NCI Center for Bioinformatics

Architectural Review Checklist

BiomedGT Wiki
Alpha 1.0
Revision Document History

	Date
	Version
	Description
	Author

	09/07/07
	1.0
	First draft
	Tracy M. Safran

	09/13/07
	1.0
	Second draft
	Tracy M. Safran

	01/16/08
	1.0
	Removed “Confidential” from footer
	Tracy M. Safran

Table of Contents

61.
Introduction

1.1
Purpose
6
1.2
Guidelines for Completing the ARC
6
2.
Project Details (To be answered by development team)
6
2.1
General Information
6
2.1.1
Project Description
6
2.1.2
Contact Information
6
2.1.3
Major Deployment Milestones
7
2.2
Architectural Details
7
2.2.1
High level architectural description:
7
2.2.2
High Level Design Diagram (If available):
7
2.2.3
Implementation language(s) used?
8
2.2.4
Will connections/requests to the application be session based (i.e. statefull versus stateless)? If so, is there any reason why application would not support “sticky session” load balancing?
8
2.2.5
Will the application be caching data? If so, what is being cached and how much data will be cached?
8
2.2.6
What data files will be created (if any)? How much data will be saved on an on going basis?
8
2.2.7
Will this application need a database schema(s) created on the NCICB infrastructure? If so, what is the maximum number of objects to be stored?
8
2.2.8
Are there any external/non-NCICB data sources that will be accessed by the application?
9
2.2.9
If this is a web-based application, what are the preferred virtual hosts names to be registered?
9
2.2.10
Any additional architectural details that may be of significance to the needed deployment environment.
9
2.3
Performance Requirements
9
2.3.1
Total number of users for this application?
9
2.3.2
Peak number of concurrent users?
9
2.3.3
Peak number of requests/minute?
9
2.3.4
Up time requirements?
9
2.3.5
Acceptable down time when recovering from major systems disaster?
9
2.4
NCICB Project Dependencies
9
2.5
Configuration Management Details
9
2.5.1
Version Control
9
2.5.2
Change Control
9
2.5.3
Migration to CVS
10
2.5.4
Users
10
2.5.5
Build Process
10
2.5.6
Other CM Needs
10
2.6
Additional Notes
10
3.
System Requirements (To be answered by both development & systems team)
10
3.1
Operating System
10
<<Solaris/LINUX/Windows 2000/…>>
10
3.2
Software (Technology Stack)
10
3.2.1
Web Server: <<Apache/Tomcat/ZOPE/…>>
10
3.2.2
App Server: <<Tomcat/JBoss/Oracle 9iAS/…>>
10
3.2.3
Database Server: <<Oracle/MySQL/PostgreSQL/…>>
10
3.2.4
Other software components: <<PERL x.x, Python x.x, …>>
10
3.3
Server Hardware
10
3.3.1
Server: <<type, model, …>>
10
3.3.2
Minimum processor speed:
10
3.3.3
Minimum memory:
11
3.3.4
Minimum local drive space:
11
3.4
Storage
11
3.4.1
Expected file server disk storage (in MB):
11
3.4.2
Expected database storage (in MB):
11
3.4.3
Expected ftp storage (in MB):
11
3.4.4
Expected media/image storage (in MB):
11
3.5
Load Balancing/Fault Tolerance
11
3.5.1
Does the application support load balancing?
11
3.5.2
Implement load balancing – YES/NO
11
3.6
Networking
11
3.6.1
Any application specific port assignments?
11
3.6.2
Any additional configuration?
11
3.7
Additional Notes
11
4.
Proposed NCICB Deployment Environment (To be answered by systems team)
11
4.1
Hardware
11
4.2
Technology Stack
11
4.3
File Server
12
4.4
Database
12
4.5
Networking
12
4.6
Other Resources
12
5.
Impact Assessment (To be answered by systems team)
12
5.1
Overview
12
5.2
Cost
12
5.3
Timeline to implement
12
5.4
Additional Notes
12
6.
Acceptance
12
7.
Appendix 1 - Future Systems Requirements
13
7.1
New Architecture Diagram
13
7.2
Notes on the design change
13
7.3
Hardware
13
7.3.1
Servers
13
7.3.2
Processor speed
13
7.3.3
Memory
13
7.3.4
Drive Space
13
7.4
Software (Technology Stack)
13
7.4.1
Web Server
13
7.4.2
App Server
13
7.4.3
Other components
13
7.5
Fault Tolerance (Redundancy)
13
7.5.1
Does the application support load balancing?
13
7.5.2
Implement load balancing – YES/NO
13
7.5.3
Load balancing requirements
13
7.5.4
Fault tolerance solution suggested
13
7.5.5
Additional requirements (if any)
13
7.6
Performance Enhancements
13
7.6.1
Processing Power
13
7.6.2
Memory
13
7.6.3
I/O
13
7.6.4
Other needs
13

1. Introduction

1.1 Purpose

The purpose of the Architectural Review Checklist (ARC) is to help identify the deployment environment (both hardware and software components) necessary for an application to execute optimally within the NCICB IT infrastructure. The ARC is considered to be a dynamic artifact for any NCICB project and should be maintained in the configuration library (i.e. CVS) for each project. For new projects, this document template will be automatically checked into the projects repository by the SCM team upon project initiation. The ARC should be reviewed on at least a quarterly basis to capture any application design changes that may effect the deployment environment necessary for optimal performance.

