	[image: image15.jpg] NCICB
	

Release
1.0
NCI EVS Report Writer

Design Document for 1.0 Release

Version No: 1.0
Last Modified: March 4, 2009
Author
:
Johnita Beasley

Team
:
Enterprise Vocabulary Services (EVS)

National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

N C I R E P O R T W R I T E R
[image: image15.jpg] Design Document

Document History

[image: image16.png]
Document Location

This document can be found on the GForge site at: https://gforge.nci.nih.gov/docman/index.php?group_id=90&selected_doc_group_id=1889&language_id=1
Revision History

	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	11/15/2008
	Johnita Beasley
	Initial Draft

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related EVS documents:
	Document Name

	

	

	

Approval

	Name
	Team/Role
	Version

	Date Reviewed
	Signature

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

TABLE OF CONTENTS

61 Introduction

61.1
Purpose of this Document

61.2
Document Overview

71.3
Related Documents

71.4
Methodologies, Tools and Techniques

71.5
Policies, Directives, Procedures

71.6
Key Stakeholders

81.7
Points of Contact

92
DESIGN OVERVIEW

92.1
Background Information

92.2
System Evolution Description

92.3
Technology Forecast

102.4
Risks

102.5
Issues

102.6
Assumptions

112.7
Dependencies

123
SYSTEM ARCHITECTURE

123.1
Architectural Goals and Constraints

123.2
Architectural Constraints

123.3
Architectural Tiers

133.4
Design Patterns Applied to Application Tiers

143.4.1
Client Tier

143.4.2
Web Tier

163.4.3
Business Tier

163.4.4
Data Tier

173.4.5
External Systems Tier

184
Software Design

194.1.1
Component Architecture

204.1.2
Domain Objects

204.1.3
Interfaces

215
Deployment View

215.1
Deployment Diagram

215.2
Deployment Products and Framework Versions

1 Introduction

1.1 Purpose of this Document
This document provides an overview of the EVS NCI Report Writer system design. It is intended to describe and capture the design decisions and is written as a reference for both the NCI customer and the NCI contractors/developers involved with the evolution of system. This is a living document and will be updated to reflect the evolution of development.
1.2 Document Overview

The main sections of this document are listed and described below.

· Section 1 provides a purpose statement, a document overview, identifies the scope and provides a list of related documents. In addition, this section identifies (at a very high level), the methodologies, tool and techniques employed for the design activities, addresses any NCICB directives impacting the design decisions, and identifies the key stakeholders and points of contact.
· Section 2 is the design overview. It outlines any background information that is relevant to the proposed design, identifies the step-by-step procedure to migrate the existing system to a more efficient implementation. In addition, this section identifies the emerging technologies that are expected to available in a given timeframe and how they make effect the future development of the system/system architecture. Risks, issues, assumptions and dependencies are also addressed.
· Section 3 captures the system architecture design. The architectural goals and constraints are identified and an architecture diagram is provided. Additionally, we discuss the architectural layers and describe any design patterns applied within them.
· Section 4 addresses the software design. We discuss the software packages and the associated object models that capture specific functional areas. We will show samples of how these objects address the requirements/use cases captured in the Requirements Document. The objects are described at a high-level in this section. The detailed description of the classes and their associated attributes will be detailed in the Section 5 Data Design.
· Section 6 addresses the system deployment. We describe the build process, the resulting products and how those products will be deployed. This section also addresses the technology stack being deployed by the NCI Report Writer.
1.3 Related Documents
· NCI Report Writer Scope Document

· NCI Report Writer Project/Task Plan

· NCI Report Writer Use Case Document

· NCI Report Writer Test Plan

· LexBIG Architecture Specification
· LexBIG Programmers Guide

1.4 Methodologies, Tools and Techniques

The NCI Report Writer design will be based on object oriented (OO) principles. Enterprise Architect (EA) will be the tool used to build several of the key design artifacts. The Rational Unified Process will be the base technique used for object modeling and other detailed design exercises.

1.5 Policies, Directives, Procedures

TBD.

