
NCI Protégé/Workflow

Design Document for 1.2.1 Release

Version No: 1.1
Last Modified: January 4, 2008
Author
:
Robert Dionne

Team
:
EVS Collaboration Tools

National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services
[image: image1..pict]

Document History

[image: image2..pict]

Document Location

This document can be found on the GForge site at: https://gforge.nci.nih.gov/docman/……….
Revision History

	Version Number
	Revision Date
	Author
	Summary of Changes

	1.0
	12/24/2007
	Robert Dionne
	Initial Draft

	1.1
	1/2/2008
	Sherri de Coronado
	revised

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	Frank Hartel
	Product Manager
	1.0
	
	None.

	Charles Griffin
	EVS Project Manager
	
	
	

	Gilberto Fragoso
	Technical Manager
	
	
	

	Sherri de Coronado
	Senior Scientist
	
	
	

Related Documents

More information can be found in the following related EVS documents:
	Document Name

	

	

	

Approval

	Name
	Team/Role
	Version

	Date Reviewed
	Signature

	Frank Hartel
	Product Manager
	1.0
	
	On File

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

[image: image3..pict]

TABLE OF CONTENTS

41 Introduction

1.1
Purpose of this Document
4
1.2
Document Overview
4
1.3
Related Documents
5
1.4
Methodologies, Tools and Techniques
5
1.5
Key Stakeholders
5
1.6
Points of Contact
5
2
DESIGN OVERVIEW
7
2.1
Background Information
7
2.2
Risks
7
2.3
Assumptions
7
2.4
Dependencies
7
3
SYSTEM ARCHITECTURE
8
3.1
Architectural Goals
8
3.2
Architectural Constraints
8
3.3
Architectural Tiers
8
4
Software Internals
10
5
Deployment View
12

1 Introduction
NCICB currently uses a customized version of Protégé for its terminology development efforts. Protégé provides a mature plug-in architecture that enables customization of both GUI widget components as well as server side processes. An advanced editing environment, NCI Edit Tab has been built than allows for more complex editing of OWL classes than what comes with the standard OWL plug-ins. This includes, splitting and merging, retiring classes and advanced searching and batch edit capabilities. These are required to support the rather complex and dynamic terminology needs of cancer research communities.

To briefly summarize, the main goals of the 1.1, 1.2, and 1.2.1 releases of this project are:

· Consolidation and refactoring of the existing code base to bring it in compliance with more recent Java technologies and to position it for the eventual migration to Protégé 4.0.

· With the 1.2.1 release, to introduce the beginnings of a Workflow capability that will encompass both the Protégé editing environment but also allow for the import into Protégé of structured proposals for modifications to OWL classes from the BiomedGT semantic media WIKI.
1.1 Purpose of this Document

The main purpose of this document is to provide a high-level design and architectural description of the new Workflow capabilities in the 1.2.1 release as well as the communication between the BiomedGT Semantic Media Wiki (SMW) and the Protégé Workflow environment.

1.2 Document Overview

The main sections of this document are listed and described below.

· Section 1 provides a purpose statement, a document overview, identifies the scope and provides a list of related documents. In addition, this section identifies (at a very high level), the methodologies, tool and techniques employed for the design activities, and identifies the key stakeholders and points of contact.
· Section 2 is the design overview. It includes some brief project history to set the context, discusses the ongoing code maintenance and migration efforts, how the new work is being integrated and dependencies and risks.
· Section 3 is a high-level overview of the system architecture. This is only included for completeness. Since this is an existing production level system more detailed accounts are provided in the references.
· Section 4 addresses the internal design of the new workflow component and its integration with the BiomedGT Semantic Media WIKI.
· Section 5 speaks to system deployment. We describe the build process, the resulting artifacts and how they will be deployed

1.3 Related Documents

· NCI Protégé Workflow Scope Document

· NCI Protégé Workflow Project/Task Plan

· NCI Semantic Media Wiki Scope Document

· BiomedGT SMW
· Protege Project Site
· Java WIKI Bot Framework
1.4 Methodologies, Tools and Techniques

This work is being done in Java using primarily Eclipse. Ant is used for daily building of the code, unit testing, and Javadoc. All work is being tracked in GForge and GForge tracking numbers are used in the source control check-in logs. For source control we are using subversion.

1.5 Key Stakeholders

	Name
	Description
	Responsibilities

	Peter Covitz
	NCICB Application Infrastructure
	Oversees NCICB Application Infrastructure

	Avinash Shanbhag
	NCICB Application Infrastructure
	Oversees NCICB caCORE Software Engineering

	Frank Hartel
	EVS Product Manager
	Directs EVS Products

	Sherri de Coronado
	Senior Scientist
	Product direction and guidance, domain expertise.