1.2 Guidelines for Completing the ARC

The ARC is divided into 4 main sections. The first section (Project Details) is meant to capture general information about the project. The project development team should fill out the Project Details section and return it to the systems team. The second section (Systems Requirements) is meant to capture details of specific system requirements for the project. Both the development and system teams will preferably answer the Systems Requirement section jointly. However, depending on the development teams familiarity with the NCICB infrastructure, they may choose to answer either all or parts of this section on their own. The third section (Planned Deployment Environment) specifies the proposed deployment environment for the application and is to be answered by the systems team based on the response to section 1 & 2. Finally, the last section (Impact Assessment) describes the impact (additional hardware/software costs, staffing resources…) to the existing NCICB IT infrastructure in order to support this application. Upon completion of the Deployment Environment and Impact Assessment sections, the systems team will return the ARC to the development team for final review and comments.

2. Project Details (To be answered by development team)

2.1 General Information

2.1.1 Project Description

The BiomedGT Wiki will be a web-based collaboration tool, allowing outside experts to review and recommend changes to the BiomedGT vocabulary. The wiki will pull data from a read-only database and display it on a web page. Vocabulary editors will be able to view this information and enter their recommended changes on a provided web form. These changes will be collected by our BiomedGT curators and incorporated into the vocabulary as needed. The edited vocabulary will then be published back out to the read-only database and the wiki.
2.1.2 Contact Information

	Title
	Name
	Phone
	Email

	Project Manager
	Charles Griffin
	
	

	Team Lead/Architect
	David Yee
	
	

	SCM Coordinator
	
	
	

2.1.3 Major Deployment Milestones

	Milestone
	Date

	Planned Release to QA
	NA

	Planned Release to Staging
	NA

	Planned Release to Production
	NA

2.2 Architectural Details

2.2.1 High level architectural description:

The BiomedGT Wiki itself will be a multi tier application with a wiki page reading directly to one database and an editable wiki page writing to another database. The Protégé workflow application is a separate project that will rely on the data being generated by the BiomedGT Wiki page. A separate ARC will be submitted for the Protégé workflow at a later date.
2.2.2 High Level Design Diagram (If available):

Tiered Architecture:

[image: image1.png]
Activity:

[image: image2.emf]BiomedGT Curator

Wiki read-

only data

Protégé

Datastore

Wiki edit

data

BiomedGT Wiki Editor

Protégé

Curates using

Protégé Workflow

Stores to

Exports to

Read-only BioMedGT

 Wiki pageRead by

BiomedGT

Wiki edit page

Makes edits to

Edits stored to

Extracted to

Visible to

2.2.3 Implementation language(s) used?

Java and PHP.
2.2.4 Will connections/requests to the application be session based (i.e. statefull versus stateless)? If so, is there any reason why application would not support “sticky session” load balancing?

Our intent is that logins be stateless, but we are still working on the design Connections to the read-only portion of the wiki would not require a login or state.
2.2.5 Will the application be caching data? If so, what is being cached and how much data will be cached?

The wiki will be caching certain pre-built graphical displays of vocabulary data. The size of these caches are controllable and are not expected to exceed 5 gigs, according to the current design.
2.2.6 What data files will be created (if any)? How much data will be saved on an on going basis?

<<e.g. ftp uploads, log files, temporary work files, cache storage…>>
There will likely be some incidental log files created by the wiki web server. The size of these is currently unknown.

2.2.7 Will this application need a database schema(s) created on the NCICB infrastructure? If so, what is the maximum number of objects to be stored?

There will need to be two database schemas. One will be a read-only data export from the Protégé application. The other will be a read/write database that stores edits made through the wiki. Both of these will be on the cbiodb590 machine.
Currently, the read-only portion of the data is being served through a DTS Oracle schema on cbiodb2-d. This schema will be dropped once the interface to Protégé has been coded.

The read/write MySQL database is on cbiodb590 and is named lex_wiki. The previous database, called wikidb, can be dropped.
2.2.8 Are there any external/non-NCICB data sources that will be accessed by the application?

<<e.g. USCS DAS, SKY/M-FISH, Mittelman DB, Pubmed, …>>

For the alpha release of this project, there are no plans to access external data sources. It is possible that future releases will make use of external data.
2.2.9 If this is a web-based application, what are the preferred virtual hosts names to be registered?

<<e.g. PROJECT_NAME.nci.nih.gov>>

BiomedGT.nci.nih.gov
2.2.10 Any additional architectural details that may be of significance to the needed deployment environment.

Not at this time.
2.3 Performance Requirements

2.3.1 Total number of users for this application?

For the alpha release, there will be no more than 30 users, including internal CBIIT users.
2.3.2 Peak number of concurrent users?

Peak concurrent users is expected to be 6-10 for the alpha release.
2.3.3 Peak number of requests/minute?

Unknown.
2.3.4 Up time requirements?

