Software Requirements Specification

for

NCI Edit Tab Plug-in for Protégé OWL with PROMPT, Version Beta 1
Version 1.0
Prepared by Sherri de Coronado, Gilberto Fragoso
NCICB
Tuesday, November 7, 2006
Table of Contents

iiTable of Contents

Revision History
ii
1.
Introduction
1
1.1
Purpose of the NCI Edit Tab plug-in
1
1.2
Intended Audience: Who should read this document?
1
1.3
Project Scope
1
1.4
References
2
2.
Overall Description
2
2.1
Product Perspective
2
2.2
Product Features
2
2.3
User Classes and Characteristics
5
2.4
Operating Environment
5
2.5
User Documentation
5
2.6
Assumptions and Dependencies
5
3.
External Interface Requirements
6
3.1
User Interfaces
6
3.2
Hardware Interfaces
6
3.3
Software Interfaces
6
4.
Performance, Security and Software Quality
6
4.1
Performance Requirements
6
4.2
Security Requirements
6
4.3
Software Quality Attributes
6

Revision History

	Name
	Date
	Reason For Changes
	Version

	
	
	
	

	
	
	
	

1. Introduction

This document states the high level functional, technical, and organizational requirements of the NCI Edit Tab Plug-in for Protégé OWL, with PROMPT and plug-ins for Maintaining and Editing NCI Thesaurus.
1.1 Purpose of the NCI Edit Tab Plug-in
The NCI Edit Tab plug-in will provide a UI and workflow functionality for maintaining and editing NCI Thesaurus. Version 1.0 Requirements encompass those features needed to provide all the major functionalities now available in Apelon TDE environment and related workflow software.

1.2 Intended Audience: Who should read this document?
Developers and stakeholders of the NCI Edit Tab plug-in. Stakeholders are defined as anyone who has a stake in the finished product, and who has input into its development. These include but are not limited to:

Frank Hartel
Kim Ong

Larry Wright

Margaret Haber

Timothy Redmond

Laura Roth

Carol Creech

1.3 Project Scope

The NCI Edit Tab plug-in will provide a UI and workflow functionality for maintaining and editing NCI Thesaurus. Version 1.0 Requirements encompass those features needed to provide all the major functionalities now available in Apelon TDE environment and related workflow software, such as merge/split/retire, accommodate simple and complex properties, roles, search by properties, perform conflict resolution, etc. In addition, the Protégé/OWL interface should provide a simplified GUI for non‑OWL experts. The editing functions will not be implemented identically to those in TDE, but the functionality should be usable enough in version 1 to make continued NCI Thesaurus production feasible. Subsequent versions will provide additional enhancements based on early experience with its use in production.
This will be accomplished using Protégé OWL, PROMPT DIFF and NCI specific plugins.

These functionalities will be provided through the following components --

· Protégé OWL Client-Server version with database backend implemented

· NCI Edit Tab plug-in
· PROMPT plug-in and associated plug-ins for history

· Change Management plug-in
· NCIHistory

· NCIEVS History

· Classifier – FaCT++

Goals:

· Near Term

· Transition from editing in TDE to editing in Protégé OWL

· Produce native OWL files

· Accommodate richer semantics

· Achieve more integrated concept history production

· Longer Term

· Facilitate collaboration with those outside of NCI
· Move towards production of subontologies of NCI Thesaurus, with integration of the subontologies as needed.
· Meet NCICB goals of using open source software where possible.
1.4 References

Design Document

Beta 1 Quick Start Guide

See GForge site for documentation and software files. https://gforge.nci.nih.gov/projects/protegegui/
2. Overall Description

2.1 Product Perspective

The NCI Edit Tab plug-in and associated software is intended to replace the proprietary Apelon TDE which produces Ontylog DL natively for production of NCI Thesaurus.
2.2 Product Features

The NCI Edit Tab, version 1, should have the following capabilities. (Note: For simplicity, this document will refer to an OWL named class as simply a class.)

· Automatically assign a unique code to each newly created OWL named class

· Support the use of the rdf:ID for the code identifier.

· Create and edit synonyms with source data (FULL_SYN properties)

· Create and edit definitions with qualifiers (DEFINITION properties)

· Create and parse XML-formatted complex (annotation) property values (such as DEFINITION, GO_ANNOTATION, and LONG_DEFINITION) and properly display the corresponding qualifiers

· Create and edit roles (in OWL, set edit restrictions (OWL anonymous class) and classes).

· Create and edit class expressions with “role group” semantics

· Support the separation of Necessary and Necessary&Sufficient conditions

· Support creation of DatatypeProperty restrictions using the hasValue qualifier

· Create and edit Associations between classes (In OWL object-valued annotation properties that do not inherit.)
· Split an existing class into two classes, and facilitate tracking the history of splits via PROMPT.

· Flag two existing classes for a merge (the pre-merge action)

· Merge one class with another and facilitate tracking the history of merges in a separate functionality.

· Flag existing classes for retirement (the pre-retire action)

· Retire a class and facilitate tracking retirements by a separate function.

· Generate concept reports and save the reports

· Load a batch of classes to the knowledge base

· Edit a batch of classes in the knowledge base

· Generate a partonomy tree

· Clone classes

· Edit two classes at the same time using cut and paste functions

· Enforce a number of NCI-specific editing business rules

In addition to regular Protégé OWL functionality, the following functionality needs to be satisfied by Protégé OWL client server version.