1.6 Key Stakeholders
	Name
	Description
	Responsibilities

	Avinash Shanbhag
	NCICB Application Infrastructure
	Oversees NCICB caCORE Software Engineering

	Frank Hartel
	EVS Product Manager
	Directs EVS Projects

1.7 Points of Contact

· Project Oversight/Management

Name:

Title:

Email:
Phone:

Srini Guruswami

· NCICB Application Support

Email: appsupport@mail.nih.gov
2 DESIGN OVERVIEW

The NCI Report Writer will be designed and engineered to offer a scaleable and robust infrastructure.
2.1 Background Information

The NCI EVS General Purpose Report Writer is a web-based tool that will allow users to generate reports from a specified data source and download/print them to a specified file type or format (e.g. Excel, tab-delimited). It will allow for the generation of standard reports (with predefined criteria and outputs) and custom reports where the user must provide the tool with the required search criteria and desired output data.
2.2 System Evolution Description

· The first release of the report writer will support the definition and generation of standard reports. The initial design will be flexible enough to handle user defined custom reports. Future releases shall support the full implementation of customized reports. The first release of report writer shall be for internal use only and shall be deployed on QA tier. Future releases shall go public and be deployed on PROD tier.
2.3 Technology Forecast

In order to ensure that NCICB applications are regularly migrated to new versions of the chosen technology stack, the SCM initiative has promoted a twice-annual technology stack migration plan.

Under the three stack rotation plan, in any given period, Stack A represents the deprecated technology, Stack B represents the officially supported stack, and Stack C represents the target stack, which is available and may be used by any group for deployment or experimentation.

The NCI Report Writer application will maintain, at a minimum, Stack B. At the time of the writing of this document, the currently supported technology stack includes the following:

· JDK 1.5

· JBoss 4.0.5
The NCI Report Writer application will leverage other Core Infrastructure Components and Applications wherever possible. At the time of the writing of this document, the following infrastructure components and applications will be employed:

· caCORE SDK

· Common Security Module (CSM) API and User Provisioning Tool (UPT)
· LexBIG API

2.4 Risks

	Risks
	Low
	Med
	High
	Contingency

	TBD.
	
	
	
	

2.5 Issues

	Ref
	Issue
	Action

	TDB.
	
	

2.6 Assumptions

	Ref
	Assumption
	Impact

	2.6.1
	Current releases of all leveraged infrastructure components and/or applications are stable.
	HIGH

2.7 Dependencies
	Ref
	Dependency
	Action

	2.7.1
	Commitment to the employment of other NCICB infrastructure components and applications establishes an immediate dependency.
	Ensure all leveraged component and application releases are deemed stable.

3 SYSTEM ARCHITECTURE
3.1 Architectural Goals and Constraints

The following are goals and constraints of the NCI Report Writer system architecture.
· To ensure the platform addresses enterprise level of service requirements: Performance, Scalability, Reliability, Availability, Extendibility, Maintainability, Manageability, and Security.

· The NCI Report Writer N-Tier model of computing enables the overall performance and maintainability of the system to be substantially improved. This layered environment also simplifies code distribution, since most of the business logic has been moved from the client to the server. This addresses manageability.
· The NCI Report Writer code base will address the performance, reliability, extendibility and maintainability. J2EE design patterns and best practices will be utilized throughout the application.

· Define clear application layers delineating architectural role and functionality

· The NCI Report Writer N-Tier architecture provides clear separation of user-interface-control and data presentation from application-logic. The data or persistence layer is transient thereby allowing/ensuring that the domain objects have no knowledge of the underlying ORM implementation.
· Integrate well with the NCICB core Infrastructure Components and Applications

The NCI Report Writer application will integrate with/leverage the following:

· The LexBIG API.

· Utilize industry supported specifications and open source technologies whenever possible

· The NCI Report Writer web application framework is implemented using an open source Model View Controller (MVC) framework.
3.2 Architectural Constraints
TBD.
3.3 Architectural Tiers
The NCI Report Writer architecture is based on an n-tier/multi-tier J2EE computing environment that assigns responsibilities to separate application layers. This fosters a loosely coupled and tightly cohesive architecture in which objects in each layer are focused on specific architectural responsibilities yet, cleanly integrate with the other layers.

The diagram below illustrates the following horizontally across the diagram.

· Client Tier – runs on the client machine and is primarily associated with displaying the pages generated on the Web Tier.
· Web Tier – runs on the server/host machine. Handles generation of the applications presentation components and maintains vehicles for communication with the Business Tier.
· Business Tier – Business-objects that implement the business rules "live" here, and are available to the client-tier. The business tier runs on the server/host machine and could be executed from within a J2EE EJB Container. This tier protects the data from direct access by the clients.
· Data Tier – a transparent data management tier that receives requests for and with regard to system data.
· External Systems Tier –the access point to integration with an external system or core infrastructure component.