	Gilberto Fragoso
	Technical Manager
	Technical Project direction and guidance, domain expertise

1.6 Points of Contact

· Project Oversight/Management

Name: Charles Griffin

Title: NCICB/Ekagra Project Manager (Contractor)

Email: griffinch@mail.nih.gov
Phone: 301.496.5373

Srini Guruswami

· NCICB Application Support

Email: appsupport@mail.nih.gov
2 DESIGN OVERVIEW

2.1 Background Information

As mentioned above, NCI has added several customizations to Protégé in order to support the complex, dynamic, and challenging nature of developing terminology to support cancer research communities. Fortunately Protégé enables this via a mature and well-architected plug-in interface.

This interface allows customization of UI widgets, server-side backend processes, and configuration and access control through APIs that allow programmatic access to metaprojects.

The 1.2.1 will introduce two new components to this system:

· Workflow.
This is the traditional notion centered on assignments. There are two classes of users, modelers and managers. Managers create assignments, units of work, typically the editing of a specific OWL class, to modelers. The assignments are tracked as they move through a few states and when completed are marked for review by the managers.

· Integration with BiomeGT WIKI.
The BiomedGT WIKI opens up terminology development to the web. Internet users can use the WIKI to collaborate on OWL classes, the process culminating in structured proposals for changes to classes. These proposals are imported into the Protégé environment in the form of workflow assignments. The internal NCI domain experts can then review these proposals and possibly edit the terminology based on them. At some point the cycle is complete via a publication step that makes the new content available to the WIKI for further collaboration.

Concurrent with this effort is an ongoing maintenance effort of the existing code in order to make it more amenable to change and to position the code for an eventual migration to Protégé 4.0. We are currently working on a Protégé 3.2 version customized for NCI, though it is planned to merge this branch back into the trunk on for the 1.3.x releases. Although this code is currently in production use on a daily basis there is a substantial list of bugs that need to be addressed. Most have workarounds and many are only usability issues but the ability to address them in a timely fashion is impaired by the current state of the code. Thus all the new development work not only must adhere to best practices but must take into account the needs of refactoring the current code and integrating the new components is such a way as to not make matters worse.

NOTE: Most of the issues reflect the age of the code, the need to deal with resource turnover on the project, churn in the robustness and quality of underlying stack, large numbers of expedient solutions chosen over time, and so forth. In other words all the usual project issues.
2.2 Risks

The major risk factors on this project:

· As mentioned above the quality and complexity of the existing code base. This is clearly the highest, though this situation is improving daily. There are now two resources with considerable knowledge of the code base. A conservative estimate is that well over 30% of the code has been removed and/or reworked, with no loss of function and new features added, over the 1.1 and 1.2 releases. We are now at the point where major redesigns of some of the pieces are possible and necessary for the successful integration of new code.

· Lack of full time QA resources. QA has done great work is generating the volume of GForge issues we now have, but in order to add new components we need not only testing of those but also testing of all existing functionality.

· Stable communication protocol with WIKI. This has been largely worked out through a few prototypes and with the alpha release of BiomedGT is fairly stable.

We are using junit tests as much as possible for all new work involving data and object layers, and wherever possible we are using them on the existing code. Over time a rigorous regression test suite will help with QA, though it will not replace the end user and usability testing, for which we will have to depend on our modelers and product experts. With respect to the third factor, the design is loosely coupled and the communication is provided in a separate layer that hides the details from the rest of Workflow. This will minimize the impact when and as the WIKI needs to change to accommodate its use in production

2.3 Assumptions

We have added no new architectural components to the current system. The assumption here is that the current software is quite complex, arguably too much so, and therefore it’s prudent to work with what’s currently in place. Towards that end we’ve defined a workflow capability for this first release that’s minimal and is being built bottoms up. Such an approach will hopefully enable incorporation of early feedback from the users into iterations, adding a few features at a time.

2.4 Dependencies

The 1.2.1 release is dependent on some minor changes in the programmatic APIs to the metaproject facilities of Protégé. We are also using a small third party open source project for communication with the WIKI. This is a light layer on top of the Apache HTTPClient work.

3 SYSTEM ARCHITECTURE

3.1 Architectural Goals

A key goal is to not introduce any new architectural elements. The only new piece is the communication between Protégé and the WIKI. In the 1.2 release we removed the codegen server, a separate server based on XML/RPC for generating new codes. This has been replaced with a Protégé server-side plug-in, thereby removing a point of failure.

Another goal is to keep the workflow component orthogonal to its use in Protégé. The actual unit of work in each assignment is treated by workflow as just a string or object. It’s largely unaware that this object is an RDF packet that can be parsed into an OWL class for editing in Protégé. This goal is just the normal separation of concerns that enable code reuse and make for easier maintenance.

