7.6.3 I/O

7.6.4 Other needs

[image: image2.png]