[image: image1.png]
Figure 3.1. NCI Report Writer Architecture Layers

3.4 Design Patterns Applied to Application Tiers
This section of the document describes the architecture and the implementation within each application layer. The major products, frameworks and patterns used in the implementation are described.

 Client Tier
The NCI Report Writer web client will consist of two parts: (1) dynamic web pages containing various types of markup languages (HTML, XML, and so on), which are generated by web components running in the web tier, and (2) a web browser, which renders the pages received from the server. The rendered pages will comply with the browser and user interface standards put forward by the NCICB User Interface working group.
Web Tier
The NCI Report Writer application web tier consists of Java classes (Web Components) that dynamically process requests and construct responses (Servlets) and Java Server Pages (JSPs).
3.4.1.1 Web Application Framework Approach

The NCI Report Writer application uses the Model 2 JSP/Model View Controller (MVC) design pattern implemented in the Java Server Faces web application framework. Model 2 is a term used to indicate that the web-adapted version of the classic MVC pattern is being implemented.
 Business Tier
The business logic layer executes the business logic of the application. The business layer is presentation independent because presentation-specific workflow is not built into these classes. As a result, it is possible to provide several separate presentations for the same application.

In the typical scenario, the business delegate will call a system/function manager acting in the Session Façade (described below) role. The façade will then delegate to the appropriate business classes that process the request and retrieve or store the data.

3.4.1.2 Session Façade Pattern

The session façade design pattern (http://java.sun.com/blueprints/corej2eepatterns/Patterns/SessionFacade.html) is used to encapsulate the complexity of interactions between business objects in a workflow. The façade or boundary class, hides these interactions and provides a simpler, course-grained access to clients. As a result, coupling between business and presentation layers is reduced, transaction control is centralized, and fewer interfaces are exposed to the client.

The implementation of the session façade pattern in the NCI BioPortal
includes a java manager class and one or more business objects that execute the actual business processing. In this case, the façade is lightweight, performs security and other transaction services but delegates implementation of the method to a business object that interacts with other business objects.

3.4.1.3 Data Transfer Object (DTO) Pattern

The J2EE Data Transfer Objects design pattern (http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataTransferObject.html) is used to encapsulate business data. It is frequently used when passing data from one application layer to another in order to provide generic and consolidated access to data from layer to layer. DTOs are generally lightweight, serializable and contain private data with public assessors.
Data Tier
The data tier has the responsibility to provide a transient, transparent and lightweight mechanism for retrieving and submitting information from an external data store and returning that information in a generic way. In NCI Report Writer, read access to the terminology data is handled through the LexBIG API and read/write access to the reportwriter data is handled through the SDK generated writeable API
External Systems Tier
The external systems tier can also be referred to as the integration tier. It simply represents the access points for communicating with other infrastructure components or applications.

4 SOFTWARE DESIGN
Modeling is the process of software design prior to the generation of code. The model is therefore the core of the software design process. Using a model, those responsible for a software development project's success can assure themselves that business functionality is complete and correct, end-user needs are met, and program design supports requirements for scalability, robustness, security, extendibility, and other characteristics before implementation in code renders changes difficult and expensive to make.
Modeling can be performed using a number of different methodologies. In the NCI BioPortal
application, the OMG's Unified Modeling Language™ (UML®) is used. UML helps you specify, visualize, and document models of software systems, including their structure and design, in a way that meets all of these requirements. We will be using the UML implementation found in the UML Case Tool, Enterprise Architect (EA).
Object Model
The NCI Report Writer object model is shown Figure 4.1.1.1. The UML model captures the domain classes that represent the problem domain.

[image: image3]
At the core of the NCI Report Writer application portal are the business or domain objects and the relationships they share. These domain/business objects will be implemented as Plain Old Java Objects (POJOs) and each will implement the java.io.Serializable interface to facilitate the transfer of objects through the tiered component architecture. The identified domain objects are captured in the following sections.
4.1.1.1 NCI Report Writer Domain Object Descriptions
Below, each NCI Report Writer application domain object is identified and described. For simplicity, we will note here that each object has a unique identifier reserved for the retrieval of unique data objects.
4.1.1.1.1
User: The user of the report writer web application. Detailed user information is maintained by the CSM UPT database. Report writer stores just the basic information required to map the user to report(s).
Report: Base class representing a generic NCI EVS report. This can be extended into a StandardReport or a CustomizedReport.
ReportStatus: Object indicating the status of the report (e.g., Approved or draft).