Since this will be visible to external users worldwide, uptime should be maximized.
2.3.5 Acceptable down time when recovering from major systems disaster?

It is acceptable for the system to be down for 1-2 hours during a major system disaster. Beyond that, a system failover should be instantiated.
2.4 NCICB Project Dependencies

<<Describe any known dependencies on other NCICB projects, e.g. caBIO, caDSR, EVS, >>

This project depends on, and is depended on by, the Protégé vocabulary editor.
2.5 Configuration Management Details

Briefly describe your current configuration management practices here.

Currently stored in Subversion, accessible through GForge.
2.5.1 Version Control

What version control software are you currently using, if any?

Subversion.
2.5.2 Change Control

What are your current change control practices? What procedures are in place to determine whether to implement a change request.
Change requests would be entered into GForge in the EVS Collaborative Terminology Dev Tools project. These requests would be reviewed and prioritized by the project managers.

http://gforge.nci.nih.gov/projects/protegegui/
2.5.3 Migration to CVS

Indicate whether you will require SCM support migrating your source code to the NCICB CVS repository.

Not expected at this time.
2.5.4 Users

Provide a list of all developers who require access to your repository modules.

All listed Admins and Developers on the http://gforge.nci.nih.gov/projects/protegegui/ project
2.5.5 Build Process

Describe your build process here. For example, are you using Ant, Make, or something else?

Ant
2.5.6 Other CM Needs

Describe any other CM needs?

Unknown
2.6 Additional Notes

3. System Requirements (To be answered by both development & systems team)

3.1 Operating System

<<Solaris/LINUX/Windows 2000/…>>

Linux
3.2 Software (Technology Stack)

3.2.1 Web Server: <<Apache/Tomcat/ZOPE/…>>

Apache Http
3.2.2 App Server: <<Tomcat/JBoss/Oracle 9iAS/…>>

JBoss.
3.2.3 Database Server: <<Oracle/MySQL/PostgreSQL/…>>

MySQL
3.2.4 Other software components: <<PERL x.x, Python x.x, …>>

PHP
3.3 Server Hardware

3.3.1 Server: <<type, model, …>>

Linux with JBoss
3.3.2 Minimum processor speed:
2 processors over 2GHz for all tiers.
3.3.3 Minimum memory:
4 gig for production

1 gig for lower tier levels
3.3.4 Minimum local drive space:
10 gig for all tiers.
3.4 Storage

3.4.1 Expected file server disk storage (in MB):

Not anticipated at this time. Could be updated with further development.
3.4.2 Expected database storage (in MB):

10 gig for all tiers.
3.4.3 Expected ftp storage (in MB):

None
3.4.4 Expected media/image storage (in MB):

Configurable, less than 5 gig.
3.5 Load Balancing/Fault Tolerance

3.5.1 Does the application support load balancing?

It is our plan to eventually support load balancing, but this may not be present in this alpha release
3.5.2 Implement load balancing – YES/NO

No
3.6 Networking

3.6.1 Any application specific port assignments?

No
3.6.2 Any additional configuration?

No
3.7 Additional Notes

4. Proposed NCICB Deployment Environment (To be answered by systems team)

4.1 Hardware

<<dev, qa, staging, production servers to be used>>

4.2 Technology Stack

<<specific technology stack to be used>>

4.3 File Server

<<space allocation on big IP, NFS mount points, initial size allocation…>>

4.4 Database

<<database server to used, schema names to be created, initial size, maximum size…>>

4.5 Networking

<<e.g. any BigIP configuration necessary, …>>

4.6 Other Resources

<<e.g. ftp server access, media server access, …>>

5. Impact Assessment (To be answered by systems team)

5.1 Overview

5.2 Cost

5.3 Timeline to implement

5.4 Additional Notes

6. Acceptance

	Project Lead ()

	Project Coordinator – NCICB ()

	Systems Team

	SCM Administrator

7. Appendix 1 - Future Systems Requirements

In this section, describe any projected future anticipated requirements for your system.

7.1 New Architecture Diagram

7.2 Notes on the design change

7.3 Hardware

7.3.1 Servers

7.3.2 Processor speed

7.3.3 Memory

7.3.4 Drive Space

7.4 Software (Technology Stack)

7.4.1 Web Server

7.4.2 App Server

7.4.3 Other components

7.5 Fault Tolerance (Redundancy)

7.5.1 Does the application support load balancing?

7.5.2 Implement load balancing – YES/NO

7.5.3 Load balancing requirements

7.5.4 Fault tolerance solution suggested

7.5.5 Additional requirements (if any)

7.6 Performance Enhancements

7.6.1 Processing Power

7.6.2 Memory

7.6.3 I/O

7.6.4 Other needs

[image: image3.png]_1250666870.vsd
Data

Cluster

BiomedGT Curator

Curates using

Wiki read-only data

Protégé Datastore

Read by

Makes edits to

Wiki edit data

Stores to

BiomedGT Wiki Editor

Protégé

Protégé Workflow

Exports to

Read-only BioMedGT
 Wiki page

BiomedGT
Wiki edit page

Edits stored to

Extracted to

Visible to

