
Modularity and OWL

Clark & Parsia

March 17, 2008

Contents

1 Introduction 3

2 Basic Modularity Approaches 5
2.1 Against linguistic prescriptivism 6
2.2 Analytic modularity . 11

3 Desiderata for Modular Importing 12

4 Modularization Algorithms 15
4.1 Ad hoc algorithms . 15

4.1.1 PromptFactor algorithm 15
4.1.2 Structure-based partitioning algorithm 15
4.1.3 GALEN segmentation algorithm 16

4.2 Formal algorithms . 16
4.2.1 CEL and MEX algorithms 17
4.2.2 Cuenca Grau et al. (2006) algorithm 17
4.2.3 Locality-based algorithm 18

5 Summary and Outlook 19
5.1 Outstanding Issues . 20
5.2 Future Directions . 21

6 Prototype Tool Implementation 22
6.1 Partial ontology importing . 22
6.2 Focused concept viewing . 23

7 Acknowledgments 23

A Modular ontology development practices 24

1

Executive Summary

Web Ontology Language (OWL) provides a powerful knowledge rep-
resentation language that has a clean and well defined semantics based on
Description Logics (DL). OWL is being used to develop many large-scale,
complex ontologies like the NCI thesaurus, GALEN, etc. Such ontologies
are developed by a team of knowledge engineers that collaborate together.
However, OWL does not provide any means to support such a scenario,
nor does it facilitate the partial reuse of ontologies in different contexts.
As a result, ontology developers have to deal with large ontologies that
gets even larger, and, consequently, impossible to maintain upon integra-
tion with other ontologies.

Modular ontologies facilitate collaborative authoring and ontology reuse
while improving the performance of reasoning. In this paper, we review
the recent developments in modular ontology development techniques. We
compare two basic approaches for modularity: (linguistically) prescriptive
vs. analytic. Linguistic prescriptivism defines syntactic and semantic ex-
tensions to OWL so developers can define their modules a priori. We
argue against such extensions for several reasons: there is no clear choice
among proposals (E-connections, Distributed DLs, Package-based DLs),
extensions require significant changes to the current infrastructure, and
non-standard semantics proposed by these extensions are likely to confuse
ontology developers.

We explain how analytic methods for modularity provide a viable al-
ternative without major changes to the infrastructure. With the analytic
approach ontologies are authored using standard OWL syntax and seman-
tics but tools analyze the usage of external terms and extract a relevant
module from the remote ontology on-the-fly. We identify the following
conditions as necessary for this modular importing approach: module cor-
rectness, module completeness, module minimality, and import safety. We
evaluate several modularization algorithms with respect to these criteria
and examine which algorithms satisfy which conditions.

Out of all the modularization algorithms we investigate, the locality-
based modularization is the most promising approach. Locality-based
modules are proven to be correct and complete and empirically shown
to approximate minimality better than other algorithms. However, we
also discuss many open issues that need to be solved in order to use
locality-based modularity approach in a large-scale collaborative ontology
development environment. In addition, we describe our on-going efforts
for implementing a Protégé4 plug-in to test some of the modularity ideas
in practice and get a better understanding of the practical issues.

2

1 Introduction

OWL1 is an ontology language based on a fragment of First Order Logic (FOL).
As a consequence, OWL inherits many strengths and weaknesses of FOL. For
example, OWL is declarative with very well understood properties. This allows
the operation of classification (i.e., determining whether a subclass relation holds
between two terms) to work not just on named classes arranged in an explicit
hierarchy, but on class definitions too. This permits bottom up terminology
development [23] and shifts the focus from “placing” terms correctly to defining
them.

But First Order Logic was not developed with modern, large scale system
development in mind. For example, it is relatively unstructured and even the
idea of a class definition is implicit from a syntactic perspective. Furthermore,
OWL allows one to make very powerful claims that can affect the whole ontology.
Thus, to understand a term in an OWL ontology, one must be ready, potentially,
to examine the entire ontology. As a corollary, if one makes a change to an
OWL ontology, one must be ready, potentially, to examine the entire ontology
for effects.

Representing and reasoning with multiple distinct, but linked OWL ontolo-
gies is crucial for building large and complex ontologies especially when they are
authored collaboratively by a team of developers. A single monolithic ontology
of large size causes problems both for humans and software tools. On the one
hand, it is hard for ontology developers to understand and refine the defined
terms; and, on the other hand, it is hard for software tools to process and reason
with such ontologies.

Similar issues arise in related areas, e.g. software engineering. These prob-
lems are solved by building a large software program from smaller self-contained
modules. For example, the programming language Java not only provides the
standard Object-Oriented programming notion of class but also provides the
notion of packages that contain classes belonging to the same category or pro-
viding similar functionality. One can import and use a single class from another
package or even import single functions from other classes (using the static im-
porting functionality introduced in Java 5). Modular software programs make
maintenance and collaborative development much easier.

OWL provides some primitive means for modular ontology development.
One of the historical problems in building ontologies from modular components
is name collisions [8], e.g. combining two modules that use the same name to
denote different terms. OWL, like RDF, solves this problem by using URIs to
uniquely identify terms. The other feature OWL provides for combining on-
tologies is the owl:imports construct. This allows one to include, by reference,
all the axioms contained in an external ontology in one’s local ontology. This
means that everything in (the transitive closure of the imports of) the imported

1Throughout, we will use “OWL” to refer to the OWL-DL fragment of OWL specification.
Without explicit qualification, we will use “OWL” to refer to the variant corresponding to
the Description Logic SHOIN . We will use “OWL 1.1” refer to the revised version of OWL
currently being developed by the W3C in the OWL WG.

3

ontologies gets into the original ontology. Therefore, in practice, the only differ-
ence between using owl:imports and directly adding all the assertions in the
imported ontology is that with owl:imports, the modeler can break an ontology
into different documents. This is an important management feature but does
not help with the understandability or scalability problems.

In summary, OWL does not provide any means to partially import and reuse
parts of other ontologies. If we would like to use one term from a large ontology
such as GALEN, we would end up importing the entire GALEN ontology. We
could try to extract only the parts of GALEN that talk about the term we are
interested in, but then we run into the problem of determining exactly what is or
is not relevant. Aside from the non-local effects of axioms, we have the problem
that GALEN is huge and complex. It would be a considerable amount of work
to make a rough guess as to what is relevant and that guess could be very wrong.
Even worse, an axiom we add to our own ontology could unintentionally change
something in a remote part of GALEN. We can mitigate this, to some degree,
by checking the classification and adding extra tests, but then we are once again
faced with the fact that GALEN is difficult to reason with.

In the past few years there has been an explosion of work in the theory and
practice of modular ontologies. A collection of language features, reasoning ser-
vices, and methodological advances aim, with considerable success, at “taming”
the power of OWL axioms without inhibiting them. Instead of arbitrary re-
strictions, modular analysis can allow ontology authors to determine the precise
scope of influence of their changes. These techniques have been used to improve
reasoning and to analyze the general structure of an ontology. Since they are
also theoretically well founded, it is possible to understand precisely “what you
get” from certain techniques and to compare them in a principled way.

There are different definitions describing what a module is. For now, we
will provide a broad and informal definition that covers the use of the term in
different contexts:

Informal Module Definition. A module of an ontology is a subset
of the axioms in that ontology that has a certain coherent structure.
Intuitively, the module should be self-contained in a way that enables
us to reason with just that module, ignoring the rest of the axioms
in the ontology.

We will use this informal definition to guide our intuition in comparing basic
modularity approaches in Section 2, and as we progress to a better understand-
ing of modules in Section 3 we will offer a more formal and crisp definition.