ReportFormat: Object representing the format of the report (e.g., Excel or tab delimited).

StandardReport: Inherits from the Report class to indicate predefined and preformatted reports created by the NCI EVS admins.
· StandardReportTemplate: A template class defining all the columns for a given StandardReport.

· ReportColumn: An individual column that can be part of one or more StandardReportTemplates.
CustomizedReport: Inherits from the Report class to indicate report(s) defined and generated by any user (public or admin) based on a query.
CustomizedQuery: A Boolean query defined by a user based on which a CustomizedReport may be generated.

External Interfaces
The NCI Report Writer application will interface with several other NCICB software components or APIs to ensure a secure, responsive and feature-rich application. The software interfaces are described below.
caCORE SDK 4.1
caCORE SDK is a valuable infrastructure component developed by the NCICB for the purpose of
automatic generation of caBIG compliant applications. In this case, we use the SDK to generate the
writeable API for the local reportwriter database. The SDK reads the XMI file corresponding to the
report writer UML models (logical model, data model and the mapping between them) The API
generated are utilized in the webapplication in the form of two jar libraries (rwdbserver-beans.jar
and rwdbserver-orm.jar) to read and write to the reportwriter database.
Common Security Module (CSM) API and User Provisioning Tool (UPT)
 CSM API is another core infrastructure component developed by the NCICB to provide
 authentication and authorization services to NCICB applications. CSM API is integrated into the web
 application as jar files. UPT needs to be deployed as a war file on Jboss server for admin’s user

 provisioning activities. CSM and UPT require a csmupt database to support authentication,
 authorization and user provisioning. This database is kept separate from the reportwriter
 application database within MySQL.
User Interface Design
The NCI Report Writer application web user interface will follow NCICBIT’s standard templates to be show in figures below.

4.1.1.2 Home Page
The Home page will contain following components:

· NCI Header

· NCI Footer

· Application Header

· Application Footer

· Side Menu

· Menu Bar

· Welcome section

· Login

· What’s News

[image: image4.png]
4.1.1.3 Task Selection Page
After logging to the application successfully, the Task Selection page will appear as shown in figure below. The page will contain a drop-down list-box. If the user has an administrator privilege, then the list of task would be:

· Administer Standard Reports
· Maintain Report Status (add new status, inactivate status)

· Assign Report Status.

On the other hand, if the user does not have an administrator privilege, then the user would only see the following items in the list-box:

· Retrieve Standard Reports

 [image: image5.png]
[image: image6.png]
4.1.1.4 Standard Report Template Page

When the administrator selects the “Administrate Standard Reports” option, the Standard Report Template page will appear. It will contain a drop-down list box showing the labels of all existing template available in the data base. Each report template will contain a collection of data elements which will be discussed in the subsection next.

The page will provide the user with the following commands:

· Add

· Modify

· Generate

· Review

· Delete

· Back

[image: image7.png]
4.1.1.5 Add Standard Report Template Page

When the administrator selects the “Add” command on the Standard Report Template page, the Add Standard Report Template page will appear. It will contain the following components for the user to enter Standard Report Template specific data:
· Label text field

· Coding Scheme drop-down list-box

· Root Concept Code text field

· Association Name drop-down list-box

· Direction (association source or target)

· Level drop-down list-box

All drop-down list boxes would be pre-populated. The coding scheme drop-down list-box will contain entries with each entry carrying both coding scheme name and version. The default selection would be set equal to NCI Thesaurus with proper version number. The user would be able to use the bioportal hyperlink on the side bar to find the root concept code. The default Association Name would be set equal to “Concept_In_Subset”.
[image: image8.png]
4.1.1.6 Standard Report Column Page

When the administrator selects the “Modify” command on the Standard Report Template page, the Standard Report Column page will appear. This page will contain a table showing the specifications for the existing columns (i.e., fields) of the selected report (template). The content of a report column will be discussed in the next subsection.
The page will provide the user with the following commands:

· Insert After (or Add, if no column has been defined yet)
· Insert Before

· Modify

· Delete

· Back

4.1.1.7 Add Standard Report Column Page

When the administrator selects the “Add” command on the Standard Report Column page, the Add Standard Report Column page will appear. It will contain the following components for the user to enter Standard Report Column specific data:

· Field Label text field

· Field Type drop-down list-box

· Property Type drop-down list-box

· Property Name drop-down list-box

· Is Preferred radio buttons

· Representational Form drop-down list-box
· Source text field

· Property Qualifier Name drop-down list-box

· Property Qualifier Value text field

· Delimiter drop-down list-box

· Dependent field text field.
[image: image9.png]
4.1.1.8 Retrieve Standard Report Page

When the user selects the “Retrieve Standard Report” selection item from the Task Selection drop-down list box (refer to Task Selection page above), the Retrieve Standard Report page will appear. It will contain a list box showing all available Standard Reports available for download. The user may select a report from the list box and press the Download button to continue, or the Back button to return to the Task Selection page.

[image: image10.png]
4.1.1.9 Download Standard Report Page

When the user presses the “Download” button on the Retrieve Standard Report page, the Download Standard Report page will appear. It will show the hyperlinks for downloading the selected report in tab-delimited textual format and Microsoft Excel format.

[image: image11.png]
4.1.1.10 Logout Page

The user may, at any time, clicks on the Logout menu item on the Main Menu bar to exit the report writer application. A message would appear showing the user has been successfully logged out.

[image: image12.png]

5 Database Design
The terminologies are hosted on a MySQL database and are accessed only through the LexBIG API. The two databases created and maintained on MySQL are the csmupt database accessing by CSMAPI and the reportwriter database for the domain objects accessed through the reportwriter API generated using caCORE SDK. NCI report writer does not alter the csmupt schema that comes with the CSM API and UPT. It just uses the DDL script that comes with the CSM distribution. For details of the CSMUPT database and CSMAPI, refer to the CSM documentation on Gforge. The reportwriter database is designed for all the domain objects corresponding to the object model described in Section 4.1.1. In addition to the attributes from the logical model, the data model includes fields added to include table associations and foreign keys.
[image: image13.png]
6 Deployment View
	[image: image14.emf]dd Deployment Modelbioportal WARbioportal JARThird Party JARs

Figure 5. NCI Report Writer Deployment View

4.2 Deployment Diagram

NCI Report Writer will deploy using Ant. A customizable Ant script will be created which will allow for the application to be built and deployed to the NCICB QA, STAGING and PRODUCTION Servers.
rwdbserver-orm.jar and rwdbserver-beans.jar – All general NCI Report Writer application logic non-specific to a business tier is contained in the app jar. These jars are generated by the caCORE SDK using the report writer UML model in XMI format as the starting point.
reportwriter.war – Contains the NCI Report Writer web application-specific components and web server classes.

third party jars – All third-party jars used by the application.

4.3 Deployment Products and Framework Versions

NCI BioPortal implements the following APIs and versions. As new versions are released or are supported by NCICB, the products will be updated after a determination that the versions do not cause problems in the application.

	Name
	Version
	Provider
	Description

	Java SDK
	1.5.x
	Sun Microsystems
	JDK that the application runs. Deployed version dependent on NCICB standard at time of deployment. (java.sun.com/j2se/1.5/index.html)

	Ant
	
	
	The Build Scripting Tool.

	JBoss
	4.0.5
	JBoss Group open source
	J2EE application server. (www.jboss.org)

	Tomcat
	5.1.28
	Apache open source
	J2EE web container that ships integrated with JBoss. (jakarta.apache.org/tomcat)

	JSF
	1.1
	Apache open source
	Web application framework

	Commons
	various
	Apache open source
	Common utilities required by JSF and utilized by NCI BioPortal. Includes: beanutils, collections, digester, logging

	JDBC
	
	MySQL
	All Java driver for MySQL database

	
	
	
	

	Log4J
	1.2.7
	Apache open source
	Logging API. Also used by JBoss

�Should we mention CSMAPI, UPT, and SDK here again?

�It will be nice if the diagram actually marks these tiers as opposed to layers or vice versa

�Is bioportal relevant here?

�Did you mean NCI report writer?