As the persistence needs of workflow are modest in terms of scalability and support for concurrent access, the storage layer is based on the file system. A key idea is that each user has a directory that contains all her assignments as XML files. The API to this layer is close to a REST style. The motivation for this is that we might envision other simpler applications like reporting that could run in a web browser and access the workflow store directly outside of Protégé.
3.2 Architectural Tiers

Figure 1. shows the highest level view of the software. We have Protégé with its database and the BiomedGT Semantic Media WIKI with its database. The communication between the two is via RDF packets over HTTP. The WIKI enable any page to be exported as RDF, so it’s simple a matter of making an HTTP connection to the WIKI with a url that specifies the appropriate page. How the structured proposals are packaged on the WIKI is documented in the Protégé component that communicates with the WIKI as well as on the WIKI itself in the section called “Data Flows”. Packages are pulled from the WIKI, processed in Protégé, and then a post is made back to the WIKI to update the status. This allows WIKI collaborators to see that the proposals are now in process in Protégé. Depending on feedback from users this protocol will evolve.

The Protégé environment is actually a client/server design that uses RMI for its communication to the server. This supports a concurrent environment for multiple modelers to edit the same database. Because of the nature of this modeling, specifically it’s use of description logic; the entire knowledge base is locked for each edit. In practice this still provides reasonable performance, as the transaction lengths are fairly short. In the 1.2.1 release we leverage this existing RMI-based middle tier to provide client server access to the workflow store, which is kept on the server side. Figure 2. Presents a more detailed view of the left hand side of figure 1.

In figure 3, we provide a more detailed view of Protégé. It has a number of built-in components that are extensible using the plug-in architecture. This is basically some interfaces and a packaging mechanism that makes use of jar files placed in a plug-in directory. At initialization time Protégé reads these jars and instantiates the plug-ins.

Figure 1. Protégé/Workflow - SMW

Figure 2. Protégé System

Figure 3. Protege Internals
4 Software Internals

As mentioned above, the Workflow capabilities introduced in the 1.2.1 release completely leverage the existing infrastructure that exists in Protégé, with the exception of the component that communicates with the WIKI. There are three major pieces:

1. Workflow Plug-in Tab – This is the main GUI component of workflow. Implemented as a Protégé plug-in, it presents an excel-style table of the assignments. Each row in the table is an assignment. The columns contain fields like the date it was created and last updates, the manager who created the assignment and the modeler it was assigned to. When a Protégé use logs in, her role as either manager or modeler determines the features enabled or not in the Workflow plug-in. For example only managers can create new assignments or add new users.

2. Workflow Object Layer – This object layer provides API access to the workflow store. There are objects like Assignment and User that are managed by a Workflow object. A listener capability enables support for the Workflow plug-in to listen for events when assignments are updated or new ones created. This layer interacts with the server using Protégé’s ProtegeJob object, which provides an architected access to the RMI services. The semantics of the ProtegeJob object are simple enough that a simple wrapper enables the storage layer code to be tested locally first before remoting it to the server. In the future if the need arise for a distribute model that involves local persistence we will be able to readily rework the code to support that

3. Semantic WIKI integration – This component is actually two distinct and orthogonal packages.

a. The first handles communication with the WIKI. It’s responsible for establishing the connection to the WIKI and retrieving RDF from the pages. It’s built using the Java WIKI Bot Framework, an open source product which provides a layer on top of the Apache HTTPClient project. This is a small amount of code and not very well written and/or documented but it enabled us to get something up and running in order to work out this communication. This will be either cleaned up or replace with a more rigorous use of HTTP Client.

b. The second component handles parsing the RDF into OWL classes for use in Protégé. Some of the names use by the WIKI need to be mapped to different names in Protégé, some of the classes are new and need codes, and so forth. As this layer is driven by users editing assignments in the Workflow plug-in, it caches the processing of the RDF for better performance.

5 Deployment

 Generally this release uses the existing build and packaging scripts. Our NCI Protégé project has a master build script that is responsible for building both the client and server components. The result is a client side install package that is published in GForge for users to download. The server side is somewhat more complicated. The basic idea is that each plug-in is built as a jar file that is installed in a dedicated place that Protégé uses to load them at initialization. Protégé also makes use of a metaproject file that is used for access control and to store information about specific projects. This can edited as a file project in Protégé, which allows for easy maintenance.

Depending on whether or not a new database of content is being creating, the server install might run a target that configures a new project and builds the database, or it might just copy existing metaproject files over to a new location to use with an existing database. The master Ant build script also produces the needed shell scripts to start the servers. This is documented elsewhere in more detail (Gilberto, should I reference your doc here?).

The workflow store can initialize itself from scratch, but once a working store is in use, it will need to be backed up and maintained similar to the database. As workflow evolves we imagine some sort of archiving will be necessary to deal with older assignments.