Once determined, modular structure can be helpful mainly in four scenarios:

1. Collaborative editing. Large and complex ontologies are developed not
by a single person but by a team of developers, possibly coming from
different organizations. Often each developer focuses on a subset of the
ontology in her area of expertise and collaborates with other developers
to relate the part she is working on with other parts of the ontology. We

4

not only want to facilitate concurrent editing of different modules but also
guarantee that a definition in one module does not alter the meaning of
terms in another module unintentionally.

2. Partial ontology reuse. Different subsets of large ontologies can be
used outside the context of the original ontology [14, 21, 5]. The author
of an ontology would like to publish such fragments to facilitate the reuse
of those fragments by a wider audience. Users would like to extract such
fragments to assist the development of their own ontologies.

3. Ontology analysis and navigation. The modular structure makes it
easier for humans to analyze and understand the definitions in an ontology
[29, 27]. First, modules help identify the domains modeled in an ontology.
This makes it easier to visualize the ontology and navigate through the
terms and their definition. Second, one can focus on certain modules that
are relevant rather than looking at the whole ontology.

4. Improved performance or scaling. Importing large ontologies as a
whole quickly causes the ontology size to become unmanageable by ontol-
ogy editors and reasoners. For example, if we want to use one term from
each of NCI thesaurus, GALEN, and FMA ontologies, then we would end
up fully importing all three ontologies resulting in an ontology beyond the
capabilities of any existing reasoner. On the other hand, the module for a
single term would typically be very small compared to the whole ontology.
Importing only the modules relevant for the terms we are interested in
would decrease the overall size significantly, improving the performance of
reasoners.

It is also important to mention another feature that has been considered
desirable for modular ontologies: localized semantics for modules [6, 31]. Some-
times one may want to define a local view on the parts of an ontology that might
not be globally true. In this setting, different modules would represent different
contexts and reasoning with an ontology might give different results based on
the chosen context. With contextual semantics, different modules can represent
conflicting views of the same concepts without causing a global inconsistency
because contextual information is local to the module and cannot affect other
modules in any way. Localized semantics require considerable modifications
to OWL both syntactically and semantically. In Section 2.1, we will examine
such OWL extensions in more detail and explain why we think adopting such
extensions are not suitable for large scale ontology development.

2 Basic Modularity Approaches

In general, a module of an ontology is a subset of the axioms that have a certain
coherent structure, that is, that have certain properties. Intuitively, the module
should be self-contained in a way that enables us to reason with just that module
and ignore the rest of the ontology without losing inferences.

5

There are two basic approaches to exploiting modular structure:

1. Prescriptive: The user explicitly states what is in or outside of a module,
i.e., the module boundaries; the role of the system is to respect those
boundaries. Prescriptive approaches themselves come in two sorts:

(a) linguistically prescriptive; that is, the language itself is changed, in
syntax and semantics, so that violations of modularity are syntactic
(or semantic) errors; the E-connection approach is an example;

(b) methodologically prescriptive; that is, we have some sort of validation
mechanism, akin to current species validators, and we require users
not to share an ontology without having coerced the ontology into a
valid state.

It is, of course, possible to combine these to some degree. For example, we
might allow annotations to be added to certain axioms indicating that they
are part of the same module. These would, as normal, be ignored by OWL
reasoners, but we could have a separate tool which took the annotations as
hints and provided warnings to the modeler when the hints were violated.

2. Analytic: Users write their ontologies in OWL as normal making full use
of the language. There are a variety of system services which analyze the
ontologies for modular structure, perhaps in response to queries from the
user.

Clearly, methodological prescriptivism relies on analytic services as they
need to check whether some change has violated the hints. In fact, one could
easily group methodological prescriptivism with methodological analysis in con-
trast with linguistic prescriptivism. In that respect, we will review some of the
ontology development methodologies relevant for modularity in Appendix A.

2.1 Against linguistic prescriptivism

A key difference between linguistic prescriptivism (LP) and other approaches is
that since LP typically radically changes the underlying language, it requires a
radical change to the infrastructure as well. Since one is changing the syntax
and semantics of OWL, OWL parsers and reasoners have to be revised as well.
Furthermore, either one has to get these changes into the OWL standard, or
one has to live with non-standard extensions as part of one’s ontology, which
severely restricts reuse by other organizations and ties one to a customized,
non-standard toolset.

Let us consider the case of E-connections. E-connections is a formalism that
was designed primarily for combining different logics in a controlled way. In
this way, it is very much in the spirit of data properties in OWL. OWL strictly
segregates the set of properties into object and data properties. The objects
of data properties are values drawn from a distinct set of individuals with an
extensive predefined meaning. For example, a data property hasAge may have

6

as its range the set of positive integers. The basic theory of integers (such as
that one is less than two) is built into the logic; thus, the modeler does not have
to include axioms enforcing the basic properties of integers. There are strict
limitations on how a modeler can use these properties, for example, you cannot
have inverse data properties (or, equivalently, properties on data values). By
imposing these restrictions, reasoners can treat the data “universe” separately
from the regular OWL universe. In fact, one can plug in different data theories
(e.g., for strings) without changing the basic implementation of the reasoner.
The data reasoner is a black box component of the combined (data and object)
reasoner.

A key aspect of data properties is that the set of data values and the set of
OWL individuals are disjoint and can interact in only very strictly controlled
ways. E-connections take a similar approach, except that:

1. instead of two disjoint sets of properties (data and object) we can have
many distinct sets of properties (so called “link properties”);

2. instead of only two domains (i.e., object vs. data), we can have arbitrary
numbers of them;

3. the language describing each domain can be OWL;

4. classes in each domain may be defined (in very restricted ways) in terms
of any other domain (so we have possible two way dependencies).

As with data properties, the E-connection extension to OWL introduces a
fair bit of heavyweight syntax. We have a new family of properties called link
properties which are associated with domains (component ontologies). Each
domain can declare which foreign ontologies it “links” to. For each component,
a modeler has to declare:

• the local classes, properties, instances, etc.; this generally just looks like
normal OWL;

• a set of foreign ontologies and the link properties that connect the current
component to the foreign one.

For example, suppose we are trying to build an ontology of bone diseases.
We set up an E-connection with two parts: a component about bones and a
component about diseases. Since no bone is a disease, this separation is natural.
However, we want to be able to define certain diseases as being associated with
bones in general (e. g., bone cancer) or with specific types of bone. So we declare
that occursIn is a link property in the Disease component which targets the
Bone component ontology. Using the OWL syntax proposed in [15] the link
property definition for occursIn would be written in the gene ontology as:

disease:occursIn rdf:type econn:LinkProperty ;

econn:foreignOntology BoneOntology ;

rdfs:domain disease:Disease ;

7

rdfs:range bone:Bone .

bone:Bone rdf:type econn:ForeignClass ;

econn:foreignOntology BoneOntology .

There are several things to note about this definition. First, we introduce a
new built-in namespace for E-connections denoted with the prefix econn2 and
several new terms (LinkProperty, ForeignClass, foreignOntology) defined
under this namespace. The E-connection terms are similar to the terms from
RDF or OWL namespace; that is, they have a predefined semantics specified
outside the ontology. Also, note that we explicitly specify the target of the
link property as DiseaseOntology and type the class coming from the foreign
ontology as econn:ForeignClass.

Continuing the example, if we have Tibia defined as a subclass of Bone in the
bone component and Tibial-Adamantinoma defined as a subclass of Disease
in the disease ontology, we can define the association between them as follows:

disease:Tibial-Adamantinoma rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty disease:occursIn ;

owl:someValuesFrom bone:Tibia] .

bone:Tibia rdf:type econn:ForeignClass ;

econn:foreignOntology BoneOntology .

