
Protégé High Level Design

Outline

 What is Protégé
 Writing Applications on Protégé
 Protégé Design
 Recent NCI Work
 Future Directions

Introducing Protégé

 Graphical Ontology Editor
 Pluggable Tool

 Tab,Slot, Project, Backend, Import, Export
 Plugin Support is basis for many

applications
 Application Component

Graphical Ontology Editor

Pluggable Tool

What is a Plugin?

 Extension to Protégé
 Requires no source code modifications
 Loaded and managed by system
 Changes way Protégé works

 Implementation of a Java interface
 Packaged as jars
 Installed in subdirectory of Protégé

plugins

How Plugins Work

 Protégé, at startup, loads jars directly
below plugins subdirectory

 Jars contain description of contained
plugins
 meta_inf/manifest.mf

 System creates instances of plugin
 System calls plugin methods when

needed “Don’t call us, we’ll call you.”

Types of Plugins

 TabWidget
 SlotWidget
 KnowledgeBaseFactory (“Backend”)
 ProjectPlugin
 ExportPlugin
 CreateProjectPlugin

Plugin: TabWidget

 What is it?
 Large piece of screen real-estate
 Can interact with domain KB

browse, change, delete, corrupt
NCIEdit Tab

 What are its limitations?
 Difficult to supplement or even interact

with other tabs

Plugin: SlotWidget

 What is it?
 UI Control which allows the user to display

and modify a slot value
 Follows a protocol for hiding interaction KB

 What are its limitations?
 Works best with a single slot

Plugin Type:
KnowledgeBaseFactory
 What is it?

 Replacement for standard storage
mechanisms

 Database
 External server
 …

 Allows for parsing of different file formats
 What are its limitations?

 Difficult to manipulate UI
 Implementations tend to be buggy

Plugin Type: ProjectPlugin

 What is it?
 Code that executes when “things happen”

to a project (create, load, display, close,
etc)

 Get access to project, view, menu bar, tool
bar and can modify them as you like

 Example
 Changes Plugin which tracks changes as

they occur.

Plugin Type: ExportPlugin

 What is it?
 Code that saves (part of) a knowledge-

base in any format to somewhere else
 files, servers, web, …

 No change of the current backend
 No guarantee of “lossless round trip”
 No “live” connection

Plugin Type: ImportPlugin

 What is it?
 Code that creates a knowledge-base from

information from somewhere else
 files, servers, web, …

 No change of the current backend
 No guarantee of “lossless round trip”
 No “live” connection

Protégé as an Application Component

 Tab Plugin (NCI Edit Tab)
 Standalone Application
 Distributed Application

Protégé Tab as An Application

 Description
 Create a custom tab plugin
 Configure Protégé to just display your tab

 Pros
 Simple
 Great for few users
 Iteration (change of model, data, app) is very easy

 Cons
 Protégé must be installed
 Difficult to permanently disable standard functions
 Stuck with Protégé menus, toolbar, etc
 No security on underlying model and data
 User really should know something about Protégé

Standalone Application

 Description
 Write standalone Java Application
 Call into the Protégé API for knowledge base access
 Often evolves from a Tab

 Pros
 No need to install Protégé
 User doesn’t need to know anything about Protégé
 Underlying model and data are as secure as you want
 Can use some or none of the Protégé UI, as desired

 Forms for classes and instances are available
 Some tabs will work

 Cons
 Iteration somewhat more difficult than as Tab

Network Solutions

 Applets
 Java WebStart
 Servlets and Java Server Pages
 Protégé RMI server
 Custom server

Protégé Architecture

Server-Client Architecture

Protégé Performance
Enhancements
 Slow Performance When

 Protégé Server-Client
 Database Backend
 OWL
 Complex Ontology

 Focus on Server-Client and OWL

Main Issues

 Protégé Frames
 Granularity of server locks
 Caches were slow
 Caches were incorrect
 Role of Transactions

 Protégé OWL
 Inefficient code
 Design Decisions
 Role of Inference

Basic Server-Client Problem

CPUs are
mostly idle…

Solution + New Problem

Experiments and Approaches

 Only Provide what Client Requests
 Fast at low latency
 Unacceptable Otherwise

 Return Requested Results Immediately & provide
other results later
 Separate server thread devoted to caching results
 Current Solution

 Enhanced with OWL State Machine
 Anticipates display of OWL expressions

Pitfalls of Precache Thread

 Small tests show
 Server generally only gets a few seconds

behind
 Some extreme cases gets two minutes

behind (these are extreme cases)
 Server is usually idle.

 Only need to scale to ten or so users.

Server Can’t Keep Up

Pitfalls of Precache Thread

 Issue is collisions requesting knowledge
base lock

 Assume knowledge base calls take about
2ms

 On average, collision will occur when
precache thread is halfway through its
computation.

 Increase knowledge base calls to 3ms
 With network latency (80ms)

 Change from 82ms to 83ms.

Server Response is Slower

Precaching slows the server?

Pitfalls of Precache Thread

 Use of bandwidth
 Generally does not use too much but
 There are spikes
 Short but at capacity of network

 Based on OS X Activity Monitor
 Impact Unknown
 Compressing Sockets?

Pitfalls of Precache Thread
Deferred Results are Needed Now

Role of Transactions

Begin Transaction
do really tricky thing

Commit Transaction
Or Catch Failure and Rollback

Role of Transactions

 Rollback on failure
 Protection from conflicting changes

 Read Uncommitted
 Protection from premature update

 Read Committed
 Protection from others updates

 Repeatable Read
 Atomic Operations

 Serializable

Caching and Transactions

 Read Uncommitted
 One Cache

 Read Committed
 My writes are not visible to others

 Repeatable Read
 Start Transaction ⇒ Client Cache Emptied

 Serializable
 Can’t anticipate clients needs during transaction

Caching and Transactions

 At Repeatable Read
 Operation takes 40 seconds
 CPU speed makes little difference

 At Read Committed
 Operation takes 5 seconds
 CPU speed is important

 Recommendation to NCI
 Read Committed

 Cache hit rate is 99% (?!!)

OWL Overhead

Change From
Human to Bird