· Transaction Support for protecting the database while multiple people are editing, including appropriate messages to users when a class is in use or locked.

· Enhanced search capability to enable search of properties (e.g. Preferred Names)

· Granular access control (to assign roles and rights associated with the roles of editor, workflow manager.)

· Reasonably good performance for editors working at distributed locations.

Search Requirements

1) Searches need to perform fast in database mode.

2) Any combination of object annotation properties can be searched.
3) Any combination of object properties (property restrictions) can be searched.
4) Any combination of datatatype annotation properties can be searched.
5) User can select any combination of entities to search in; overriding default combinations (see 8a below). Combination of entities means multiple annotation datatype properties, or multiple annotation object properties, or multiple property restrictions, but not e.g. multiple annotation datatype properties and object annotations simultaneously.
6) Searches of datatype annotation properties can be done by

a) contains “string” or “token1 token2...”

b) starts with “string” or “token1 token2…”

c) exact match to “string” or “token1 token2…”

d) lexical techniques/matching to “string” or “token1 token2”

i) “sounds like”, can use e.g. soundex or double-metaphone after tokenization and stemming

ii) using “contains”

iii) allow for alternative order, e.g. a “ras gene” query should match “genes, ras” as well as “ras genes” and “ras gene”

7) Searches of object annotation properties or property restrictions:

a) can be done by

i) contains “string” or “token1 token2...”

ii) starts with “string” or “token1 token2…”

iii) exact match to “string” or “token1 token2…”

b) By default act on the display name of the filler value, e.g. if the :NAME or the rdfs:label is displayed, the search goes against it.
8) GUI Support for Searching

a) End-user configuration - GUI allows editor/end-user to select specific datatype annotation properties, or object annotation properties, or restrictions on properties, for any individual search, which should be kept for the duration of the editing session.

b) Administrative configuration - GUI allows admin to specify a set of properties (datatype or object annotation properties) to be utilized by default on a search. These configuration parameters should persist through server shutdowns and restarts. They would be the default search configuration/parameters on startup of a client.

c) A specialized search GUI could be constructed, but the default Protégé search (i.e. using the “binoculars”) could be made instead to utilize the same search defaults specified by the end-user (8a) or administrator (8b).

PROMPT and the Change Management Plug-in that works with PROMPT will be used to meet the workflow requirements to do conflict resolution and create history. PROMPT compares 2 baselines for changes, and allows the user (workflow manager) to accept or reject the changes. High level requirements include:

· Ability to review the changes made by all editors simultaneously, identified by editor, and to accept or reject those changes.

· Ability to save in the middle of an accept reject cycle

· Ability to see beginning and end state of a concept between the two cycles.

· Ability to generate a concept history table based on the changes documented. Concept history table should have the same fields and format as that currently used with TDE extensions. (Note: The merge, split, retire, and related information is generated by the NCI Edit Tab.)
Classification functionality should be available through the Protégé user interface. The chosen classifier is Fact ++. The classifier should successfully classify the NCI Thesaurus. Real time classification is not possible at this time, so classification will need to be run at minimum, nightly, and the results of classification will need to be returned to the editors via a report. Note, ideally, classification will occur more than 1 time per day.

Out of Scope for this version
Searching
· No requirement for searching a combination of datatype annotations, object annotations, and/or property restrictions simultaneously.
· No requirement for lexical techniques (tokenization, stemming, normalization…) in version 1.
Classification

· On demand classification.

Administrator Functions

· Administrators will not have any specific server plug-in interfaces to facilitate maintenance in Version 1.

2.3 User Classes and Characteristics

Anticipated users of NCI Edit Tab fall into the following categories, which will have different rights :

Reviewer (read only)

Editor

Work Flow Manager

Administrator
The last three categories are most critical.

2.4 Operating Environment

Details TBD –

Anticipated, Database backend is MySQL v 4.

Other Considerations, classification memory needs.
2.5 User Documentation

Quick Start Guide
User Guide

Editor Style Guide will need to be amended

2.6 Assumptions and Dependencies

· Protégé Programmers continued availability at SMI

· Budget available to continue SW development and testing

· Budget available to provide adequate training and documentation
· Budget available to support parallel editing during operational phase-in of Protégé

· Procurement of hardware for running the software
· Creation of script to convert OWL back to Ontylog DL until LexBIG server is used in production.
3. External Interface Requirements

3.1 User Interfaces

· Editors should edit, do batch edits and loads through the NCI Edit Tab

· Work Flow managers should do conflict resolution through the PROMPT Diff user interface.

· Classification should be performed on the server, through the Protégé OWL user interface.

· Administrators will not have any specific server plug-in interfaces to facilitate maintenance in Version 1.

3.2 Hardware Interfaces

N/A

3.3 Software Interfaces

TBD
4. Performance, Security and Software Quality
4.1 Performance Requirements

In version 1, performance should be adequate to enable both on site and off site editors to perform their editing work so that NCI Thesaurus can continue to be published regularly.
4.2 Security Requirements

Login required, as editing actions will be tracked by user. This is necessary for conflict resolution. Other security requirements of NCICB should be followed.
4.3 Software Quality Attributes

Unit testing, Integration Testing and Alpha and Beta user testing will be conducted. Code reviews will be conducted as well. Subsequent versions will be released.