The syntactic extensions of E-connections give ontology developers precise
control over how ontologies interact with each other by explicitly specifying
which foreign concepts are used and how they are linked to the source ontol-
ogy. However, we can easily get into trouble with this approach. For example,
suppose we want to enrich our ontology with a theory of cells: Where should
we define the class Cell? Perhaps including it with Bone makes the most sense
since we can then define certain bone cells as being cancerous (but not by be-
ing a subset of a class called CancerousCell). Each substantively new concept
requires significant analysis on the part of the modeler before she writes any
axioms. The modeler must make significant, high level decisions very early in
the process. These decisions strongly shape the subsequent modeling.

E-connections (and E-connection derived segmentation algorithms such as
[16, 17]) are biased to what we might call “vertical” separation of concerns:
They work best when there are parallel subject domains which are related by
properties with the subject in one domain and the object in another. They do
not help at all in the following case: two people or groups are trying to refine
sibling classes without interfering with each other.

There are other modular ontology languages that tackle this specific problem
of specifying directional (“view dependent”) subsumption relationships between

2E-connections has not gone through the W3C standardization process and does not have
a standardized URI that can be used for the namespace of the newly introduced terms. The
approach adopted in practice was to use the standard OWL namespace for E-connection terms,
which is against the W3C norms.

8

concepts coming from different ontologies. The Distributed Description Logics
(DDL) [6] formalism introduces the notion of “bridge rules” to define subsump-
tion, equivalence and disjointness between concepts of different ontologies. Con-
text OWL (C-OWL) [7] extends OWL syntax and semantics with DDL bridge
rules.

Let’s examine the extensions DDL (and C-OWL) provides by looking at the
example of combining GALEN and UMLS ontologies described in [7]:

Both GALEN and UMLS ontologies describe the notion of “sub-
stances” that are involved in physiological processes. However, the
actual notion of substance as defined in GALEN is not exactly equiv-
alent to the notion of substance in UMLS, because it also contains
some notions that are found under anatomical structures in UMLS.
GALEN also contains the notion of a generalized substance which is
a notion of substance that subsumes substances in a physical sense
making it more general than the notion of substance in UMLS.

These relationships between GALEN and UMLS concepts can be expressed
with the following two bridge rules [7]: galen:GeneralisedSubstance is a
superclass of umls:Substance and galen:GeneralisedSubstance is a subclass
of the union of classes umls:Substance and umls:AnatomicalStructure. In
C-OWL syntax, a superclass mapping is done with an cowl:Onto rule and a
subclass mapping is specified with an cowl:Into rule. So the above concept
mappings would be written as follows:

GALEN-UMLS-Mapping rdf:type cowl:Mapping ;

cowl:sourceOntology GALEN ;

cowl:targetOntology UMLS ;

cowl:bridgeRule [

rdf:type cowl:Onto ;

cowl:source galen:GeneralisedSubstance ;

cowl:target umls:Substance] ;

cowl:bridgeRule [

rdf:type cowl:Into ;

cowl:source galen:Substance ;

cowl:target [

rdf:type owl:Class ;

owl:unionOf (umls:Substance

umls:AnatomicalStructure)]] .

Note that, C-OWL also introduces another non-standard namespace cowl and
a tool needs to know about C-OWL syntax and semantics to process these
bridge rules properly. Further, C-OWL allows concept subsumption that E-
connections does not provide; but, in contrast, C-OWL cannot reuse foreign
concepts in restriction as in E-connections.

There is yet another LP approach called Package-based Description Logics
(P-DL) [3] which tries to overcome the expressive limitations in E-connections

9

and DDLs by allowing both inter-module concept subsumptions and foreign
concepts in restrictions. However, as in other LP approaches, P-DL defines
another non-standard localized semantics; and, furthermore, reasoning support
is provided only for the very inexpressive DL ALC which lacks various impor-
tant features of OWL, e.g. property subsumption, transitivity and cardinality
restrictions.

In recent surveys [14, 31], we see as many as five families of modular exten-
sions to OWL. While some can be reduced or encoded in others, some cannot
easily be intermapped. These are clearly a small subset of the possible for-
malisms that could be explored. Thus we run into several major problems with
the LP approach:

• Each LP approach extends OWL syntax and semantics significantly which
means any option would require considerable upgrades to the infrastruc-
ture including tools (parsers, editors, reasoners, etc.) and standards.3 For
example, the E-connection support was implemented in the ontology edi-
tor Swoop and reasoner Pellet with modifications to the parser and model
of OWL API. However, over the years maintenance of this non-standard
extensions has become so problematic that this support has been removed
in the recent releases of these tools.

• If NCI is going to commit to the huge effort of upgrading the infrastruc-
ture, then we need to be sure that the formalism we commit to serves
current and future purposes well. There is no apparent consensus in the
literature on one LP approach. All use of these formalisms seems to be
driven by researchers in academia rather than having caught the imagina-
tion and solved the problems of the user base.

• We also share the sentiment expressed in [14] that modular semantics are
likely to confuse the user. It is already a challenging task for users to
fully grasp the semantics of OWL (Open World Assumption, no Unique
Names, inferencing in contrast to integrity constraints, etc.). It would be
much harder for users to understand and correctly use the non-standard
localized semantics provided by LP approaches. It is also non-trivial to
determine which formal properties should be expected from them and to
establish their relationship with the conventional OWL semantics.

The authors of [14] do point out that linguistic prescriptivism can have some
compelling advantages, in particular, it tends to offer more control and tends
to be more intention revealing. Thus, for example, with E-connections, the
modeler can force certain terms together even if their axioms do not, logically
speaking, bind the use of the terms. Similarly, an E-connected ontology has an
explicit set of components which reflect a way of dividing up the overall subject
matter. But this also proves to be a disadvantage in cases where the ontology
author cannot anticipate all the different ways her ontology will be reused. In

3We strongly believe that there is no way that the current working group would consider
such radical changes to OWL 1.1

10

certain application domains, a different kind of modularization of the terms can
be more useful but cannot be achieved with a priori prescribed modules.

2.2 Analytic modularity

Given the high expense of changing the base language, it seems clear that lin-
guistic prescriptivism, at least in the sense of changing the base formalism, is
a non-starter. Lighter-weight approaches are less risky in general and have the
great advantage of being easier to adapt to changing needs and our changing
methodological understanding.

In an analytic approach, users author their ontologies in OWL with the
standard syntax and semantics including the owl:imports statement. Then
ontology tools analyze these descriptions and provide services to facilitate mod-
ular design.

The most important service is examining how external terms are used in the
local ontology and dynamically extracting a relevant module from the foreign
ontology. Intuitively, a module of the foreign ontology is defined to be the set of
axioms that are relevant for the terms used in the local ontology. In Section 3,
we will discuss this issue in more detail and provide other properties one can
expect from modules.

Dynamically extracted modules can then be used in ontology viewers, ed-
itors, and reasoners. An editor would show only the concepts and axioms in-
cluded in the module and reasoners would only process the axioms from that
module. This dynamic module extraction technique, which we will call modular
importing, allows us to partially reuse any terms from an ontology in a scalable
manner.

The idea of modular importing has been widely investigated in recent years
[10, 19, 3, 5, 25, 4]. Some of these approaches (e.g. [25, 4]) investigate the notion
of “semantic imports” and are in fact closer to the LP approach because they
are based on non-standard semantics (not surprisingly [25] has roots in DDL
and [4] has roots in P-DL). They suffer from the same issues we discussed in
the previous section. Other approaches [19, 5], on the other hand, are based
on module extraction algorithms that do not require any change to the OWL
semantics.

One common feature in modular importing proposals of [19, 5] is to aug-
ment the import statements with explicit specification of which terms (concept
or property) should be reimported. Explicit specification of imported terms is
not really necessary because tools can easily discover such information auto-
matically by examining the axioms in the local ontology and collecting external
terms used. So the choice between explicit specification and automatic detection
reduces to the preference of ontology developers. In our prototype implementa-
tion described in Section 6 we chose the latter approach since it is less intrusive.

The main question in analytic modularity approach is what kind of modular-
ization algorithm to use to extract the relevant parts of an ontology. There are
various alternatives [13, 24, 28, 29, 21] one can choose from which would result
in (sometimes significantly) different modules. At first, this might seem like the

11

same situation as in the LP approach; lots of choices with no apparent winner.
But there is a very important difference: the ontologies developed are exactly
the same in all cases. Modular importing is not a feature of the ontology but a
feature of the tool that processes the ontology. So, in principle, different tools
may use different modularization algorithms (provided that those algorithms
satisfy some conditions we will discuss shortly). Furthermore, a tool can simply
use the standard OWL importing mechanism always importing entire ontolo-
gies and everything would still work (with the obvious difference that such tools
would suffer from the scalability problems we mentioned earlier).

For modular importing to work in practice, there are some conditions that a
module should satisfy. We would want the modules to be logically complete so
we don’t miss entailments that would have been inferred with regular importing.
In the following section, we will examine such conditions in more detail.

3 Desiderata for Modular Importing

The semantics of OWL is defined in terms of reasoning with respect to full
imports closure of an ontology. Every reasoning service such as concept satisfi-
ability, concept subsumption, etc. should be done by considering all the axioms
in the imports closure. With modular importing we only want to consider a
subset of the axioms that is relevant for the terms we are working. As we dis-
cussed earlier, it is very hard to determine the modules of an OWL ontology.
Thus, we need to use a formal methodology to decide what is a module in an
ontology.

The main properties that a module need to satisfy have been studied and
identified in the modularity literature [13, 14, 21, 22, 4, 29]. Not everybody
agrees on all the properties proposed in the literature; for example, we have
argued, as have the authors of [14], against the non-standard semantics that are
adopted by [25, 4]. However, there is almost a consensus on the main properties
of modules:

(D1) Module Correctness A module of an ontology should contain only infor-
mation that is present in the original ontology. This means any inference
deduced from the module should be deduced from the original ontology.
This objective is easy to fulfill if the module is a syntactic subset of the
original ontology with respect to the asserted axioms it contains.

(D2) Module Completeness A module of an ontology should contain all the in-
formation from the original ontology that is relevant for the terms that are
reused in the importing ontology. This goal makes sure that the ontology
developer will not see any differences in the inferences between importing
the module and importing the whole ontology.

(D3) Module Minimality A module of an ontology should be as small as possible.
The simplest module definition for an ontology that satisfies correctness
and completeness is the ontology itself. Obviously such modules are not

12

useful and do not help with any of the use cases we identified earlier in
Section 1.

It is straightforward to formally define the correctness and completeness
criteria using OWL semantics specification as done in [13] and [21]. As we
mention above, correctness is a fundamental property that simply follows from
the monotonicity of OWL when the module is computed as a subset of the
axioms in the ontology. All the modularity algorithms that we will examine in
Section 4 trivially satisfy this property.

The completeness of a module is not as straightforward as correctness but
a formal definition for it has been established recently based on the notion of
conservative extensions [9]. An ontology is defined to be a conservative extension
of another ontology with respect to a set of terms if the meaning of those terms is
not changed in the extension ontology. Then, we say that subset of an ontology
is a module of that ontology if the ontology is a conservative extension of the
subset. That is, if the the meaning of the terms in the module are not changed
outside the module then the module is considered to be complete for those
terms.

Based on the formal definition of correctness and completeness, we can easily
prove or disprove that the modules generated by a certain algorithm are correct
and/or complete. There are no degrees of correctness or completeness, i.e. a
module is either correct (respectively complete) or not.

In contrast to the crisp notions of correctness and completeness, the minimal-
ity of modules can vary and in most cases the best we can do is to approximate
the minimal module (see Section 4.2 for more discussion). For this reason, the
sensible way to compare two different modularization algorithms with respect
to minimality is empirical analysis.

The completeness and minimality conditions are two competing goals: we
need to include more axioms in the module to ensure completeness which in-
creases the size of the module and works against minimality. We believe com-
pleteness is an important property that should always be respected for the
purposes of reasoning. However, for certain tasks like navigation and visualiza-
tion, minimality can be more important than completeness, e.g. if the goal is
to provide a small fragment of the ontology that will help the user understand
the definition of term in an ontology. The minimality of module in this context
is highly subjective and hard to quantify or formalize. We will revisit this issue
in Section 5.1.

Formal Module Definition A module of an ontology for a given
set of terms is a minimal subset of the axioms in that ontology where
the entailments inferred from the module are correct and complete
with respect to the entailments inferred from the whole ontology
involving those terms.

There is another property that has been identified in the modularity liter-
ature; however, this, unlike the first three properties, is not a property of the
imported module but a property of the importing ontology.

13

(D4) Import Safety The meaning of the imported terms should not be changed
in the importing ontology. In other words, any relation between two im-
ported terms such as equivalence or subsumption that can be inferred from
the importing ontology should also be inferred from the imported ontol-
ogy itself. Safe reuse means that the importing ontology may define new
subclasses or superclasses of imported terms but cannot define a subclass
relation between two imported terms.

Note that, the safety condition is also directly related to the conservative
extension notion. An importing ontology is safe for the imported ontology if
their union is a conservative extension of the imported ontology. Safety ensures
that by importing an ontology one will not unintentionally change the meaning
of terms in that ontology. In OWL, there is no mechanism to prevent or detect
such cases. This means a user can import some terms from a foundational upper
ontology, create some axioms using the imported terms and add new subsump-
tion relations between the imported terms. Affecting the upper ontology like
this is not desirable for several reasons. First, it might be the case that this
change does not fully comply with the original modeling in the upper ontology
and is in some sense wrong. Second, it might be the case that the upper ontol-
ogy was missing that added relation, but adding this to only the local importing
ontology means none of the other users of the upper ontology will see the added
relation. In this case, it would have be better to add this missing relation into
the upper ontology directly.

Ensuring safety also improves collaborative editing of ontologies. When an
ontology is partitioned (possibly automatically) into modules, and there are
different authors responsible of developing each module, we do not want the
developers of one module to change the meaning of terms defined in the an
another module. Such effects violate the separation-of-duty constraints one
would like to establish on the development of modules and should better be
handled by explicit communication between developers.

It is also important to recognize that in some cases an ontology developer
intentionally would like to change the meaning of imported terms. For the
upper ontology example, it might be the case that the terms of interest are not
defined in sufficient detail for the purposes of the importing ontology and it is
not possible to update the upper ontology. Or there could be some additional
relations that are true for the application domain of the importing ontology but
that do not globally hold. In such cases, one would disregard safety and change
the meaning of imported terms.

It is also possible to demand the safety of some imported terms but not
others. If the ontology developer knows that she will change the meaning of
some imported classes, then safety condition might be enforced only for other
terms that the developer does not wish to change. Parametric safety enforce-
ment provides the flexibility of changing the meaning of terms when required,
while preventing the unintentional changes to other terms. Unfortunately, such
nuanced safety notions have not been studied in the literature.

14

4 Modularization Algorithms

As mentioned earlier, there are many different algorithms described in the litera-
ture which are designed to extract the modules of an ontology. Throughout this
section, we will review the most prominent modularization algorithms men-
tioned in the literature and evaluate their fitness based on the desiderata we
specified in the previous section.

It is important to note that some of these algorithms generate modules
simply as a set of concepts rather than a set of axioms as in the definition we
have been using. The straightforward way to construct a set of axioms from
a given set of concepts is to simply include all the axioms that mention those
concepts.

4.1 Ad hoc algorithms

A common approach in modularization algorithms is traversing the axioms in
the ontology and using heuristics to determine which axioms should be in a
module. These modularization procedures do not attempt to formally specify
the intended outputs of the procedures, but rather argue what should or should
not be in the modules based on intuitive notions. In particular, they do not
take the semantics of the ontology languages into account. Therefore, such
algorithms do not guarantee the completeness of the extracted module. Because
of these reasons, we do not recommend such ad hoc algorithms.

4.1.1 PromptFactor algorithm

Perhaps the most commonly used modularity algorithm is the PromptFactor
tool [24] that is available as a Protégé3 plug-in. The PromptFactor algorithm
extracts a fragment of an ontology based on a given signature. The algorithm
starts by finding the axioms that mention the terms in the given signature and
expands the signature with other terms mentioned in those axioms. The ex-
pansion continues until a fixpoint is reached. The correctness of the modules
generated by the algorithm is obvious (since an extracted module is a subset
of syntactic axioms in the ontology) but the completeness of modules cannot
be guaranteed. It has been shown in [13] that PromptFactor modules are not
complete in the presence of unsatisfiable concepts or in the presence of enumer-
ations. It is possible, though not straightforward, to prove the completeness
of the algorithm if the ontology meets certain conditions but this has not been
done in the literature. Furthermore, empirical evaluation of PromptFactor [13]
shows that the size of the modules computed by this algorithm can be two or-
ders of magnitude larger than the size of the modules generated by algorithms
that can guarantee completeness.

4.1.2 Structure-based partitioning algorithm

Stuckenschmidt and Klein present a method of partitioning the class hierarchy
into modules [29]. They exploit the structure of the hierarchy and constraints

15

on properties’ domains and ranges to iteratively break the ontology up into
dynamically sized modules. This method does not take OWL restrictions into
account at all and instead relies on the globally asserted domain and range
constraints.

Structure-based partitioning is primarily meant for breaking an ontology into
broad packages or modules so that it can be more easily browsed and visualized.
Thus, the modules it generates fail to satisfy the completeness criteria.

4.1.3 GALEN segmentation algorithm

Seidenberg and Rector [28] describes another ad hoc modularity algorithm which
was primarily designed to extract modules from the GALEN ontology but can be
applied to arbitrary OWL ontologies. The algorithm is similar to the structure-
based partitioning algorithm but uses different kinds of structural analysis and
heuristics, specifically the algorithm takes OWL restrictions into account (at
least syntactically).

The description of the procedure in [28] is very high-level. The authors
discuss which classes and properties should be included in the segment and
which should not based on intuitive “usefulness” criteria. In particular, they
argue a module should contain all sub and superclasses of the input class plus all
the classes that are linked via existential restrictions from the input class. The
superclasses of the classes included via links are also put into the module but
their subclasses are not. For any included class, the algorithm also inspects their
restrictions, intersection, union, and equivalent classes and pulls all the classes
and properties used in those descriptions. Several (semi-automatic) filtering
methods are also described to prune some of the terms from the module to keep
the module size small.

The behavior of the algorithm is justified based on intuitions and/or struc-
tural analysis rather than semantics. As a result, it is easy to come up with
examples that demonstrate the incompleteness of modules generated [10].

4.2 Formal algorithms

Formal modularization algorithms adopt a principled way of extracting modules
that are correct and complete. As we explained in Section 3, the completeness
of modules are defined in terms of conservative extensions. Unfortunately, it
has been shown that determining if an ontology is a conservative extension of
another one is undecidable for OWL-DL and becomes decidable only for less
expressive fragments [13, 21, 22]. There are then two alternatives to tackle the
problem: focusing on simple inexpressive DLs or approximate the solution by
finding sufficient conditions that will ensure completeness. In practical terms,
approximating means that we might end up with larger modules than theo-
retically needed but the module generated will be provably complete. Both of
these approaches have been tried in the literature and we will now review these
algorithms.

16

4.2.1 CEL and MEX algorithms

There are two different modularization algorithms geared toward tractable frag-
ments of OWL, namely the EL fragment [1]. The EL family of DLs restrict the
expressivity of OWL to gain tractability, but it is still expressive enough to
formulate some of the important life science ontologies like GO and SNOMED-
CT. Reasoning in EL++ (the most expressive language in the EL family) is
polynomial time and has been implemented in the CEL reasoner [2].

The CEL reasoner, in addition to standard reasoning services like classifi-
cation, provides a modularization service based on connected reachability [30].
The nodes in the reachability graph are labeled with concepts from the ontology
and edges are labeled with axioms. Intuitively, a concept A is reachable from
another concept B if B syntactically refers to A either directly or indirectly via
the axioms in the ontology. The reachability between two concepts suggests
a potential subsumption relationship between them. The module of a concept
includes the concepts in its connected component and the axioms in the label
of nodes. This axiom is guaranteed to be generate logically complete modules
for EL+ ontologies.

MEX is another module extraction algorithm for EL ontologies that has
been proposed recently [20]. The algorithm generates (uniquely determined)
minimal modules but only for acyclic EL ontologies (i.e. there can be no cyclic
class definitions). For acyclic EL ontologies MEX generates smaller modules
than CEL reasoner and any other more generic module extraction algorithm.
However, both algorithms have very minimal applicability due to being limited
to EL fragment. Many ontologies including NCI thesaurus and GALEN are
beyond the expressivity of EL.

4.2.2 Cuenca Grau et al. (2006) algorithm

Cuenca Grau et al. (2006) [17] describes a modularity algorithm that satisfies
the correctness and completeness criteria of Section 3. The algorithm also im-
poses an additional requirement on modules, namely, that the module should
entail all the subsumptions in the original ontology between atomic concepts
in the module and other concepts in the ontology. This additional restriction
makes it possible to devise a quadratic time modularization algorithm, but also
means it is a rougher approximation to the minimality and the modules gener-
ated will be larger.

The algorithm also requires the original ontology meet certain conditions
in order to be considered safe for modularization.4 For example, the algorithm
cannot extract modules from an ontology that contains non-safe axioms, e.g. an
axiom that declares owl:Thing to be a subclass of another (possibly complex)
class is considered to be non-safe.

The main idea of the algorithm is to generate a partitioning of the input
ontology represented as a directed labeled graph (the partitioning graph). The

4Note that, the term safety in this context is not same as the safety condition we described
in Section 3

17

nodes in the graph are labeled with the axioms of the ontology and the edges
are labeled with properties. Each concept is also assigned to a node in the
graph. The algorithm starts with a graph of single node that contains all the
axioms, then moves one of the terms to a newly created node along with axioms
associated with it. In the end, the module for a term is computed by finding
the connected component of its node and including all the axioms in the label
of that component’s nodes.

This algorithm is completely syntactic, i.e. no reasoner is used during mod-
ule extraction, but it is proven to guarantee logical completeness. The major
drawback is the limitation to safe ontologies and the relatively large modules
computed by the algorithm [13].

4.2.3 Locality-based algorithm

A more promising and tractable modularization algorithm is based on the notion
of locality that was proposed in [11, 10] and further refined in [13]. These ideas
have been used to support modular and safe imports of ontologies [19].

The locality notion is another approximation to the conservative extensions
to make the problem decidable. Intuitively, an axiom is local for a set of terms
if the axiom does not change the meaning of those terms in a certain way. There
are as many as six different types of locality conditions identified [13] and each
locality type has a different definition of what it means to change the meaning
of a term. The most commonly used locality types are >-locality (top-locality)
and ⊥-locality (bottom-locality) . An axiom is >-local for a class if it does not
define a new subclass for that concept and ⊥-local if it does not define a new
superclass for that concept.

Different locality types lead to different types of modules. For example, the
modules extracted for a set of classes using ⊥-locality are called upper modules
and are guaranteed to contain all the superclasses of those classes. Similarly,
using >-locality yields lower modules which are guaranteed to contain all the
subclasses.

One can decide which of the upper or lower modules to use based on what
the importing module is supposed to do. For example, if we are importing
a foundational upper ontology, then we would most likely refine the concepts
defined in the upper ontology, i.e. define more specific subclasses tailored for
our specific domain. In such a case, we would like to use upper modules so we
can get the complete set of superclasses for the concepts we are defining. In
other cases, we might want to generalize the concepts of the imported ontology,
in which case we want to use lower modules.

The safety of imported terms is guaranteed if the importing ontology either
only refines or only generalizes the imported terms. Note that this is an all-or-
nothing approach which might be very restrictive in many cases. For example,
if we are reusing two completely unrelated concepts from the imported ontology
by refining one and generalizing the other, this approach would conclude that
import safety is violated even though there could be no interactions between
those two terms.

18

There are two different methods developed to extract modules based on
locality: semantic locality and syntactic locality. Semantic locality transforms
axioms in a certain way (again the actual transformation depends on the locality
type used [13]) and then checks for tautologies using a standard DL reasoner.
Checking for tautologies in DLs is, theoretically, a difficult problem but we are
considering each axiom in isolation so the size of the ontology does not matter
and the standard optimizations in DL reasoners can effectively find tautologies.
Syntactic locality, on the other hand, does not require a reasoner and can be
implemented in polynomial time using purely syntactic checks. The caveat is
syntactic locality is an approximation to semantic locality (which itself was an
approximation) so an axiom can be syntactically non-local but semantically
local. What this means, as in other cases of approximations, is that modules
extracted with syntactic locality will be larger compared to modules extracted
with semantic locality.

5 Summary and Outlook

In this paper, we have reviewed the recent developments in modular ontology
development. Modular ontologies facilitate collaborative ontology authoring and
partial ontology reuse while improving the performance of tasks like reasoning.
Modular structure also makes it easier for developers to navigate and understand
the contents of large ontologies.

We have first compared two basic approaches for modularity: (linguistically)
prescriptive vs. analytic. Linguistic prescriptivism defines syntactic and seman-
tic extensions to OWL language to let developers define their modules a priori.
We argued against language extensions for several reasons. First, there is no
clear choice among possible language extensions (E-connections, DDL, P-DL).
Second, adopting these extensions would require significant changes to the cur-
rent infrastructure including updates to tools (parsers, editors, reasoners, etc.)
and standards. Third, the non-standard semantics proposed by these exten-
sions are likely to confuse ontology developers and make it harder to learn and
understand the new semantics.

We explained how analytic methods for modularity provide a viable alterna-
tive without major changes to the underlying infrastructure. With the analytic
approach ontologies are authored using standard OWL syntax and semantics
but tools analyze the usage of imports and imported terms to extract modules
on-the-fly. We argued that dynamic computation of modules provides flexibility
to allow different parts of an ontology to be modularly imported in different
contexts (possibly in ways that are not anticipated by the original author at
design time).

We identified several conditions that need to be satisfied by modules so that
modular imports can be used instead of complete imports. These conditions
are module correctness, module completeness, module minimality, and import
safety. We evaluated several modularization algorithms with respect to these
criteria and examined which algorithms satisfy which conditions.

19

Module correctness is trivial to achieve and was satisfied by all the algorithms
we evaluated. Module completeness, on the other hand, is harder to accomplish
and we have seen that many ad hoc algorithms fail on that criteria. Computing
minimal modules turns out to be undecidable except for relatively inexpressive
DLs [21, 22] but good approximation algorithms have been developed. Lastly,
we argued that import safety is an important notion that need to be respected
in certain cases but it is also perfectly reasonable to ignore safety in some other
use cases.

Out of all the modularization algorithms we looked at, the locality-based
approach is the most promising one. Locality-based modules are proven to be
correct and complete. The empirical analysis [13] show that locality-based mod-
ularization approximates minimal modules much better than other algorithms.
It is also possible to ensure imports safety using locality-based modules, though
safety restriction limits its applicability considerably.

There are, however, many issues that need to be solved in order to use
locality-based modular importing approach in a large-scale collaborative ontol-
ogy development environment. We will discuss these outstanding issue in the
following subsection. We are also in the process of implementing a Protégé4
plug-in to test some of these ideas in practice and get better understanding of
the practical issues. We will describe the current state of the implementation
in Section 6 and provide a more detailed report once the implementation is
finished.

5.1 Outstanding Issues

Our analysis of modularization algorithms focused on formal properties that
the resulting modules should satisfy. For example, we argued for the necessity
of module completeness so that the importing ontology would not miss any
definitions and entailments that are relevant for the imported terms. But logical
completeness do not always result in coherent and understandable modules. The
different types of modules one gets with locality-based modularity, i.e. upper
and lower modules, is an example of this.

Let’s illustrate the last point with an example. Suppose we are refining
an imported class C in our ontology by defining its subclass D. Then we would
extract and import the upper module for C which would be guaranteed to contain
all its superclasses but might not include (any of) its subclasses. That would
mean that we would not even see any of the sibling classes of D. From a logical
entailment point of view, this is acceptable because without any more axioms,
we cannot infer any relation between D and any other subclass of C. But from
the modeler’s point of view, this is not very satisfactory as sibling classes of D
would most likely be considered relevant.

The unintuitiveness of such modules from the modeling perspective suggest
that there is more work in the area of extracting comprehensive and under-
standable modules. Logical completeness should be considered the minimal set
of axioms we will consider, but this module can be extended further with heuris-
tics or user-defined rules that may depend on the application domain. This

20

hybrid approach would both have the strength of rigorous, formal approach and
capture the intuitive results that the ad hoc algorithms are aiming for. Un-
fortunately, intuitiveness is a very subjective notion that cannot be quantified
or tested objectively, so such extensions would mostly rely on user studies and
usability tests.

The safety requirements imposed by the locality-based modularity approach
are very restrictive, as we pointed out in Section 4.2.3. The importing ontology
should commit to one of refinement (subclass definitions) or generalization (su-
perclass definition) for all the imported classes. We cannot refine one class and
generalize another one since that violates the safety condition. Furthermore,
defining one of the local classes equivalent to an imported class will be consid-
ered unsafe automatically because equivalence implies both sub and superclass
relation. Defining a synonym for an imported term is a very common use case
and would not be considered unsafe if we were using the conservative extension
definition for safety. However, locality, being an approximation of conservative
extensions, treats this usage as unsafe.

The restrictiveness of locality-based safety condition limits its applicability
in a number of modeling scenarios. In those use cases, the user is forced to ignore
the safety violations, since there is no actual safety violation, which might later
cause a real safety violation to be missed. Furthermore, it is not straightforward
how to decouple the import safety requirements from module completeness so
one can extract correct and complete modules even when the imported terms
are used unsafely.

There are also some outstanding issues regarding the lack of class declara-
tions in OWL. It is not always possible to analyze an ontology and determine
which classes are defined in the ontology vs. which classes are imported. This is
easy to resolve when there are not any cyclic import statements but gets much
harder, if not impossible, in the presence of cyclic imports. OWL 1.1 introduces
the notion of class declarations to solve this problem, but it is not clear if this
feature will be in the final version of OWL 1.1 specification. Even if this fea-
ture is included in the OWL 1.1 specification, what to do with existing OWL
ontologies with cyclic imports remains an open question.

5.2 Future Directions

We are currently looking at relaxing some of the restrictions related to locality-
based modularity approach as explained in the previous section. Relaxing the
import safety conditions and decoupling import safety from module complete-
ness are two major issues we are investigating. Improving the efficiency of the
implementation is also crucial to update the imported modules in dynamically
in response dynamically to changes to the ontology.

We are also looking at reducing the size of extracted modules. Using seman-
tic locality, instead of syntactic locality, will possibly give better results but an
empirical evaluation is needed to measure how much the module sizes change in
typical cases. Another approach we are considering is combining the locality-
based modularity with the modularity algorithms developed for EL ontologies

21

(see Section 4.2.1) which compute much smaller modules. Even though many
ontologies do not fit into the expressivity of EL family, it is possible that the
modules we extract with locality will fit into EL since they contain significantly
fewer axioms. Therefore, we can have a two-stage modularization algorithm
where we first extract a coarse module with locality and then apply the EL
modularity algorithm to get a fine-grained module.

6 Prototype Tool Implementation

We have started building a prototype tool to support modular ontology develop-
ment. Our proof-of-concept implementation is a Protégé4 plug-in that provides
two main features:

• Modular importing This feature enables the ontology developer to import
modules extracted dynamically based on the usage of external terms.

• Focused concept viewing This feature lets the ontology developer see a
focused view for one or more concepts of interest in an ontology. The
terms that are relevant for (i.e. in the module of) the selected concepts
are shown in the UI and the rest of the concepts are filtered out.

Both features are implemented using the syntactic locality-based modular-
ization algorithm described in Section 4.2.3. We are planning to implement
semantic locality algorithm and compare the differences in extraction time and
module sizes. Our design is not hard-wired for a specific modularity algorithm
and in principle any modularity algorithm with similar characteristics can be
used to provide these services.

The plug-in is still in the very early stage of development. We are investi-
gating the feasibility of some features and might need to scale down the features
if we cannot achieve (near) real-time performance for large ontologies. In the
following sections, we will describe the current design of the plug-in and explain
in more detail how the aforementioned features will work. We will provide a
more thorough documentation of the plug-in once the implementation finishes.

6.1 Partial ontology importing

The modular ontology importing feature we are implementing do not require any
syntactic and semantic extension to OWL and works seamlessly with current
OWL ontologies. The modularity plug-in examines the import statements in
an ontology and finds the external terms “used” from the imported ontology.
A term is considered to be used if it is referred in any logical axiom in the
importing ontology. The plug-in provides customized views for entities (classes,
properties, and individuals) that will show only the external entities that are
either directly referenced or are in the same module as the directly referenced
entity.

22

The customized entity views are updated automatically as an axiom using
a new external entity is added or all the axioms that uses the external entity
are removed. It is also possible to set the preferences of the plug-in such that
the user will be notified of such changes. The change notification lets the on-
tology developer follow how the imported module evolve based on the axioms
added/removed. This feedback mechanism would let the user immediately see
the non-obvious effects of her changes, e.g. see which other classes get included
in the module because of the directly used class.

The ontology developer is also notified if an external entity is used in a
way violating the safety condition explained in Section 3. As we discussed in
Section 3, non-safe usage of an imported term indicates that the meaning of
that term might be changed in the local ontology which is not desirable most
of the time. But we also recognize that unsafe usage of imports is unavoidable
in certain cases so the tool only indicates unsafety when it occurs but does not
enforce safety automatically. The safety check determines and displays which
axioms need to be changed to guide the user in fixing unsafety.

Another view we are developing is a summary of partially imported terms.
This view shows which external terms from the imported ontology are directly
referenced in the local ontology and which other terms have been indirectly
included in the imports.

6.2 Focused concept viewing

The purpose of focused concept viewing is to facilitate working with subsets of
large ontologies without physically exporting the subset. The ontology developer
selects one or more classes from the ontology and the tool computes the modules
for selected concepts. The views in the hierarchy are adjusted so that only the
terms or axioms that are in the module shown while the rest are filtered out.

With focused concept viewing, one can easily see the parts of ontology rele-
vant for the domain they are interested in. Such focused views can be defined
dynamically and different modules can be assigned to different ontology devel-
opers for maintenance and authoring. Safety analysis can be used for focused
views, too. While in a focused view, if a change in the ontology affects some-
thing outside the focused module we would detect this with the safety check
and warn the user.

7 Acknowledgments

This paper is written with funding from National Cancer Institute (NCI) under
Subcontract No. 27XS075 (S07-075). The opinions and comments expressed in
this paper reflect the views of Clark & Parsia technical team. Our analysis and
final recommendations were highly influenced by the work of Bernardo Cuenca
Grau et al. [16, 15, 17, 10, 11, 14, 12, 13, 19] which provides the formal definition
of modules we used and the key points of the desiderata for modules we adopted.

23

APPENDIX

A Modular ontology development practices

In this section, we will review some ontology development methodologies that
help when building modular ontologies. As we mentioned in Section 2, these
methods can be used in addition to analytic services we reviewed in this paper.

The simplest methodology for modular ontology development is to split the
domain knowledge into some main areas and develop each component in a sep-
arate file. This practice is very common and is currently possible by using the
owl:imports construct. As we discussed earlier, owl:imports gives a false sense
of modularity since tools end up including the imported ontologies as a whole.
Earlier in this paper we discussed how modular imports can solve this problem.
And even though modular imports can provide this service dynamically without
any file separation, a high level partitioning of the ontology contents would help
developers who want to reuse parts of that ontology.

Note that modularization algorithms can help ontology authors to partition
an existing ontology into pieces and to analyze the existing partitions to see if
they are really modular, e.g. if they respect import safety. For example, analysis
of SWEET ontologies, a set of 10 ontologies about earth sciences published by
NASA JPL, reveal that import safety is violated in several situations, which
suggests a partial reorganization might improve the overall structure. With
modular imports, ontology authors can also publish parts of their ontology
relevant for a sub-domain without partitioning the axioms of the ontology into
different files. As an alternative, the ontology author would first identify the
terms relevant for the sub-domain and could create an empty ontology that
modularly imports those terms. Note that this scenario is not attainable with
current algorithms due to the problems we described in Section 5.1, but in
theory would be possible to achieve if those issue are resolved.

Standard ontology development methodologies may also help with modular
design. For example, the OntoClean methodology [18, 32] has been used suc-
cessfully in practice to help developers find modeling errors in the ontologies.
OntoClean defines several meta-properties for classes (based on the notions of
rigidity, identity, unity, and dependence) and restrictions on how classes can be
related based on this meta-properties. Applying the OntoClean methodology
generally reveals that in many cases multiple inheritance is not semantically
justified [32]. For example, making the concept Country both a subclass of
LegalAgent and GeographicalRegion merges two very different uses of the
concept into one and is not desirable. Rector, starting with the goal of modular
ontology development, arrives at a very similar conclusion [27]. Rector even goes
further and argues that the domain ontology should split into disjoint homoge-
neous trees where no domain concept has more than one primitive superclass.
The homogeneity requirement is in fact what the OntoClean methodology en-
forced in the above example.5 However, the strict single superclass requirement

5Rector gives the following example for homogeneity [27]: Making “vascular structure”

24

that Rector proposes is a syntactic restriction as he argues multiple inheritance
should always be inferred via definition axioms. Thus, we end up having multi-
ple inheritance, but not through explicit superclass relations, so it is not clear
how useful this syntactic requirement is.

A simple technique that was employed as early as in 1990’s in developing
Ontolingua ontologies [8] is declaring classes in an ontology public or private.
These access modifiers are present in most of the major programming languages
and are used to make the intentions of the software author clear regarding which
parts of the software are considered to be part of the internal design and which
parts are considered to be an external interface and thus appropriate for others
to reuse and modify. A similar mechanism is considered to be very useful for
ontologies, not only for improving ontology reuse [26], but also for “semantic
encapsulation” [3], e.g. when the author deliberately wants to hide the detailed
parts of an ontology in order to provide a simpler query interface.

Using access modifiers with OWL classes would not necessarily require a
change to the base language. For example, defining a set of annotation proper-
ties as in the spirit of Dublin Core (DC) vocabulary6 would be enough to build
best practices regarding these modifiers. An ontology tool would recognize these
modifiers and would warn (or even prohibit) if one tries to import and reuse a
private term from an external ontology.

subclass of “circulatory system structure” is not homogeneous because the differentiating
notion in one case is structural and in the other case functional.

6http://dublincore.org/

25

References

[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence
IJCAI-05, Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

[2] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time
reasoner for life science ontologies. In U. Furbach and N. Shankar, edi-
tors, Proceedings of the 3rd International Joint Conference on Automated
Reasoning (IJCAR’06), volume 4130, pages 287–291, 2006.

[3] Jie Bao, Doina Caragea, and Vasant Honavar. Package-based description
logics - preliminary results. In 5th International Semantic Web Conference
(ISWC 2006), pages 967–969, Athens, GA, USA, November 2006.

[4] Jie Bao, Giora Slutzki, and Vasant Honavar. A semantic importing ap-
proach to knowledge reuse from multiple ontologies. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence (AAAI2007),
pages 1304–1309. Vancouver, British Columbia, Canada, July 2007.

[5] Alex Borgida. On Importing Knowledge from DL Ontologies: some in-
tuitions and problems. In International Workshop on Description Logic
(DL2007), 2007.

[6] Alex Borgida and Luciano Serafini. Distributed description logics: Assim-
ilating information from peer sources. Journal of Data Semantics, 1:153-
184, 2003.

[7] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and Heiner Stuck-
enschmidt. C-OWL: Contextualizing ontologies. In Proc. of the Second
International Semantic Web Conference (ISWC 2003), 2003.

[8] Adam Farquhar, Richard Fikes, and James Rice. Tools for assembling mod-
ular ontologies in ontolingua. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI-97), pages 436–441, Provi-
dence, Rhode Island, July 1997.

[9] S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? A case for
conservative extensions in description logics. In Proceedings of the Tenth
International Conference on Principles of Knowledge Representation and
Reasoning (KR’06), pages 187–197, 2006.

[10] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sat-
tler. Just the right amount: Extracting modules from ontologies. In
Proceedings of the Sixteenth International World Wide Web Conference
(WWW2007), pages 717–726, Banff, Canada, May 2007. ACM.

[11] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sat-
tler. A logical framework for modularity of ontologies. In Proceedings of

26

the 20th International Joint Conference on Artificial Intelligence (IJCAI-
2007), pages 298–303, Hyderabad, India, January 2007.

[12] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sat-
tler. Ontology reuse: Better safe than sorry. In Diego Calvanese, En-
riso Franconi, Volker Haarslev, Domenico Lembo, Boris Motik, Sergio Tes-
saris, and Anny-Yasmin Turhan, editors, Description Logics, pages 41–52,
Brixen/Bressanone, Italy, June 2007.

[13] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sat-
tler. Modular reuse of ontologies: Theory and practice. Journal of Artificial
Intelligence Research, 31:273–318, 2008.

[14] Bernardo Cuenca Grau and Oliver Kutz. Modular ontology languages re-
visited. In Proceedings of the IJCAI’07 Workshop on Semantic Web for
Collaborative Knowledge Acquisition, Hyderabad, India, January 2007.

[15] Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Combining owl
ontologies using E-connections. Journal of Web Semantics, 4(1):40–59,
2006.

[16] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur.
Automatic partitioning of OWL ontologies using E-connections. In The
International Description Logics Workshop (DL 2005), 2005.

[17] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyan-
pur. Modularity and web ontologies. In Tenth International Conference on
Principles of Knowledge Representation and Reasoning (KR2006), 2006.

[18] N. Guarino and C. Welty. Evaluating ontological decisions with OntoClean.
Communications of the ACM, 45(2):61–65, 2002.

[19] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Thomas
Schneider, and Rafael Berlanga Llavori. Safe and economic re-use of on-
tologies: A logic-based methodology and tool support. In The 5th Annual
European Semantic Web Conference (ESWC 2008), 2008.

[20] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Cex and
mex: Logical diff and semantic module extraction in a fragment of owl.
In In Proceedings of the OWL: Experiences and Directions Workshop
(OWLED2008), 2008. To appear.

[21] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions
in expressive description logics. In Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’07), pages 453–
458, 2007.

[22] Carsten Lutz and Frank Wolter. Conservative extensions in the lightweight
description logic EL. In Frank Pfenning, editor, Proceedings of the 21th
Conference on Automated Deduction (CADE-21), volume 4603, pages 84–
99, 2007.

27

[23] Natalya F. Noy and Deborah L. McGuinness. Ontology development 101:
A guide to creating your first ontology. Ksl-01-05, Stanford Knowledge
Systems Laboratory Technical Report, March 2001.

[24] Natalya F. Noy and Mark A. Musen. The PROMPT suite: Interactive
tools for ontology mapping and merging. International Journal of Human
Computer Studies, 6(59), 2003.

[25] J. Pan, L. Serafini, and Y. Zhao. Semantic import: An approach for par-
tial ontology reuse. Proceedings of the ISWC2006 Workshop on Modular
Ontologies (WoMO), 2006.

[26] Alan Rector, Matthew Horridge, James Cunningham, and Nick Drum-
mond. Building modular ontologies and specifying ontology joining, bind-
ing, localizing and programming interfaces in ontologies implemented in
owl. (Extended Abstract) AAAI 2008 Symposium on Symbiotic relation-
ships between Semantic Web & Knowledge Engineering (SWKE), 2008.

[27] Alan L. Rector. Modularisation of domain ontologies implemented in de-
scription logics and related formalisms including owl. In Proceedings of the
2nd International Conference on Knowledge Capture (K-CAP ’03), pages
121–128, 2003.

[28] Julian Seidenberg and Alan Rector. Web ontology segmentation: Analysis,
classification and use. In Proceedings of the 15th international conference
on World Wide Web (WWW’06), pages 13–22, 2006.

[29] H. StuckenSchmidt and M. Klein. Structure-based partitioning of large
class hierarchies. In Proceedings of the Third International Semantic Web
Conference (ISWC2004), 2004.

[30] Boontawee Suntisrivaraporn. Module extraction and incremental classifica-
tion: A pragmatic approach for el+ ontologies. In The 5th Annual European
Semantic Web Conference (ESWC 2008), 2008.

[31] Yimin Wang, Jie Bao, Peter Haase, and Guilin Qi. Evaluating formalisms
for modular ontologies in distributed information systems. In Proceedings
of The First International Conference on Web Reasoning and Rule Systems
(RR2007), Innsbruck, Austria, JUN 2007.

[32] C. Welty and N. Guarino. Supporting ontological analysis of taxonomic
relationships. Data & Knowledge Engineering, 39(1):51–74, 2001.

28

	Introduction
	Basic Modularity Approaches
	Against linguistic prescriptivism
	Analytic modularity

	Desiderata for Modular Importing
	Modularization Algorithms
	Ad hoc algorithms
	PromptFactor algorithm
	Structure-based partitioning algorithm
	GALEN segmentation algorithm

	Formal algorithms
	CEL and MEX algorithms
	Cuenca Grau et al. (2006) algorithm
	Locality-based algorithm

	Summary and Outlook
	Outstanding Issues
	Future Directions

	Prototype Tool Implementation
	Partial ontology importing
	Focused concept viewing

	Acknowledgments
	Modular ontology development practices

